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Abstract

A fast post-processing method for noise reduction of MR images, termed complex-denoising, is presented. The method is based on
shrinking noisy discrete wavelet transform coefficients via thresholding, and it can be used for any MRI data-set with no need for high power
computers. Unlike previous wavelet application to MR images, the denoising algorithm is applied, separately, to the two orthogonal sets
of the complex MR image. The norm of the combined data are used to construct the image. With this method, signal-noise decoupling and
Gaussian white noise assumptions used in the wavelet noise suppression scheme, are better fulfilled. The performance of the method is tested
by carrying out a qualitative and quantitative comparison of a single-average image, complex-denoised image, multiple-average images, and
a magnitude-denoised image, of a standard phantom. The comparison shows that the complex-denoising scheme improves the signal-to-
noise and contrast-to-noise ratios more than the magnitude-denoising scheme, particularly in low SNR regions. To demonstrate the method
strength, it is applied to fMRI data of somatosensory rat stimulation. It is shown that the activation area in a cross-correlation analysis is
;63% larger in the complex-denoised versus original data sets when equal threshold value is used. Application of the method of Principal
Component Analysis to the complex-denoised, magnitude-denoised, and original data sets results in a similar but higher variance of the first
few principal components obtained from the former data set as compared to those obtained from the later two sets. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

Functional magnetic resonance imaging (fMRI) tech-
niques are being used to obtain information on human brain
neuronal activity [1–10]. These techniques provide high
spatial and temporal resolution and allow longitudinal stud-
ies because some are completely non-invasive. The success
of these techniques to determine functional sites of various
tasks made fMRI a center tool in neuro-imaging. To in-
crease temporal resolution, echo planar imaging (EPI)
and/or fast gradient recall echo techniques are used resulting
in low signal-to-noise ratio (SNR) images. Therefore, major
effort is made recently to suppress noise in fMRI [11].

In this paper, we present a nonlinear denoising algorithm

based on wavelet analysis that suppress the Gaussian white
noise. This method, based on an existing technique, is mod-
ified to be especially suited to MRI. It is shown that, in MRI,
the modified wavelet denoising algorithm is superior to the
existing wavelet denoising methods, particularly for low
SNR images. Therefore, it is specifically suited to fMRI
data-sets.

Several methods to recover an image from its noisy data
exist, starting from the classic, e.g., Wiener filtering [12,13]
and Principal Component Analysis [14], to the more mod-
ern, and usually non-linear, such as Artificial Neural Net-
works [15], Maximum-Entropy [16], or Wavelets analysis
[17–19]. All of these methods attempt, subject to some
assumptions, to extract the maximum amount of “useful”
information from the data. In many of those methods, the
data are expanded in some functional basis that maintains
their phase and amplitude distribution. With a clever choice
of functional basis, it is often possible to distinguish be-
tween the various contributions to the MR data and to filter
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the noise. In this paper, we choose to work with a non-linear
denoising scheme in Wavelet space, where Gaussian white
noise is especially easy to pick out from the raw data
[20–22].

During the last decade, wavelets have become a popular
tool in various data analysis and signal and image process-
ing applications. Wavelet functional bases’ main appeal
stems from their simultaneous localization in both the wave-
number (frequency) and the position (time) domains, where
they allow for an orthogonal and complete projection on
modes localized in both spaces. The localization allows
compressing the noiseless data features into a very small
number of very large wavelet coefficients. Gaussian white
noise, however, stays as white noise in any orthogonal basis,
therefore spreading, in wavelet space, over all expansion
coefficients and contributes to each of them a relatively
small amplitude. Consequently, in wavelet basis, the noise-
less signal dominated coefficients can be easily singled out
from their noise dominated counterparts [20,21,23].

Application of wavelets for denoising of MR images has
been pioneered by Weaver et al. [24] who applied their
denoising scheme on MR images of the human neck. They
concluded that the denoising scheme can reduce noise from
10 to 50% without reducing edge sharpness. Other than
denoising via wavelets [24–27], researchers has found
many other wavelet applications to MRI, including wavelet
encoding of MR images (e.g., [26,28,29]) and MR data
compression (e.g., [30]).

In the above application of wavelet denoising of MRI
data, the denoising was performed on the images themselves
(we term this method “magnitude denoising”). However, in
MRI, the image noise is not Gaussian [31,32]. Rather, the
Gaussian noise assumption applies more correctly to each
component of the complex MR data separately. In this
paper, Daubechies discrete wavelet basis [17] is used to
suppress the noise from each of the complex MR data
components, separately; the image is then reconstructed
from the data components. In this way, the assumption of
Gaussian white noise is used for each of the data compo-
nents. Very recently, this idea was used to show improved
noise reduction by using wavelet packet [33]. We show here
that the application of complex-wavelet denoising improves
the SNR similarly to magnitude-denoising at high SNR and
performs better at low SNR images, with high computa-
tional efficiency. For that reason, the new denoising algo-
rithm is especially suited to 3D data-sets and fMRI data. We
show that activation areas obtained from fMRI complex-
denoised data have a higher correlation with the stimulus,
compared with the activation areas obtained from the orig-
inal and magnitude-denoised data-sets.

2. Denoising by wavelets

MR image is viewed as a two dimensional complex set
of N 3 N observations modeled mathematically, after Fou-
rier transform, as

I obs5 I 1 « (1)

where,I 5 I { Ixi
,yi

} represents the underlying real or imag-
inary part of the complex localized signal at position (xi, yi)
and« 5 { «xi

,yi
} is the statistical uncertainty assumed to be

Gaussian white noise. The first step in denoising the data are
to transform them to wavelet space asIab

obs wherea andb
are two dimensional index vectors, corresponding to wave-
let’s resolution and location along each dimension. Note
that, due to the orthonormality and completeness of the
discrete wavelet transform (DWT) functional basis, Gauss-
ian white noise with standard deviations in image space
stays as such in wavelet space.

To study the noise behavior, it is instructive to construct
the data sorted wavelet spectrum (SWS), which is the am-
plitude list of the wavelet coefficients ranked in decreasing
order. In this presentation, coefficients presenting mostly
noise have a low amplitude while coefficients presenting
mostly data have a high amplitude. Distinguishing between
these groups is easy. Typical behaviors of the real, imagi-
nary and magnitude values of MR image are shown in Fig.
1. Inspection of the log-log plot of the SWS of the real and
imaginary parts of the data (solid lines in Figs. 1b and 1c)
reveals two distinct regions, the first consists of a modest
decline in the high amplitude region of the spectrum, that
breaks sharply into a lower amplitude region where the
wavelet coefficients are dominated by the white noise. The
break ‘level’ is in accordance with the standard deviation of
the image background noise; 104. This demonstrates that,
in MRI, one does not need to construct the SWS. Instead, it
is sufficient to calculate the standard deviation of the back-
ground noise and to use it to define the threshold of the
noise dominate region. In other words, one expects the
break to approximately occurs at wavelets coefficients with
SNR;1, namely, approximately at twice the standard de-
viation of the background noise, as indeed it is the case here.

Having identified the onset of noise dominated regime,
one then attempts to obtain an unbiased noise-free estimator
of the signal in the wavelet domain,

Îab 5 Îab~Iab
obs, l! (2)

wherel is a pre-determined parameter. Donoho [34] and
Donoho & Johnstone [21,23] proposed the “soft” threshold-
ing estimator

Îab 5 sign~Iab
obs!~? Iab

obs? 2 l!1 (3)

which ‘kills’ noise prevalent coefficients and keeps, withl
reduction, ‘true’ signal dominated wavelet coefficients. The
constancy of Gaussian white noise power spectrum over all
resolution scales makes of the soft thresholding rule (Eq.
[3]) an ideal estimator. Since the measurement modeling
assumed in Eq. [1] and the normal white noise assumption
holds in the real and imaginary parts of the data separately,
one has to apply the denoising algorithm to each of them
separately. For the magnitude image, both assumptions are
not valid. Due to the signal-noise coupling in the data
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magnitude value, it is practically impossible, in this case, to
distinguish noise from signal dominated coefficients. This
can be shown by considering a complex datum pointc 5
(a 6 «1) 1 i(b 6 «2) where«1 and«2 are the errors in each
component. The coupling terms in the datum absolute value,

?c? < Îa2 1 b2 6 2a«1 6 2b«2 1 «1
2 1 «2

2 (4)

are obvious. This coupling is the main reason for applying
the denoising scheme to each of the complex data compo-
nents separately. In the examples shown in Figs. 1b, 1c, &
1d, the background noise level determines the value ofl 5
104. Note however, that for very low SNR (,,1) Eq. 4
becomes

?c? < Î«1
2 1 «2

2 6
«1a 6 «2b

Î«1
2 1 «2

2
(5)

where for a dominant noise term, say«1, the signal and
noise decouple to give the relationucu ' u«1 6 au, which in
turn accounts for the break seen in Fig. 1d.

3. Demonstration on a phantom sample

To test the denoising algorithm, we apply it to MR data
of a standard phantom sample. The phantom sample con-
sists of a plastic structure filled with several solutions, each

Fig. 1. Illustration of the wavelet denoising algorithm. Panel (a) shows a noisy MR image of a phantom sample used in Table 1. In (b) a sorted wavelet
spectrum (SWS), which is the wavelet coefficients ranked in decreasing order, of the real component of the data in A, before (solid line) and after (dashed
line) threholding; (c) the same as in B, but for the imaginary component of the data; and (d) the same as in B, but for the image itself (absolute value). The
background noise level in B & C is ;104.
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with different relaxation time. The sample was put in a
Bruker-Biospec 4.7T and a 20 cm volume coil was used.
MR images were acquired using the fast spin echo tech-
nique, with TR of 150 ms, TEeff of 120 ms and matrix size
of 512 3 256 with 2 mm slice width.

Figs. 1b & 1c show the wavelet coefficients ranked in
decreasing order (the sorted wavelet spectra) of the real and
imaginary components (solid lines). Each of these spectra
consists of two distinct regions, corresponding to signal
dominated coefficients (high amplitude) and noise domi-
nated coefficients (low amplitude). Independent measure-
ment of the standard deviation of the background shows that
it coincides with about half the amplitude of the SWS
break-down level (Figs. 1b & c). This supports our denois-
ing approach. The dashed lines in Figs. 1b-d show the sorted
wavelet coefficients after ‘soft’ thresholding (the denoised
SWS) used to reconstruct the image in each case (see Fig.
2).

Fig. 2 shows the various reconstructed images. The
phantom sample original image is shown in Fig. 2a. The
reconstructed image, after denoising the real and the imag-
inary components separately, termed here after as complex

denoising, is shown in Fig. 2b. In this case, note the appar-
ent improvement in SNR and contrast-to-noise ratio (CNR).
In Fig. 2c, which is the image obtained after magnitude
denoising, there is an improvement in SNR, but the low
SNR areas are not fully recovered. For comparison, a 4-av-
erage image of the same phantom is also shown (Fig. 2d).
An important feature of the wavelet denoising procedure is
the retaining of the sharp transitions between areas of dif-
ferent contrasts. This can easily seen in, for example, the
black rings in the image of Fig. 2.

In order to quantify the comparison, we choose several
regions of interest (ROIs) on the image (marked on the
image attached to Table 1). We then calculate the mean and
standard deviation (SD) of those ROIs for each of the original,
complex-denoised, magnitude-denoised, 4-average and 22-av-
erage images. Beside the expected improvement in the SD, we
expect to obtain a better estimate of the means. Since each ROI
has a large number of points,550., the mean of the noise in
the real and the imaginary parts is approximately zero such that
the mean of each ROI equals:

mean5 ^uR1 «1, I 1 «2u&}^R2 1 I2 1 «1
2 1 «2

2& $ ^R2 1 I2&

Fig. 2. Comparison of original, complex-denoised, magnitude-denoised and 4-average images. A, the original, single-average, image. B, the image in A after
complex denoising. C, the image in A after magnitude denoising. D, the 4-average image. Note the improved contrast-to-noise ratio in B compared to C, the
preservation of the sharp transitions between different contrast areas and the high similarity in image quality between the single-average complex-denoised
image and the 4-average one.
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and is greater or equal to the ‘true’ mean. This explains why
reducing the noise results with lower mean. If we assume
that the 22-average image presents the ‘true image’, the
closeness between the mean of its ROIs and the denoised
image ROIs, can be used as a measure for noise reduction.
In the above expression, R and I are the real and imaginary
part of the signal, while«1 and «2 are their noise, corre-
spondingly. In Table 1, we present this comparison. It
shows very clearly the superiority of complex-denoising
scheme over the magnitude-denoising scheme, where the
mean and standard-deviation of the former is closer to those
of the 22-average image in all ROIs. For easy observation of
this table, we 1) perform F-test to compare variances and 2)
compute distances between means. In both tests, we assume
that the 22-average is a ‘noise-free’ image and can be used
as a gold standard. In the F-test, we take the ratio between
the variance of the denoised ROIs and the variance of the
22-average ROIs. The proximity of this ratio to one indi-
cates the extent of noise reduction. The average result of this
test for the four different ROIs for the complex-denoised
image is 2.91 and 2.98 for the magnitude-denoised image.
For comparison, the average result of this test for the orig-
inal image is 23.28 and 3.87 for the 4-average image. This
means that, on average, the SD of both denoised images is
lower than the 4-average image, with lower SD for the
complex denoised image.

Stronger differences between the complex and magni-
tude denoised images are observed in the ROI’s means of
Table 1. To compare the means, we define the following
quantity:

w 5
uY# cmplx2 Y# 222avru
uY# abs2 Y# 222avru

where the value ofw presents the ratio between the differ-
ences of the ROI’s mean of both denoised images and the
22-average image. Forw equals 1, both denoised images

have equal means, forw . 1 the magnitude-denoised means
are closer to the 22-average means, while forw , 1, the
complex-denoised means are closer to the ‘true’ mean. The
values obtained for the different ROIs are:w1 5 0.652;w2

5 0.18; w3 5 0.91 andw4 5 0.177, for each ROI respec-
tively. As expected, for high signal-to-noise ratio, (ROI #
3), both methods perform about the same, hencew ; 1. For
low signal-to-noise ratio, as in ROI # 2 and 4, the complex-
denoised method is performed better resulting with very
smallw, and for intermediate SNR,(ROI # 1),w is interme-
diate between the two. Note that in all casesw , 1, indi-
cating that the mean of the complex-denoised image is
closer to the ‘true’ mean.

4. Application to fMRI

4.1. Method

To demonstrate the strength of the method in fMRI, we
applied the denoising method to fMRI data of somatosen-
sory stimulation applied on rats. The data were acquired as
follows: Male Sprague-Dawley rats (250–350 gr) were
anesthetized with urethane i.p. (150 mg/100gr) and put in a
Bruker-Biospec 4.7T. The rats’ heads were secured in a
home built head holder, body temperature was measured
with a rectal thermometer and kept constant by a feedback
water blanket. A pair of small needle-electrodes were in-
serted under the skin of the right or the left hindlimb. The
stimulation consisted of 0.3 ms rectangular pulses with
frequency of 3Hz and amplitude between 10 to 25 volts. A
20 mm diameter surface coil was used to transmit rf pulses
and receive the signal. The surface coil was placed over the
skull and centered over the midline of the animal. Coronal
slices positioned between bregma 0.5 and22.5 were taken.
MR images were acquired using the gradient echo (GE)

Table 1
Mean and standard deviation of various regions of interest

Image

ROI

1 2 3 4

Original image
Mean 24223 7622 55651 7227
SD 5692 3827 6036 3802

Complex denoised image
Mean 22411 2370 53952 2272
SD 1856 1288 2898 1336

Magnitude denoised image
Mean 21832 6927 54951 6458
SD 2162 1342 3112 1025

4-average image
Mean 22869 3743 44900 3514
SD 2915 1921 3260 1837

22-average image
Mean 23519 1371 43654 1373
SD 1120 693 1947 729
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sequence (TE5 40 ms, TR5 80 ms) with field of view of
2.56 cm, 1 mm slice thickness and 643 64 resolution. The
flip angle was;35° in the cortex and lower in deeper
structures. Non-periodic 8th order Hadamard matrix rows
were used for stimulation in order to avoid any harmony
with physiological fluctuations. Two non-periodic rows
[-11-1-1]and [-1-11-1-] were used with ‘1’ indicat-
ing stimulation on and ‘-‘ indicating stimulation off. In each
time segment, 10 images were collected (51.2 s) such that
each data set contained 80 images and lasted 6.82 min. An
interval of at least 15 min was used between successive
experiments.

4.2. Data analysis

Image analysis was performed in an external computer
using IDL (Interactive Data Language). The denoising al-
gorithm was applied to each of the fMRI data-set in a
semi-automatic way as follows: A region in the background
is selected from one of the images. The region standard

deviation is calculated and used as the threshold value in the
wavelet denoising procedure, performed on the whole set.
The denoising algorithm takes;3 s for a single slice of
64 3 64 resolution on a G3 Mac computer such that the
denoising of a data set is quite fast. Two different statistical
approaches were used to examine the difference between
the complex-denoised, magnitude-denoised and the original
data-sets. Our first concern was to show that the denoising
algorithm does not change the time-pattern of the data, but
only increases its significance by removing the noise. For
that purpose, we apply the method of principal component
analysis (PCA) to the data. This method searches for the
variation in the data and presents it in orthogonal compo-
nents of decreasing order. PCA was applied to the original,
magnitude and complex denoised images and the relevant
PCs were compared by their time-pattern appearance and
variance. The second method of comparison is the cross-
correlation analysis. In this method, each pixel in the data-
sets is cross-correlated with the stimulus time course pattern
and a correlation map is obtained. A threshold of C5

Fig. 3. A comparison of complex and magnitude wavelet denoising algorithm in fMRI data of somatosensory rat stimulation. The bottom row shows four
original images, randomly selected from a sequence of 80 images, which were obtained by subtracting the mean image of the time series from each image.
The middle row shows the same images after the application of complex denoising and the upper row is the same with application of the magnitude denoising
algorithm. Note that the middle row of images has much more details and much higher CNR than the other two.
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0.35(sometimes 0.3), corresponding top , 0.001, was used
in these maps. The number of pixels above the threshold
was calculated and compared.

4.3. Results

Fig. 3 shows the potency of the denoising algorithm
when used with fMRI data. Four images, chosen arbitrarily,
from one of the fMRI data-sets are shown. Each image is
shown after subtracting the mean of the 80 images. The
subtraction is imperative, as we are interested in relative
changes in the images of the sequence. Note the low SNR of
the subtracted images, this SNR makes the new denoising
algorithm so efficient. The lower row in Fig. 3 shows the
raw images, the second shows the complex-denoised im-
ages and the upper row shows the magnitude-denoised im-
ages. The improvement introduced to images after both
complex-denoising and magnitude denoising schemes is
evident. It is also obvious that the contrast to noise ratio
(CNR) and SNR is superior in the complex-denoised fMRI
data.

In order to use the denoising procedure routinely in
fMRI, we have to show that the denoised temporal patterns

are generally similar to the original temporal patterns. This
step is crucial since different filtering might modify these
patterns leading to wrong results. In Fig. 4, we present an
example of such a test. The PCs of the original data (green)
and complex denoised data (red) are shown in A. The
difference in the variance in the first PC is;100% and quite
high in the other PCs as well. In B, we show the relevant PC
(first in this case) for the original and complex denoised
data. Relevancy is defined by the PC correlation with the
stimulus. As seen, these PCs show temporal patterns that are
highly correlated with the stimulus (shown as a boxcar in
the bottom of Fig. 4b). It is evident that the PC of the
denoised data has a higher amplitude, but also that it retains
the general time-activity pattern. Thus, this PC presents
stronger changes resulting in higher variance for that pat-
tern. In Fig. 4 c & d, weshow the activation maps, in color
overlaid on B/W reference image. These maps were ob-
tained by cross-correlating the original (Fig. 4c) and the
complex-denoised (Fig. 4d) data with the stimulus. As one
might expect from the similarity of the PCs, the location of
activation is very similar with larger area (691 versus 549
pixels) for the complex-denoised set. Since we do not know
apriori what the size of the activation area is, this enlarge-

Fig. 4. An fMRI example demonstrating the similarity of activation obtained with the original and complex-denoised sets with higher variance and higher
correlation of the later. (a) the variance of the first 14 principal components of the original (green) and complex-denoised (red) sets. The complex wavelet
denoising was performed using the image background for the noise threshold as described in the text. On average (N 5 7), the relevant principal component
of the complex-denoised and original sets are different (p , 0.006) with 63% higher variance of the former. (b) the first PC for the original (green) and
complex-denoised (red) sets. Both PCs have similar time pattern with higher amplitude for the denoised PC. Note the sharp transitions between the stimulation
OFF and stimulation ON in both PCs. (c) activation map of the original data. (d) activation map of the data after complex denoising. Original and
complex-denoised activation areas are similar with higher area for the complex-denoised set. Note that the location of all extra points in the denoised
activation area is inside the brain.
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ment might be wrong. However, the similarity of the PCs in
particular, the fact that both PCs show the same sharpness of
transition from stimulation OFF to stimulation ON, leads us
to believe that the difference in activation areas presents real
improvement in area definition.

After demonstrating that the denoising algorithm does
not modify the time activity pattern, we test the difference
between the magnitude and complex wavelet denoising al-
gorithms. In Fig. 5, we show an example of the difference
in the principal components and cross-correlation maps ob-
tained with original, complex-denoised and magnitude-de-
noised data-sets. The variance of the first principal compo-
nent (PC) in the complex-denoised set is about twice the
variance of the corresponding PC in the original set (11.3%
vs. 6.5%), while it is a little better than the variance of the
corresponding PC in the magnitude-denoised set (10.6%).
The other PCs exhibit a similar relation. Using cross-corre-
lation analysis, we obtain a similar pattern: The activation
area (correlation above 0.35) is larger in the complex-de-
noised set (398 pixels), while its size is reduced in the
magnitude-denoised set (350 pixels).

To quantify the above, we first check for significant
differences in the variance of the PCs and area of activation
between the original and the two denoised sets. Second, we

calculated the average percentage of these differences. For
the first part, we performed standardt test for matched pairs
(N 5 7) for the relevant (highly correlated with the stimu-
lus) principal components and for the different activation
areas. The results of these tests are given in Table 2. As
shown in this table, the PC variance of the complex-de-
noised set is significantly different from the variance of the
original PC set, and is 63% higher. However, there is no
significant difference between the complex and magnitude
denoised PCs although on average, the complex denoised
set has a 26% higher variance. The activation area, in the
complex-denoised set, is significantly larger than the area of

Fig. 5. An example of the difference in principal components and activation maps obtained from the original data, the magnitude-denoised data and the
complex-denoised data of somatosensory rat stimulation. The three sets were 1) cross-correlated with the stimulus and 2) analyzed by PCA. (a) the variance
of the first eight PCs of the three sets. The variance of the first complex-denoised PC is about twice the variance of the corresponding PC of the original set
(11.3% vs. 6.5%) while is little better than the variance of the corresponding PC in the magnitude-denoised set (10.6%). On average, the relevant PC’s
variance of the complex-denoised set is 63% higher than that of the original set and 26% of the magnitude-denoised set. However, no significant difference
was found between the PC’s variance of the two denoised sets. (b–d) the activation maps (in red, overlaid on B/W reference images with threshold of .35)
including the number of activation pixels, for the original, magnitude-denoised and complex-denoised sets. On average, the activation area of the
complex-denoised set is 50% higher than the original (withp , 0.052), and 18% higher than the magnitude-denoised set (withp , 0.023).

Table 2
Comparison of the original and denoised fMRI sets in the principal
components (PC) and area of activation

Original vs.
magnitude-deno

Original vs.
complex-deno

Magnitude-
deno vs.
complex-deno

Variance of relevant
PC and % change

p 5 0.058 (53) p 5 0.0058 (63)p 5 0.152 (26)

No. of activation
points and % change

p 5 0.075 (28) p 5 0.052 (50) p 5 0.023 (18)
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the original and magnitude-denoised sets. These improve-
ments justifies the use of complex wavelet denoising in
fMRI.

5. Conclusion

In this study, we have presented a fast wavelet denoising
method for improving MRI quality. The main new idea of
this method is that it is applied separately to the two or-
thogonal components of the MR data. In this way, the basic
assumptions used in the denoising algorithm are better sat-
isfied. The difference between the new and magnitude
wavelet denoising methods is in low SNR images. We show
that, in these cases, the new method suppresses the noise
better without deteriorating image quality and with no need
for extensive computational efforts.

The strength of the method is demonstrated with fMRI
dataset. It was shown that the activation area, defined as the
area in which the cross-correlation with the stimulus is
above a chosen threshold, is larger in the complex-denoised
sets compared with the magnitude-denoised and original
data sets. Indeed, we do not know if this larger area presents
the ‘true’ activation area better. Inspection of the activation
images shows that the extra pixels are either in the cortex or
in the sinus vain running perpendicular to the slices. No
extra points appears outside the brain. This fact, together
with the similarity of the time patterns of the original and
denoised PCs, suggests that the denoised activation region
defines the ‘true’ activation area in a better way. Another
way to look at this is that for the same activation area, the
average correlation coefficient in the complex-denoised set,
is higher then those obtained for the magnitude-denoised or
the original sets.

Due to the new approach’s computational efficiency, it
can be used to reduce noise, even further, in a three-dimen-
sional (3D) datasets, where the algorithm is applied to the
3D data set as a whole. It is anticipated that a direct 3D
denoising will improve the outcome quality. This is partic-
ularly important in fMRI where multiple slices, to cover a
large volume of the brain, are routinely acquired.
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