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The matter power spectrum from the Lyα forest: an optical depth estimate
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ABSTRACT

We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of
1.6–3.6. The optical depth, τ , for Lyα absorption of the intergalactic medium is obtained from
the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted
to density by using a simple power-law relation, τ ∝ (1 + δ)α . The non-linear 1D power
spectrum of the gas density is then inferred with a method that makes simultaneous use of
the one- and two-point statistics of the flux and compared against theoretical models with a
likelihood analysis. A cold dark matter model with standard cosmological parameters fits the
data well. The power-spectrum amplitude is measured to be (assuming a flat Universe), σ 8 =
(0.92 ± 0.09) × (�m/0.3)−0.3, with α varying in the range of 1.56–1.8 with redshift. Enforcing
the same cosmological parameters in all four redshift bins, the likelihood analysis suggests
some evolution in the temperature–density relation and the thermal smoothing length of the
gas. The inferred evolution is consistent with that expected if reionization of He II occurred at
z ∼ 3.2. A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with
a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data,
yields values of �m and σ 8 that are consistent with the cosmological concordance model. We
also perform a further inversion to obtain the linear 3D power spectrum of the matter density
fluctuations.

Key words: hydrodynamics – intergalactic medium – quasars: absorption lines – cosmology:
theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

The numerous Lyα absorption features observed in quasar spectra
bluewards of their Lyα emission line known as the Lyα forest, pro-
vide one of the main probes of the intergalactic medium (hereafter
IGM) (Bahcall & Salpeter 1965; Gunn & Peterson 1965). In recent
years two main advances have shaped the accepted view on the ori-
gin of the Lyα absorbing structures. First, the advent of 10-m class
telescopes equipped with high-resolution echelle spectrographs on
Keck and ultraviolet echelle spectrograph (UVES) on the Very Large
Telescope (VLT) has provided us with data of unprecedented quality
(see Rauch 1998 for a review). Secondly, the emergence of a theo-
retical paradigm within the context of the cold dark matter (CDM)
cosmology (e.g. Bi, Boerner & Chu 1992) supported by numeri-
cal hydrodynamical simulations (Cen et al. 1994; Zhang, Anninos
& Norman 1995; Hernquist et al. 1996; Miralda-Escudé et al. 1996;
Wadsley & Bond 1996; Zhang et al. 1997; Theuns et al. 1998;
Machacek et al. 2000; Tytler et al. 2004; Viel, Haehnelt & Springel

�E-mail: saleem@astro.rug.nl

2004a; Jena et al. 2005) and semi-analytical studies (e.g. Pichon
et al. 2001; Matarrese & Mohayaee 2002; Viel et al. 2002). Accord-
ing to this paradigm, the absorption is produced by volume filling
photoionized gas that contains most of the baryons at redshifts z ≈
3 (see e.g. Efstathiou, Schaye & Theuns 2000 for a recent review),
where the absorbers are locally overdense extended structures, close
to local hydrostatic equilibrium (Schaye 2001). The paradigm also
predicts that most of the gas probed by the Lyα forest – absorp-
tion features with column density �1013.5 cm−2 – resides in mildly
non-linear dark matter overdensities.

On scales smaller than the Jeans scale the baryonic gas is
smoothed by pressure forces, erasing the small-scale fluctuations
of the gas density, and setting its distribution apart from the dark
matter component. On these small scales, the width of the absorp-
tion features is determined by the gas thermodynamical properties
enabling the measurement of the IGM temperature and temperature–
density relation (e.g. Schaye et al. 2000; Theuns & Zaroubi 2000;
McDonald et al. 2001; Theuns et al. 2002a,b; Gleser et al. 2005).

On scales larger than the Jeans scale, however, the gas distri-
bution faithfully follows that of the underlying dark matter. The
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gas distribution on these scales provides a probe of the dark matter
distribution and its power spectrum (Croft et al. 1998; Hui 1999;
McDonald et al. 2000; Hui et al. 2001; Croft et al. 2002; Viel et al.
2003, 2004b; Desjacques & Nusser 2005; McDonald et al. 2005;
Seljak et al. 2005; Viel et al. 2005; Lidz et al. 2006; Viel & Haehnelt
2006).

The ‘standard’ method used for measuring the matter power spec-
trum from the Lyα forest is based on the result obtained in numer-
ical simulations showing that the normalized flux power spectrum
is proportional to that of the underlying matter (Croft et al. 1998).
The calibration of the relation between the two relies on numerical
simulations and on the value of the mean flux. Both of these are
somewhat uncertain. The calibration of the relation depends on the
specific cosmological parameters of the simulation, and the mean
flux on the specific quasar (QSO) spectrum at hand.

To date, almost all matter power spectra inferred from the Lyα

forest are based on this relation. There is, however, some debate on
what to adopt for the mean level of the flux. Early power-spectrum
measurements from the Lyα forest (e.g. Croft et al. 1998; McDonald
et al. 2000; Croft et al. 2002) adopted a rather low level of the mean
flux, and inferred a relatively low amplitude of the fluctuations.
This result is not completely consistent with the large-scale angular
power-spectrum amplitude and the early reionization of the Universe
inferred from the temperature and polarization data of the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite (Kogut et al. 2003).
This tension has been the primary reason for the WMAP team to sug-
gest a running spectral index model (Spergel et al. 2003). A number
of authors have recently pointed to the strong dependence of the
inferred amplitude on the adopted mean flux level and have argued
that the errors of dark matter power spectrum inferred from Lyα

forest data have been underestimated (Zaldarriaga, Hui & Tegmark
2001; Gnedin & Hamilton 2002; Seljak, McDonald & Makarov
2003; Zaldarriaga, Scoccimarro & Hui 2003).

Recent studies (Kim et al. 2004; Viel et al. 2004b; Seljak et al.
2005; Lidz et al. 2006; Viel & Haehnelt 2006) have all adopted the
higher values of the mean flux suggested by high-quality absorption
spectra. These studies obtained matter power spectra from Lyα data
that are consistent with the WMAP results without the need for
the running spectral index power spectrum proposed by the WMAP
team.

The current study follows a different route in which the matter
power spectrum is measured by inverting the normalized Lyα flux
to obtain the optical depth for Lyα absorption (Nusser & Haehnelt
1999, 2000, hereafter NH99 and NH00, respectively). In a system
in photoionization–recombination equilibrium, such as the IGM,
the optical depth for Lyα absorption is to a good approximation a
power-law function of the underlying density with the power-law
index determined by the temperature–density relation of the IGM
gas. We use this simple relation to infer the line-of-sight (LOS)
distribution of the gas density. The shape of the power spectrum and
the probability distribution of the gas density, are then used to infer
the shape and amplitude of the 1D power spectrum of the gas density
separately, without the need for assuming a mean flux level. State-
of-the-art hydrodynamical simulations are then used to calibrate and
test the method. The method is applied to 31 high-resolution Lyα

spectra of which the newly acquired LUQAS sample constitute the
main part.

The paper is organized as follow: Section 2 describes the data set.
Section 3 shows how we infer the non-linear 1D power spectrum
of the gas density from the Lyα forest data using the NH99 and
NH00 inversion method. Section 4 presents the analytical modelling
of the non-linear 1D power spectrum of the gas from the linear

3D power spectrum of matter and describes the use of numerical
hydrosimulations to correct for the effect of redshift distortions and
gas pressure. The likelihood analysis employed to constrain the
parameters of the matter power spectrum and the thermal state of
the IGM, is discussed in Section 5. In Section 6, our best estimate of
the 3D matter power spectrum is presented and compared to results
from previous studies. The main conclusions are given in Section 7.

2 T H E DATA S E T

The sample used in this study consists of 31 high-resolution high
signal-to-noise ratio (S/N) spectra. 27 of the spectra were obtained
with the UVES on VLT, Paranal, Chile, over the period 1999–2002.
The 27 spectra were taken from the European Southern Observa-
tory archive and are publicly available (P.I. J. Bergeron; Bergeron
et al. 2004); this sample is known as the LUQAS sample (Kim et al.
2004). The LUQAS sample was selected based on the following cri-
teria: (1) S/N larger than 25 in the Lyα forest region; (2) complete or
nearly complete coverage of the Lyα forest region; (3) no damped-
Lyα (DLA) systems in the Lyα forest region, though few spectra
have sub-DLAs (column density 1019.0–20.3 cm−2); (4) no broad ab-
sorption line systems; (5) publicly available as of 2003 January 1.
The total redshift path of the sample is z = 13.75. For more details
on the LUQAS sample see Kim et al. (2004). The rest of the spec-
tra were obtained from various other publicly available spectra that
fulfil similar criteria. For more details on the remaining spectra, see
Hu et al. (1995) and Theuns et al. (2002a) and references therein.
All the 31 spectra used here, have S/N of 40–50 per pixel, and a
similar resolution (λ/	λ � 40 000).

Fig. 1 shows the redshift range covered by all the spectra used in
this analysis. The median redshift of the sample is 〈z〉 = 2.55 with
a cumulative redshift path of about 16.8.

3 R E C OV E R I N G T H E 1 D P OW E R S P E C T RU M

O F T H E G A S D E N S I T Y I N R E D S H I F T S PAC E

3.1 From flux to gas density

NH99 and NH00 introduced an algorithm to invert the observed flux
in the Lyα forest region of QSO absorption spectra to obtain the gas
density along the LOS (see also Pichon et al. 2001). We will use
here a modified version of this algorithm to measure the 1D power
spectrum of the gas density. This is the first step in our endeavour
to constrain the matter power spectrum and the thermal state of the
IGM. For the sake of completeness, the description of the algorithm
is repeated here in some detail.

The optical depth in redshift space due to resonant Lyα scattering
is related to the H I density along the LOS in real space by

τ (z) = σ0
c

H (z)

∫ ∞

−∞
nH i(z, x)H[z − x − vp(x), b(x)] dx, (1)

where σ 0 is the effective cross-section for resonant line scattering,
H(z) is the Hubble constant at redshift z, x is the real-space co-
ordinate (in km s−1),H is the Voigt profile normalized such that∫
H dx = 1, vp(x) is the LOS peculiar velocity, and b(x) is the

Doppler parameter due to thermal/turbulent broadening. The ab-
sorption features in the Lyα forest are mainly produced by regions
of low to moderate densities, where photoheating is the dominant
heating source and shock heating is not important.

Hydrogen in the IGM is highly ionized (Gunn & Peterson 1965;
Scheuer 1965) and the photoionization equilibrium in the expanding
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Figure 1. The redshift range of the QSO spectra used in this paper. 27
of the spectra are taken from the LUQAS QSO sample (Bergereon et al.
2004; Kim et al. 2004). QSO 0956+122 is taken from Hu et al. (1995).
The remaining four, at the high-redshift end of the sample, are various other
publicly available spectra (see Theuns et al. 2002a and references therein).

IGM establishes a tight correlation between neutral and total hydro-
gen density. Numerical simulations have supported the existence
of this correlation and shown that the gas density traces the fluc-
tuations of the DM density on scales larger than the Jeans length,
so that nH I = n̂H I [ρDM(x)/ρ̄DM]α . Here n̂H I is the H I density at
the mean dark matter density, and the parameter α depends on the
reionization history. The possible range for α is 1.56 � α � 2 with a
value close to 2 just after reionization, and decreasing at later times
(Hui & Gnedin 1997). In this relation ρDM(x) is the dark matter
density smoothed on the Jeans length below which thermal pressure
becomes important. The Jeans length in comoving units in the linear
regime is given by

X J = 2πcs√
4πGρ̄

(1 + z)

≈ 1.3

(
�mh2

0.125

)−1/2 (
T̄

1.5 × 104 K

)1/2

×
[

1.5

1 + (2 − α)/0.7

]1/2 (
1 + z

4

)−1/2

Mpc, (2)

where cs is the sound speed, ρ̄ is the mean density of the Universe,
�m is the matter density parameter, T̄ is the mean IGM temperature
and h is the Hubble constant of units of 100 km s−1 Mpc−1. However,
in the non-linear regime gas can collapse to scales smaller than this
and the Jeans scale becomes a somewhat ambiguous quantity. The

effective non-linear Jeans length, X J, is defined as the width of a
kernel of the form [1+(kX J/2π)2]−2, such that the rms fluctuation
amplitude of ρDM(x) is the same as that of the unsmoothed dark
matter density filtered with this kernel (see Section 4 for details).
On scales larger than the effective Jeans length, equation (1) can be
written as

τ (z, w) = A(z)

∫ ∞

−∞

[
ρDM (z, x)

ρ̄DM

]α

H[w − x − vp(x), b(x)] dx,(3)

with

A(z) = σ0
c

H (z)
n̂H I

≈ 0.61

[
300 km s−1 Mpc−1

H (z)

] (
�bh2

0.02

)2

×
(

�phot

10−12 s−1

)−1 (
T̄

1.5 × 104 K

)−0.7 (
1 + z

4

)6

, (4)

where �b is the baryonic density in terms of the critical density, H(z)
is the Hubble parameter, and �phot is the photoionization rate per
hydrogen atom. The Doppler parameter in the last equation depends
on nH I as b ∝ n1−α/2

H I .
NH99 defined the local optical depth as

τ̃ (x) ≡ A
[

ρ(x)

ρ̄

]α

, (5)

which is related to the observed optical depth τ by a convolution
with a Voigt profile as described in equation (1).

NH99 have presented a direct Lucy-type iterative scheme (Lucy
1977) to recover the optical depth and the corresponding mass and
velocity fields in the LOS from the normalized flux, F = exp(−τ ).
In our tests with hydrosimulation (described in more detail in Sec-
tion 4.6), we found that estimating the velocity field from the spectra
itself is not very accurate. We will therefore be less ambitious here
and use the algorithm of NH99 to recover the gas density in redshift
space. We will later use hydrodynamical simulations to address the
effect of redshift-space distortions (see Section 4.4).

NH99 showed that the density field can be successfully recov-
ered below a threshold value above which the corresponding flux
saturates. The NH99 reconstruction method, therefore, imposes an
effective upper limit on the recovered optical depth in these regions.
This will inevitably affect the amplitude of the measured power
spectrum but as will be shown later, not its shape. We use this to
determine the shape and normalization of the power spectrum sep-
arately in two steps.

3.2 The shape of the 1D power spectrum of the gas density

Due to the 1D nature of the Lyα forest, the measured power spectrum
at a given wavenumber, k, is necessarily the LOS power spectrum,
P1D (k). The relation between the 1D power spectrum and the 3D
power spectrum, P3D (k) is (Kaiser & Peacock 1991),

P3D(k) = −2π

k
dP1D

dk
. (6)

The useful dynamical range covered by the Lyα forest data are
restricted to 0.1 h Mpc−1 � k � 10 h Mpc−1. The lower limit comes
from the limited length of the observed QSO spectra. The upper
limit is imposed by a combination of the effective Jeans scales below
which the pressure gradients wipe out the small-scale fluctuations
in the baryons and the contamination induced by metal lines. In
order to measure the 1D power spectrum from the 31 QSO spectra,
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Figure 2. The measured shape of the 1D power spectrum of the gas density at two different redshifts for a range of τ̃ cut-off values. The four cut-off values
are τ̃cut-off = 1, 2, 3 and 10 and the spectra are normalized to the same amplitude. The power spectra were calculated from all sections of the absorption
spectra in the specified redshift bin. The error bars show the 1σ errors. For k � 10 h Mpc−1 where the Lyα forest is dominant, the changes in the shape of the
power-spectrum shape are very small. At small scales with k � 20 h Mpc−1, however, associated metal absorption results in a clear change in the slope when
the cut-off value is varied. Note that only wavenumbers with values � 10 h Mpc−1 are used to estimate the 3D matter power spectrum.

Table 1. The redshift bins used in this paper. Columns number 1, 2, 3 and 4
show the redshift bin number, its mean, minimum and maximum redshifts,
respectively. Columns 5 and 6 show the number of spectra included in each
bin and its total length in km s−1.

z bin 〈z〉 zmin zmax # of spectra Length (km s −1)

1 3.29 3.0 3.6 7 202 658
2 2.85 2.6 3.1 10 308 166
3 2.48 2.2 2.7 10 308 002
4 1.96 1.6 2.2 13 486 124

we have divided the Lyα data into four redshift bins (see Table 1
and Fig. 1). For each redshift bin, the sections that are taken into
account are those that belong to Lyα spectra that have more than
40 per cent of their total length in the redshift bin at hand (see
Table 1). In order to measure the power spectrum within a certain
redshift bin, we first calculate the local optical depth for each section
within this bin using the NH99 method. For a given value of α, the
1D matter density is calculated from equation (5). The recovered
density section is then Fourier-transformed and the power spectrum
at a given wavenumber is obtained. We have estimated the mean
and the measurement error of the 1D power spectrum at a given
wavenumber from all the individual spectra within the bin. The
variance is calculated using two independent methods that give very
similar results. The first is a standard deviation measurement of all
the power-spectrum values at a given wavenumber while the second
uses a bootstrap technique.

The recovered optical depth τ̃ is a good approximation to the
true field only in regions with τ̃ smaller than a certain value. For
large optical depths, the recovered τ̃ typically underestimates the
true field. As in NH00, we define a truncated local optical depth τ̃t

as τ̃t = τ̃ for τ̃ < τ̃c, and τ̃t = 0 otherwise. In order to test how this
cut-off in the optical depth affects the shape of the 1D power spec-
trum, the power spectrum inferred from a truncated optical depth
distribution is measured for a range of cut-off values. The resulting
dimensionless 1D power spectra1 are shown in Fig. 2, all renormal-

1 We will generally use the dimensionless 1D and 3D power spectra to ex-
press our results. These are defined as π−1 kP1D for the 1D case, and 	2 ≡
(2π2)−1k3 P3D for the 3D case.

ized to the same fiducial amplitude. The left-hand panel is for 〈z〉 =
2.48 and the right-hand panel is for 〈z〉 = 2.85. The error bars show
the variance around the mean at each point. Notice that these errors
are independent. Changing the cut-off value of the optical depth has
very little effect at k � 10 h Mpc−1. This is perhaps not too surpris-
ing as the regions in the spectrum where the flux is saturated have a
small volume-filling factor.

At small scales with k � 10 h Mpc−1 metal absorption lines
within the Lyα forest contaminate the signal (e.g. Kim et al. 2004).
We therefore truncate the recovered 1D power spectrum at this
wavenumber.

3.3 The amplitude of the 1D power spectrum of the gas density

Most of the regions where the Lyα flux is saturated correspond to
scales comparable to the Jeans scale. These regions are scattered
roughly randomly across the spectrum. The amplitude of the 1D
power spectrum of the gas density can thus not be reliably measured
directly from the optical depth truncated at a certain cut-off value.

We will use instead the probability density function (PDF) of
the recovered optical depth which is related to the PDF of the gas
density. We thereby use the fact that the shape of the PDF changes
with increasing amplitude of the power spectrum. NH00 showed that
the first two moments of the PDF of the gas density can be recovered
rather well from the moments of the probability distribution of the
truncated optical depth. The main points are summarized in the
following.

NH00 define the moments of the truncated optical depth τ̃t which
can be written in terms of P , the density PDF, as

〈
τ̃ n

t

〉 = An

∫ δc

−∞
(1 + δ)nα P(δ) dδ, (7)

where δ = ρ/ρ̄ − 1 is the density contrast and δc = (τ̃c/A)1/α − 1.
Further, ν is defined as, ν = [ln(ρ/ρ̄) − μ1]/μ2, where μ1 and μ2

are the average and rms values of ln (1 + δ). NH99 had shown that
the PDF of the DM density smoothed on the scale relevant for the
Lyα forest (the effective Jeans scale) can be reasonably well approxi-
mated by a lognormal distribution (e.g. Bi & Davidsen 1997 or Sheth
1998 and Gaztañaga & Croft 1999 for different forms of the PDF).
For a lognormal density distribution, P(ν) = exp(−ν2/2)/

√
2π,
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the truncated moments in (7) can be written as〈
τ̃ n

t

〉 = An

2
exp

(
1

2
n2α2μ2

2 + nαμ1

)[
1 + erf

(
νc − nαμ2√

2

)]
,

(8)

where ν c is the value of ν corresponding to δc. By expressing ν in
terms of τ̃ in (8) the truncated moments can be written as〈
τ̃ n

t

〉 = 1

2
exp

(
1

2
n2α2μ2

2 − nαμ2
2

2
+ n lnA

)

×
[

1 + erf

(
ln τ̃c − nα2μ2

2 − lnA + αμ2
2

/
2

αμ2

√
2

)]
. (9)

Here the relation μ1 = −μ2
2/2, which follows from the condition

〈δ〉 = 0 for the lognormal distribution, is used. The moments of
the truncated optical depth distribution depend on four parameters
A, μ2, α and τ̃c. The parameter τ̃c is chosen such that for τ̃ < τ̃c

the local optical depth does not suffer from the biases introduced in
saturated regions. As apparent from equation (9) there are two basic
degeneracies leaving two independent parameters:

B ≡ lnA − αμ2
2

2
, C ≡ αμ2. (10)

NH00 showed that the moments of τ̃t can then be written in terms
of these parameters as〈
τ̃ n

t

〉 = 1

2
exp

(
n2C2

2
+ nB

) [
1 + erf

(
ln τ̃c − nC2 − B√

2C

)]
.

(11)

The first two moments, 〈τ̃t〉 and 〈τ̃ 2
t 〉, are sufficient to determine

the parameters B and C. From these one can then infer the rms
fluctuation amplitude of the gas density σ J and the normalization
constant of the optical depthA. The rms fluctuation amplitude of the
gas density σ J is related to the amplitude of the 1D power spectrum
of the gas by a simple integration,

σ 2
J = 1

(2π)3

∫ ∞

0

P3D d3k = 1

π

∫ ∞

0

P1D dk, (12)

where equation (6) is used to obtain the equality on the right-hand
side.

The normalization adds another uncertainty to the power-
spectrum calculation. We estimate this uncertainty to be ≈40 per
cent (see NH00) for a spectrum as long as Q1422+231. To account
for the larger total redshift path in each redshift bin compared to
that of Q1422+231 we assume that the amplitude errors follow a
Poisson distribution, i.e. that they scale inversely with the square
root of the combined length of the spectra in each redshift bin. This
scaling reduces the error associated with the normalization to ∼10–
20 per cent for each redshift bin. This error is added to the error
due to the shape measurement. Note however, that unlike the shape
measurement error, the error due to the normalization is added to
all data points equally and is highly correlated.

We have estimated the influence of the truncation at k =
10 h Mpc−1 on the calculation of σ J from equation (12) extrapo-
lating the dependence of the power spectrum on k at k � 2 h Mpc−1.
At these wavenumbers, the 1D power spectrum scales roughly as
k−3 (see Fig. 2). This yields a contribution of the order of a few per
cent compared to the contribution of the sampled range. Note that,
since the slope of the power spectrum is expected to further steepen
at larger wavenumbers due to the effective Jeans scale cut-off, this
is a conservative upper limit. This will be further demonstrated with
simulated spectra (see right-hand panel of Fig. 7).

Fig. 3 shows the measured 1D power spectra of the gas distribution
(solid curves), assuming the α values indicated on each panel in
the four redshift bins. The error bars shown are those associated
with the uncertainties in the shape and amplitude measurements.
The figure also shows as the dashed curves the best-fitting models
obtained from the likelihood analysis, which will be described in
the following two sections.

4 M O D E L L I N G T H E 1 D G A S P OW E R

S P E C T RU M

4.1 General considerations

Equation (6) can be used in order to obtain the 3D power spectrum
from the measured 1D power spectrum. Unfortunately however,
the measured 1D power spectrum is already a noisy quantity and
differentiation will introduce more uncertainties. This approach is
explored in Section 6 where we compare the 3D power spectrum
obtained here to the 3D matter power spectrum inferred from the
flux power spectrum by Viel et al. (2004b). In order to quantitatively
constrain the parameters describing the matter power spectrum and
the thermal state of the gas, we use instead a likelihood analysis.
The likelihood analysis is described in Section 5.1.

To obtain a realistic model for the 1D power spectrum of the
gas density we start with the linear 3D matter power spectrum in
real space. From this the non-linear 3D power spectrum of the gas
distribution is obtained by taking into account the effects of non-
linearity, redshift distortions and gas versus dark matter bias. The
model for the 1D power spectrum of the gas in redshift space is then
readily obtained by using the integral form of equation (6),

P1D(k) = 1

2π

∫ ∞

k

P3D(k ′)k ′ dk ′. (13)

4.2 The linear 3D matter power spectrum

We restrict our analysis to the generalized family of CDM cosmo-
logical models, allowing variations in the mass density and vacuum
energy density parameters. The general form of the power spectrum
of these models is

P3D(k) = A T 2(�, �m, �b, h; k) kns . (14)

The CDM transfer function, proposed by Sugiyama (1995), is
adopted.

T (k) = ln (1 + 2.3q)

2.34q

× [
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
,

(15)

q = k

[
�h exp

(
−�b − h1/2�b

�

)
(h Mpc−1)

]−1

, (16)

where �, �m and �b are the total, mass and baryonic density
parameters, respectively; h is the Hubble constant in units of
100 km s−1 Mpc−1 and ns is the power-law index of the primordial
power spectrum. The parameter A is the power-spectrum normaliza-
tion factor, which will be expressed here in terms of the other cos-
mological parameters and σ 8 – the rms density fluctuations within
top-hat spheres of 8 h−1 Mpc radius.

The parameters are varied such that they span a range of plau-
sible CDM models. In all cases, the baryonic density is assumed
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Figure 3. The solid curves shows the measured 1D power spectra of the gas density for four different redshifts assuming the α values indicated on each panel.
The error bars include the combined contributions from the measurement of shape and amplitude of the power spectrum to the errors as described in the text.
The central dashed curve in each panel shows the best-fitting models obtained from the likelihood analysis. The other two dashed curves show the ∼1σ range
of allowed values of σ 8. The parameters of the best-fitting models are annotated on each panel.

to be �b = 0.02 h−2, the value currently favoured by primordial
nucleosynthesis analysis (e.g. Walker et al. 1991; Burles & Tytler
1998) and the WMAP cosmic microwave background (CMB) data
(Bennett et al. 2003). The value of h is fixed to 0.7 and the Universe
is assumed to be flat.

We have focused in our study on a few cosmological parameters,
�m, σ 8 and ns. It is important to note that some of the free param-
eters of the power-spectrum models are degenerate. For example at
the range of wavenumber constrained by Lyα forest data the ampli-
tude of the power spectrum is degenerate with the power-spectrum
power-law index, ns. We have therefore fixed the value of the power-
law index to unity in most of the analysis of the real data. We will
discuss the influence of changing the value of ns on the results for
a few cases.

4.3 Non-linear effects

As discussed earlier, the fluctuations in the Lyα optical depth follow
those of the dark matter down to the Jeans scale, which is of the order
of 1 h−1 Mpc. At redshifts of 2–4, these scales have already entered
the quasi-linear regime. It is therefore necessary to account for the
non-linear evolution of the density field. Peacock & Dodds (1996)
have developed a simple recipe for mapping the linear 3D matter
power spectrum on to the quasi-linear regime. The actual mapping
used here is the one described in Peacock (1999) book which has
slightly modified, and more accurate parameters than the one given
in Peacock & Dodds (1996). The recipe is accurate to few per cent
for a very large family of CDM power spectra. For more details, see
Peacock (1999) and references therein (see also Smith et al. 2003).
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It is worth noting that it should not be necessary to follow the
evolution of the power spectrum to the highly non-linear regime.
High-density regions will not give rise to the low column density
spectral lines we use in our analysis. The influence of saturated lines
is further diminished by introducing a severe cut-off to the optical
depth (see Fig. 2).

4.4 Redshift distortions

After taking the non-linear effects into account, the theoretical 3D
real-space power spectrum is transformed into redshift space. The
‘distortions’ caused by this transformation – normally called redshift
distortions – will significantly bias the power-spectrum measure-
ment. On linear scales, redshift distortions cause an enhancement
in the measured power spectrum with a constant factor that depends
on the value of �m at a given redshift (Kaiser 1987). In the highly
non-linear regime, redshift distortions tend to dilute the distribution
along the LOS and create the so-called ‘fingers of God’. Redshift
distortion in the highly non-linear regime thus lead to a suppression
of the power spectrum relative to the real-space power spectrum.
The effect of peculiar velocities in this regime can be modelled in
a statistical manner with a Gaussian fit to the 1D pairwise velocity
distribution (Davis & Peebles 1983). In the case at hand however,
most of density fluctuations are in the linear to quasi-linear regimes.
Unfortunately, there is no good analytical description of redshift dis-
tortions in the quasi-linear regime.

To account for the redshift distortions we have thus used the
hydrodynamical simulations described in Section 4.6 to determine
an empirical relation between the real-space and redshift power
spectra (see Fig. 4). Note that this correction is dynamical and as
such is not dependent on the details of the gas physics.

The upper left-hand panel of Fig. 4 shows the dimensionless 1D
power spectra with (dashed curves) and without (solid curves) pe-
culiar velocity distortions. The magnitude of the effect may appear

Figure 4. Redshift distortions of the 1D and 3D power spectra and their errors as estimated from the numerical simulations. The upper left-hand panel shows
the real-space (solid curves) and redshift-space (dashed curves) 1D power spectra at two redshifts, 2.75 (thin) and 2.25 (thick). The lower left-hand panel shows
the ratio between the dimensionless real-space 3D power spectrum and its redshift-space counterpart for three redshifts, 2.25, 2.75 and 3 as dashed/dotted
curves. The solid curves show the fit to the ratio used in the likelihood analysis. The upper right-hand panel shows the errors introduced in the dimensionless
3D redshift-space power spectrum by using this fit. The solid curves shows the dimensionless 3D power spectrum at z = 2.75; the dashed curve shows the
absolute error and the dashed curve shows the relative error which has a maximum value of about 20 per cent. The errors at the other two redshifts are similar.
The lower right-hand panel shows the actual 3D real-space power spectra (solid curves) versus the reconstructed power spectra (dashed curves) at two redshifts,
2.75 (thick) and 2.25 (thin).

rather large; however, one should keep in mind that the 1D power
spectrum is an integral quantity (equation 13) which tends to en-
hance any systematic biases in the 3D power spectrum.

To avoid this accumulation of bias in the 1D power spectrum, the
influence of the velocity distortions is modelled using the 3D power
spectrum. The lower left-hand panel of Fig. 4 shows the ratio be-
tween the real- and redshift-space 3D power spectra in the relevant
range of wavenumbers as deduced from the numerical simulations.
The ratio is shown for three different redshifts. At the largest scales
the ratio flattens to a constant value that is comparable to the linear
effect described by Kaiser (1987). On smaller scales the trend re-
verses and the redshift-space power spectrum is suppressed relative
to the real-space power spectrum. We fit the ratio between the two
with the following simple formula:

Pr (k)

Ps(k)
= 0.535

[
1 +

(
k
k0

)3
]1/3

, (17)

where Pr(k) and P s(k) are the real- and redshift-space power spectra,
respectively; k 0 = 2 h Mpc−1 is the scale relevant for the transition
from linear to quasi-linear regime. The fit is shown with the solid
curve. From Fig. 4, it is clear that the required correction for the
ratio is almost independent of redshift. A correction with the same
functional fit can thus be applied to all redshifts. The errors intro-
duced by the fitting formula are shown in the upper right-hand panel.
The relative error amounts to a maximum of about 20 per cent. The
lower right-hand panel shows how well the correction recovers the
real 3D redshift-space power spectrum.

For flat cosmological models, the Universe at the redshifts of
the Lyα spectra is very similar to an Einstein–de Sitter model. The
correction proposed in equation (17) will, therefore, not be very
sensitive to the exact values of cosmological parameters, possibly
with the exception of σ 8. We have shown that the relation holds at
three different redshifts. The functional form of equation (17) should
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thus be a good fit which depends only weakly on cosmological
parameters.

4.5 Gas versus dark matter power spectra

The next issue is to model the bias between the gas and dark matter
distribution. On scales larger than the Jeans scale, numerical simu-
lations have shown that pressure effects are, as expected, negligible.
The gas faithfully traces the dark matter on these scales. On scales
comparable or smaller than the Jeans scale, however, the distribu-
tion of gas deviates from that of the dark matter. At these scales, the
pressure becomes important and prevents the gas from contracting,
smoothing out all the small-scale fluctuations.

An approximate functional form for the effect of Jeans smooth-
ing on the power spectrum can be calculated from linear theory
(e.g. NH99). This is, however, not adequate to describe the quasi-
linear regime, relevant for this study. We have therefore again used
the numerical simulations described in Section 4.6 to obtain a more
accurate fit to the ratio between the power spectra of gas and dark
matter densities. The solid curves in Fig. 5 show this ratio for four
redshift bins as measured directly from the simulations. Notice the
slight enhancement at k ≈ 20 h Mpc−1. The long-dashed curves are
the best-fitting functions based on linear theory, which do not re-
produce the enhancement. The dashed curves show the results of
fitting the simulation data with a fitting function of the form

P3D
gas = P3D

DM[1 + B(z) k2]

[1 + (k XJ/2π)2]2
, (18)

where P3D
gas and P3D

DM are the 3D gas and dark matter power spectra,
respectively, and X J is the effective Jeans scale, and B(z) = 0.1447
− 0.0186 z. The function B(z) is later used in the likelihood analysis
where the value of X J was kept as a free parameter.

Figure 5. Gas versus dark matter power spectra. The bias between the gas
and the dark matter due to Jeans smoothing is shown. The solid curve shows
the ratio of the gas and dark matter 3D real-space power spectra. The short
dashed curve is the fitting function used in the current analysis. The long-
dashed curve is the normal Jeans scale cut-off function. Note that the hy-
drosimulations used here do not include gas cooling (see text).

It worth noting that we have used simulations with and without
cooling. The main difference we found is that simulations without
cooling require the addition of the term, B(z) k2, to the fit. Whereas
the simulations with cooling require no such addition to the nor-
mal Jeans cut-off function. In addition to that, we suspect that the
smoothed particle hydrodynamics (SPH) simulations with cooling
functions suffer from excess cooling of the gas, a well-known issue
in SPH simulations. For those reasons, we adopt the more general fit
that the hydrodynamical simulations without gas cooling produce.

4.6 Testing the recovery of the 1D power spectrum

from the optical depth with numerical simulations

In order to test how well our likelihood analysis recovers the non-
linear 1D gas power spectrum in redshift space, we have tested it
with artificial spectra produced from state-of-the art SPH simula-
tions. A suite of simulations with varying particle numbers, resolu-
tion and box size have been carried out with the parallel TreeSPH
code GADGET-2 (Springel, Yoshida & White 2001; Springel 2005).
GADGET-2 was used in its TreePM mode which speeds up the cal-
culation of long-range gravitational forces considerably. The simu-
lations were performed with periodic boundary conditions with an
equal number of dark matter and gas particles and used the conser-
vative ‘entropy-formulation’ of SPH proposed by Springel & Hern-
quist (2002). The mean ultraviolet background produced by quasars
as calculated by Haardt & Madau (1996) has been assumed. This
leads to reionization of the Universe at z � 6. The simulations were
run with the equilibrium solver for the thermal and ionization state
implemented in GADGET-2. The heating rates at z > 3.2 were in-
creased by a factor of 3.3 in order to achieve temperatures which
are close to observed temperatures (Ricotti, Gnedin & Shull 2000;
Schaye et al. (2000); Theuns et al. 2002b). At z < 6, the power-law
index of the gas density temperature relation is γ ∼ 1.6, where T =
T 0(1 + δ)γ (z)−1.

To maximize the speed of the simulations, a simplified star for-
mation criterion in the majority of the runs is employed. All gas at
densities larger than 1000 times the mean density was turned into
collisionless stars. The absorption systems producing the Lyα for-
est have small overdensity so this criterion has little effect on flux
statistics, while speeding up the calculation by a factor of ∼6. All
feedback options of GADGET-2 in the simulations have been turned
off.

We have run four simulations with box sizes of 60, 30, 15 and
10 comoving h−1 Mpc, respectively. The three larger simulations
were run with 2 × 4003 particles including gas cooling. The sim-
ulation with a box size of 10 comoving h−1 Mpc was run with
2 × 2003 particles and without radiative cooling. This was done
in the smallest box size simulations only in order to address the ef-
fect of the Jeans smoothing without allowing the gas to radiatively
cool. In these simulations, the thermal state of the gas is set by the
equilibrium between photoheating and adiabatic cooling caused by
the expansion of the Universe. The cosmological parameters were
chosen to be consistent with the values obtained by the WMAP team
in their analysis of WMAP and other data (Spergel et al. 2003),
�m = 0.26, �� = 0.74, �b = 0.0463 and H 0 = 72 km s−1 Mpc−1.
The CDM transfer functions of all models have been taken from
Eisenstein & Hu (1999).

The left-hand panel of Fig. 7 shows the 3D gas power spec-
trum for the simulation with a box size of 60 h−1 Mpc (dotted),
30 h−1 Mpc (dashed), 15 h−1 Mpc (dotted–dashed) and 10 h−1 Mpc
(triple-dotted–dashed). Note that the hydrosimulation have insuffi-
cient dynamic range to simulate the forest down to the Jeans scale
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and capture at the same time the largest structure probed by the
observed Lyα forest. Unfortunately, such a dynamical range is cur-
rently inaccessible with a single simulation. We have therefore com-
bined the 3D power spectra of the four simulations to obtain an
estimate of a power spectrum that spans scales that are compara-
ble to those probed by the data. Note that this approach cannot
be applied directly to the 1D power spectra of the simulations due
to the integral nature of the 1D power spectrum. The best esti-
mate of the 1D power spectrum expected for infinite dynamic range
is, thus, obtained with equation 13 using the combined 3D power
spectrum of the gas obtained from the simulations. This mock 1D
power spectrum is calculated from the simulation outputs at z =
2.75. We have added errors that are comparable to those found in
the data.

The right-hand panel of Fig. 7 shows the dimensionless 1D power
spectrum obtained by applying an artificial Jeans-like cut-off with
X J = 0.8 h−1 Mpc to the 1D power spectrum obtained from the com-
bined 3D power spectrum from the simulations (diamond symbols
with error bars). The dashed curve shows the non-linear analyti-
cal model for the same cosmological parameters and amplitude of
the linear matter power spectrum as implemented in the hydrosim-
ulation with a Jeans cut-off at X J = 0.8 h−1 Mpc. The agreement
between the non-linear 1D power spectrum model of the gas density
and our best estimate from the set of hydrosimulations is, perhaps
not too surprisingly, excellent.

4.7 Summary of the analysis steps

To summarize the analysis steps: first, the non-linear 1D power
spectrum of the gas distribution is modelled analytically. In this way
we can easily vary the shape and amplitude of the underlying linear
matter power spectrum. The thermal state of the gas is modelled
by a thermal smoothing function which has one free parameter, the
effective Jeans length. The shape of this function is derived from our
hydrodynamical simulations. Secondly, the model 1D power spectra
are compared with those recovered from the truncated optical depth
of the Lyα forest data using a maximum likelihood analysis. These
steps are summarized in the flowchart shown in Fig. 6.

5 C O N S T R A I N I N G T H E PA R A M E T E R S

O F T H E M AT T E R P OW E R S P E C T RU M

A N D T H E T H E R M A L S TAT E O F T H E G A S

5.1 The likelihood method

For this the following likelihood is maximized:

L = constant × e
−1/2

(
P1D

obs−P1D
model

)+
C−1(

P1D
obs−P1D

model

)
, (19)

where P1D
obs and P1D

model are the observed and model power-spectrum
vectors and C is the error correlation function.

As mentioned earlier, given the large uncertainties in the data and
the various degeneracies in the models (e.g. between the power-law
index, ns and σ 8) we will not attempt to simultaneously constrain
all free parameters on which the power-spectrum models depend.
Instead, the analysis will focus on three or less free parameters at a
time while keeping the other parameters fixed.

5.2 Error estimates

The errors used in the likelihood analysis come from two sources,
the 1D power-spectrum measurement and the uncertainties in the

Figure 6. A flowchart summarizing the analysis steps as applied to the data
and the model. The sections in the paper in which each step is explained are
indicated at the upper right corner of each ‘step box’.

theoretical model used to fit it. The error in the measurement were
discussed earlier in Section 3.2. These were shown to have an uncor-
related contribution due to the power-spectrum shape determination
and a correlated component due to the amplitude determination.

The main source of error in the model comes from the fit used to
account for the redshift distortions which introduces a error that can
be as high as 20 per cent. To simplify the treatment we conservatively
fix the relative error to be 20 per cent. This error is added coherently
to all wavenumbers.

To summarize, the error matrix, C, is defined as follows:

C = diag
(
	2

shape

) + (
ε2

amplitude + ε2
z−distortions

)
PobsP

+
obs, (20)

where 	shape is the error introduced by the power-spectrum shape
measurement. We performed a covariance analysis which showed
that, for a given choice of wavenumbers k, this error is not correlated
across different wavenumbers. ε amplitude is the relative error due to the
amplitude measurement and ε z−distortions is the error produced by the
correction for redshift distortions. Both errors are highly correlated.

Typical values of 	shape are shown in Fig. 2 and amount on av-
erage to about 50 per cent at each k (see Section 3.2 for a detailed
description). The value of ε z−distortions is taken to be 20 per cent. The
value of ε amplitude is taken to be 20 per cent for a spectrum of the
same length as that of Q1422+231 and is assumed to scale with the
inverse of the square root of the total length of the spectrum used
in each redshift bin. This scaling of the errors assumes a Poisson
distribution of the Lyα absorption features.
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Figure 7. Left-hand panel: the 3D power spectra of the gas density as measured from the simulations with a box size of 60 h−1 Mpc (dotted), 30 h−1 Mpc
(dashed), 15 h−1 Mpc (dotted–dashed) and 10 h−1 Mpc (triple-dotted–dashed) box sizes. Clearly, none of the simulations spans the dynamical range needed to
capture simultaneously the large and small scales needed to model the 1D power spectrum. The grey solid curve is the composite 3D power spectrum which
is our best guess of what the non-linear 3D power should look like with infinite dynamic range. Right-hand panel: the diamond symbols show the 1D power
spectrum of the gas density corresponding to the composite 3D power spectrum in the left-hand panel (with error bars) with a Jeans cut-off at X J = 0.8 h−1 Mpc.
The solid curves shows the best-fitting power spectrum found by the likelihood analysis with cosmological parameters as annotated on the figure. The dashed
curve shows the 1D power spectrum with the actual parameters of the hydrosimulations with X J = 0.8 h−1 Mpc.

5.3 Testing the likelihood analysis with the hydrosimulations

In order to test how well our procedure of constraining the model pa-
rameter works, we have performed a likelihood analysis for a sample
of artificial spectra obtained from the hydrodynamical simulations.
The numerical simulation was for a flat Lambda CDM (�CDM)
model with �m = 0.26, σ 8 = 0.85, n s = 1, and has a temperature–
density relation that corresponds to α = 1.56. For the likelihood
analysis, the Universe is assumed to be flat and that α = 1.56. This
leaves �m, σ 8 and the effective Jeans length X J as free parameters.

For the analysis of the hydrosimulation, the ‘composite’ non-
linear 1D power spectrum, shown in right-hand panel of Fig. 7, is
used. Fig. 8 shows three 2D likelihood contours (with marginaliza-
tion over the third parameters) and the 1D likelihood (normalized to
have a maximum of unity) for each of the parameters with the other
two marginalized over. The top left-hand panel shows �m versus σ 8.
The actual values are denoted by a cross. For the correct value of
�m the actual value of σ 8 falls well into the 1σ limits of the recov-
ered value suggesting that the method works fine. Note, however,
that there is a degeneracy of the inferred σ 8 with the assumed �m.
Not surprisingly the Lyα forest data alone cannot constrain both
parameters. The top middle and right-hand panel of Fig. 8 show the
likelihood contours of the effective Jeans length X J versus σ 8 and
�m, respectively. Due to the cut-off of the power spectrum at small
scales, XJ is well constrained.

The solid curve at the right-hand panel of Fig. 7, shows the non-
linear model power spectrum for the best-fitting parameters obtained
with the likelihood analysis (see Section 5). The agreement with the
best estimate from the hydrosimulations is again very good. The
recipes used to model the non-linear evolution of the matter power
spectrum, the bias between dark matter and gas density and the
recovery of the parameters describing the optical depth distribution,
appear to work very well.

We have also tested how sensitive our analysis is to the func-
tional form which we use to model the Jeans smoothing by setting
B(z) = 0. We found no significant difference with regard to the de-
duced cosmological parameters except on the value of X J itself (for

more discussion on this see Section 7). The reason is that even with
the canonical functional form for the Jean’s smoothing deviations
from the actual ratio are ≈15 per cent within the observed k range.
This is small compared to other uncertainties in the modelling.

5.4 Constraints on σ8, XJ and Ωm for a flat cosmology

We now turn to a likelihood analysis of the real data. One difficulty
is that we will have to assume a value of α, the power-law index
used in equation (5), which relates the local optical depth with the
underlying density. However, as we will see later, by comparing
results of different redshifts, we can actually constrain the evolution
of α and thus the thermal evolution of the IGM. As discussed earlier,
α ranges between 1.56–2, with the lower limit corresponding to the
balance between adiabatic cooling and photoheating and the upper
limit to an isothermal IGM. During a phase in which the IGM is
rapidly heated (e.g. during the reionization the value of α becomes
closer to 2).

Equation (5) suggests that for a given value of the local optical
depth, τ̃ , the amplitude of the density will be larger for smaller α

and vice versa. In this subsection, α is chosen to be either 1.56 or
1.8, for all redshift bins. Also shown are results for a ‘mixed’ case
in which α evolves with redshift as expected for a scenario in which
He II is ionized to He III at z ≈ 3.2.

As discussed above, the value of ns is degenerate with σ 8, and we
have assumed ns to be fixed to a value of unity. We have furthermore
restricted our analysis to models with a flat cosmology (i.e. �m +
�� = 1). The free parameters of this analysis are �m, X J and σ 8.

Figs 9 and 10 show the results of our analysis assuming α = 1.56
at z = 2.48 and 3.29, respectively. The same three 2D likelihood
contours and the 1D likelihood curves as in the test with numerical
simulations are shown in Fig. 8. The contours look gratifyingly sim-
ilar. As in the case of the hydrosimulations there is a degeneracy of
the inferred σ 8 with the assumed �m while XJ is tightly constrained.

The degeneracy between �m and σ 8 is somewhat weaker and the
constraints on σ 8 (marginalized over the other two parameter) are
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Figure 8. The likelihood results for the power spectrum from the hydrodynamical simulations with �m, σ 8 and X J as free parameters. The upper three figure
show the 1, 2 and 3σ likelihood contours for each pair of the parameters after marginalizing over the third. The lower three panels show the likelihood function
for each of the three parameters (after marginalizing over the other two). The likelihood is normalized to have a maximum value of unity. The value of �m is
poorly constrained, but the values of σ 8 and X J are well constrained and agree with the simulations parameters.

Figure 9. The likelihood results for the observed spectra for the redshift bin at z = 2.48 with �m, σ 8 and X J as free parameters. The assumed value of α is
1.56. The upper three figures show the 1, 2 and 3σ likelihood contours for each pair of the parameters after marginalizing over the third. The value of �m is
poorly constrained, but the values of σ 8 and and X J are well constrained.
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Figure 10. The same as Fig. 9 but for the redshift bin at z = 3.29. The preferred value of σ 8 and X J here are lower than those of Fig. 9 suggesting a change
of α.

somewhat stronger than in the analysis of the mock spectra. Note
that the constraints on XJ are also tighter. These differences can be
traced back to the shape of the thermal cut-off of the non-linear 1D
power spectrum of the gas distribution which is still affected by the
limited dynamical range of the simulations.

Fig. 11 summarizes the results for the marginalized likelihood of
σ 8 for all four redshift bins. The upper left-hand panel shows the
likelihood plots for the four bins, calculated with α = 1.56. The
results for the bins with z = 1.96, 2.48, 2.85 and 3.29 are shown as
dotted, dashed, dotted–dashed and long-dashed lines, respectively;
the solid curve is the joint likelihood curve. The likelihood lines
shift slightly between different redshift bins. The upper right-hand
panel is the same as the upper left-hand panel but for α = 1.8. The
preferred value of σ 8 drops here, as expected, by about 30 per cent.
The lower left-hand panel is the same as the previous two panels
except that α = 1.56, 1.7, 1.8 and 1.65 for z = 1.96, 2.48, 2.85 and
3.29, respectively. Such an evolution is consistent with reionization
of He II at z ≈ 3.2.

The lower right-hand panel of Fig. 11 shows the likelihood curves
of the effective Jeans length, X J. Here, we assumed the mixed α

model, i.e. α values as in the lower left-hand panel, for each of the
four redshift bins. There is a clear evolution between the redshift bins
with the exception of the z = 2.85 and 2.48 redshift bins where the
evolution is very small. The effective Jeans length increases with
decreasing redshift. This is consistent with an increased heating
rate at redshift �3.2 due to helium not yet being fully ionized. The
increased energy injection during He II reionization should lead to an
expansion of the sheets and filaments responsible for the Lyα forest.
Note that the timescale for X J to change should be a fair fraction
of the Hubble time and that X J is therefore not necessarily a good
measure of the instantaneous temperature. We have also examined
the effect of changing ns. Lowering ns to 0.95, results in an increase
of the estimated power-spectrum amplitude σ 8 by 4 per cent.

In order to show that the models with the preferred parameters of
our likelihood analysis (discussed later in this section) fit the data
well, the measured 1D power spectra shown in Fig. 3 are compared
with the theoretical models. The models are shown as the dashed
curves and have three σ 8 values, 0.85, 0.95 and 1.05. Notice that
�m = 0.3. The values of α are consistent with the evolution expected
for a reionization of He II at z ∼ 3.2 (see discussion later in the
section).

5.5 Constraints on α and XJ with a fixed cosmology

and normalization

Does the data prefer certain values of α? In order to answer this
question more definitely, we carried out an analysis where α and
X J are left free while the cosmological parameters �m and �� are
fixed to 0.3 and 0.7, respectively. The amplitude of power spectrum
was set to match that of the two-degree Field (2dF) galaxy survey
normalization (Cole et al. 2005). Since the mean separation between
galaxies in the survey is about 10 h−1 Mpc, σ 8 is not directly mea-
sured by the 2dF data. To avoid extrapolating to smaller scales, the
σ 30 amplitude is used. This amplitude is defined as the rms fluctu-
ations within 30 h−1 Mpc spheres, a scale directly probed by 2dF.
The value of σ 30 measured by 2dF is 0.233 (Percival et al. 2002).
The mass–galaxy bias ratio is assumed to be unity and any possi-
ble errors of the 2DF measurement (which are relatively small) is
neglected in the likelihood analysis.

Fig. 12 shows the likelihood contours for α and X J for each red-
shift bin together with the marginalized likelihoods. The data prefers
values of α within the assumed physical limits of 1.56 and 2, and
appears to suggest that α evolves with redshift as expected if He II

reionization indeed occurred at z ∼ 3.2. The inferred values of X J

are consistent with the results obtained in the previous subsection,
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Figure 11. The two upper panels show the likelihood distribution for σ 8 with marginalization over �m and X J for different redshifts with α = 1.56 (left-hand
panel) and α = 1.8 (right-hand panel). The lower panel show the likelihood distribution for σ 8 and X J for a model in which α evolves with redshift from
α = 1.65 at 〈z〉 = 3.29 rising to α = 1.8 at 〈z〉 = 2.85 and then α decreasing to 1.65 and 1.56 at 〈z〉 = 2.48 and 1.96, respectively. Such an evolution would be
expected if He became fully reionized at z ∼ 3.2. The key for the line styles is given in the upper left-hand panel.

and are only weakly dependent on the values of the cosmological
parameters.

5.6 Joint constraints of �m–σ 8 from Lyα and WMAP data

As apparent from Figs 8 and 9 and discussed in Section 5.4, the fluc-
tuation amplitude of the linear matter power spectrum inferred from
the likelihood analysis is somewhat degenerate with the inferred
value for �m. This degeneracy is shown in the left-hand panel of
Fig. 13 which shows the 2σ contours for four redshift bins sepa-
rately. The likelihood contours of the four bins are in good agree-
ment. We have here assumed again the ‘mixed’ α model for the
optical depth density relation and made the same assumptions as in
Section 5.4.

As shown in the middle panel of Fig. 13 this degeneracy is orthog-
onal to a similar degeneracy for the CMB data. The dashed curves
show the constraints from the WMAP data combined with a prior on
the Hubble constant, H 0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al.
2001). The error contours were calculated using COSMOMC (Lewis &
Bridle 2002). The curvature of the Universe, �k, was assumed to lie
between −0.3 and +0.3. Without the prior on the Hubble constant
the contours broaden somewhat but show a similar degeneracy. The
right-hand panel shows the much tighter constraints on σ 8 and �m

obtained by combining our Lyα forest data with the WMAP and
Hubble Space Telescope (HST) key project data. The joint analysis
yields the values σ 8 = 0.92 ± 0.04 and �m = 0.3 ± 0.05 (in good

agreement with Viel, Weller & Haehnelt 2004b; Seljak et al. 2005;
Viel & Haehnelt 2006).

6 T H E 3 D P OW E R S P E C T RU M

In principle, it would be more convenient to infer the 3D matter
power spectrum directly from the data. This would also facilitate
a more direct comparison with the results of Viel et al. (2004b)
who inferred the 3D matter power spectrum from the flux power
spectrum using an effective bias method calibrated with numerical
simulations. However, as discussed above, this requires taking the
derivative of noisy data. We deal here with this problem by assuming
that the 1D power spectrum is an analytic function. We use a generic
curve to fit the 1D data points. The derivative is then easily obtained.
We have fitted the following functional form to the measured 1D
power spectrum:

f (k;μ) = A0kγ

1 + (k/k0)β
, (21)

where μ ≡ (A0, γ , k0, β) is the free parameters vector.
The main issue that remains is how to assign errors to the de-

rived 3D power spectrum. In order to estimate the errors, let δf (k;
μ) be the uncertainty in the functional fit due the errors in the
data. Assuming that the fit has the correct functional form, this
error is due to the uncertainty in determining the free parameters,
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Figure 12. Constraints on α and X J with fixed cosmological parameters, �m = 0.3, �� = 0.7 and amplitude of the matter power spectrum σ 30 as measured
by 2dF Galaxy Redshift Survey.

namely,

δ f = δμ ·
(

∂ f
∂μ

)
μ0

. (22)

The value of δμ can easily be estimated from the fitting procedure
used to obtain the most likely values of μ0. Here, we chose to do this
with a minimum χ 2 analysis. Once δμ is known it is straightforward
to show that the uncertainty of the derivative is given by

δ

(
d f
dk

)
=

∑
i

δμi
d(∂ f /∂μi )μ0

dk
. (23)

The right-hand side of equation (23) is readily calculated and gives
the errors associated with the inverted quantity.

The 1D power spectra are obtained assuming the mixed α model
for the optical depth density relation. Fig. 14 shows the functional fit
to the observed 1D power spectra at each redshift bin for the mixed
α model. Equations (21) and (23) are used to obtain the 3D power
spectra. These have then been scaled to redshift zero using the linear
growth factor and corrections for the effects of redshift distortions
and Jeans smoothing have been made. For the latter the most likely
Jeans scale found in the likelihood analysis has been used.

The left-hand panel of Fig. 15 shows the 3D power spectra for the
four redshift bins assuming that α evolves with redshift as suggested
by our likelihood analysis. The figure clearly shows that the 3D
power spectra from the four redshift bins is consistent down to the
scales where the inversion becomes unstable and power spectra start
to diverge. This instability is caused by the insufficient information
content in the data below the Jeans smoothing scale. As expected the

scale of instability varies with redshift. Note that the wavenumbers k
shown here is the linear k, the actual measured k is larger by roughly
a factor of 5 (see Peacock & Dodds 1994).

The right-hand panel shows the average 3D power spectrum with
errors that reflect the uncertainty in α and the differences between
the four redshift bins. The uncertainty in α is added by taking the
amplitude variation within the range 1.56�α � 1.8. In the averaging
procedure, the points at scales smaller than the scale of convergence
are ignored. The right-hand panel also shows the 3D power spectra
inferred by Viel et al. (2004b, dashed line) from the LUQAS sample
and from the Croft et al. (2002) sample (dotted line) as reanalysed
by Viel et al. (2004b). There is excellent agreement between the
inferred linear 3D matter power spectrum of this study and those
obtained by Viel et al. (2004b).

This is gratifying as our inversion method does not require the
assumption of an effective optical depth (see Lidz et al. 2006, who
come to similar conclusions by combining one- and two-point statis-
tics of the flux distribution). Table 2 tabulates our inferred 3D power-
spectrum and the 1σ errors.

7 S U M M A RY A N D C O N C L U S I O N S

We have presented a new method for measuring the matter power
spectrum from Lyα forest data. The 1D density field is obtained
from the reconstructed LOS optical depth for Lyα absorption, as-
suming a simple power-law relation between density and optical
depth. We thereby follow NH99 and NH00 and introduce a cut-off
in the optical depth to handle the saturation effects of the flux in
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Figure 13. Left-hand panel: the likelihood contours in the �m–σ 8 plane, after marginalizing over X J for four different redshifts for the ‘mixed’ α model
discussed in the text. Middle panel: the joint likelihood of the four redshift bins together, with solid contours representing the 1, 2 and 3σ likelihood. Also
shown are the 1 and 2σ contours (dashed curves) as obtained from the WMAP data, assuming a Universe with �k between −0.3 and 0.3, and a Hubble constant
of 72 ± 8 km s−1 Mpc−1. Right-hand panel: the joint likelihood of the Lyα data and WMAP data (again assuming the Universe to be flat) and an HST prior on
the Hubble constant.

Figure 14. The measured 1D power spectrum of the gas density in four redshift bins. The dashed curves show the best-fitting models.

high-density regions. The shape of the non-linear 1D power spec-
trum of the gas density does not depend on the value of the optical
depth cut-off. This allows us to derive the amplitude and the shape
of the 1D power spectrum of the gas density separately from two-
and one-point statistics of the flux. The shape of the power spectrum
is calculated directly form the recovered LOS gas density while the
amplitude of the power spectrum is derived from the width of the
PDF of the gas distribution which we assume to follow a lognormal

distribution. In this way we can measure shape and amplitude of the
1D power spectrum of the gas density without the need for determin-
ing or assuming a mean flux level, which has proven problematic in
previous measurements of the matter power spectrum utilizing the
flux power spectrum. Note that the inferred amplitude of the power
spectrum still depends on the assumed power-law index α, which
describes the relation between the neutral and the total gas density
and depends on the thermal state of the gas.
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Figure 15. Left-hand panel: the linear 3D matter power spectrum at z = 0 inferred from observed data at four different redshifts. The power spectra have been
mapped to z = 0 assuming a flat Universe with �m = 0.3 and �� = 0.7. The power spectra have been corrected for redshift distortions, Jeans smoothing and
for non-linear effects as described in the text. Notice that the inversion becomes unstable at scales smaller than the Jeans scale relevant to the redshift at hand.
The right-hand panel shows the mean and error after combining the results from the four redshifts (solid curve). For comparison we show the linear matter
power spectrum inferred by Viel et al. (2004b) from the LUQAS sample (dashed curve) and from the Croft et al. (2002) sample (dotted curve), as reanalysed
by Viel et al. (2004b).

Table 2. The 3D power spectrum as estimated from the direct inversion
method. The first column shows the wavenumber k. The second column
shows the 3D power spectrum and the third and fourth columns show the
lower and upper error bars around the mean.

k P3D −	P3D +	P3D

(h Mpc−1) (h−3 Mpc3) (h−3 Mpc3) (h−3 Mpc3)

0.200 000 3023.49 1005.55 1716.95
0.248 189 1325.90 577.095 760.660
0.307 990 877.984 372.994 495.885
0.382 199 586.556 210.709 296.521
0.474 288 410.985 129.560 187.204
0.588 566 263.541 84.0443 114.476
0.730 379 163.626 54.6102 68.7632
0.906 361 116.986 41.3544 48.0453
1.124 75 70.5957 24.1203 27.1044
1.395 75 52.7193 16.9332 18.2188
1.732 05 35.7962 9.521 74 10.8408
2.149 38 24.4715 3.333 36 5.437 95
2.667 27 15.7595 2.040 52 3.738 97
3.309 94 10.1860 1.782 84 3.322 57
4.107 46 6.364 26 5.198 02 8.696 73

We have then compared the inferred non-linear 1D power spec-
trum of the gas density to an analytical model of the gas power
spectrum using a likelihood analysis. We have thereby used state-
of-the art hydrodynamical simulations to model the redshift distor-
tions and the bias between gas and dark matter distribution and to
test our method. The Lyα forest data cannot constrain all relevant
parameters simultaneously. We have therefore restricted our likeli-
hood analysis to flat cosmological models. We only vary a subset
of parameters at any given time setting the remainder to plausible
values. We have also performed constraints from a joint analysis
of our results from the Lyα forest data and other data (2dF, CMB,
HST). Finally, we have obtained a direct estimate of the 3D matter
power spectrum from the 1D gas power spectrum and compare it

to previous estimates from Lyα forest data utilizing the flux power
spectrum.

Our main results can be summarized as follows.

(i) By enforcing the cosmological parameters to be the same in
all four redshift bins of our likelihood analysis, we found evidence
for evolution of the temperature–density relation and the thermal
smoothing length of the gas. The inferred evolution is consistent
with that expected if the reionization of He II occurred at z ∼ 3.2.

(ii) Assuming that the Universe is flat and assuming a fixed value
for n s = 1, we find that the fluctuation amplitude of the matter power
spectrum, σ 8 = 0.92(�m/0.3)−0.3 where the value of α changes as a
function of redshift. The 1σ error on σ 8 at fixed �m and α is about
5–10 per cent. The thermal smoothing length X J is also found to be
tightly constrained (to within 10 per cent).

(iii) A joint analysis of the Lyα forest and the WMAP CMB data
together with a prior on the Hubble constant, yields tight constraints
on the fluctuation amplitude and the matter density, σ 8 = 0.92 ±
0.04, �m = 0.30 ± 0.05.

(iv) The inferred linear 3D matter power spectrum agrees well
with that obtained by Viel et al. (2004b) with a very different analysis
technique.

The good agreement of our results for the amplitude and shape
of the matter power spectrum with those of previous studies of Lyα

forest data are very reassuring, as the systematic uncertainties differ
significantly for the different methods employed by these studies.
The independent constraints on the thermal state of the gas suggest
that the inferred peak in the photoheating rate of helium at z ∼ 3
has affected the flux distribution of the Lyα forest in a measurable
way.
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