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ABSTRACT
We apply a new algorithm, called the unbiased minimal variance (hereafter UMV) estimator,
to reconstruct the cosmic density and peculiar velocity fields in our local Universe from the
SEcat catalogue of peculiar velocities comprising both early- (ENEAR) and late-type (SFI)
galaxies. The reconstructed fields are compared with those predicted from the IRAS PSCz
galaxy redshift survey to constrain the value of β = �0.6

m /b, where �m and b are the mass
density and the bias parameters. The comparison of the density and velocity fields is carried out
within the same methodological framework, and leads, for the first time, to consistent values
of β, yielding β = 0.57+0.11

−0.13 and β = 0.51 ± 0.06, respectively.
We find that the distribution of the density and velocity residuals, relative to their respective

errors, is consistent with a Gaussian distribution with σ ≈ 1, indicating that the density field
predicted from the PSCz is an acceptable fit to that deduced from the peculiar velocities of the
SEcat galaxies.

Key words: galaxies: clusters: general – galaxies: distances and redshifts – cosmology:
observations – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

In the gravitational instability scenario (e.g. Peebles 1980), mass
density fluctuations and peculiar velocities evolve in an expanding
universe under the effect of gravity. If density fluctuations are small,
linear theory is valid and a simple relation exists between peculiar
velocities, v , and mass density contrast, δm:

∇ · v = −�0.6
m δm, (1)

where �m is the mass density parameter. Equation (1) shows why
peculiar motions are so important in cosmology: they provide a
direct probe of the mass density distribution in the Universe. The
mass density fluctuation field, δm, can be deduced from the galaxy
observed density contrast, δg, assuming a relation (bias) between
the distribution of galaxies and that of the underlying density. The
simplest relation suggested in the literature is that of linear bias,
namely δg = bδm, where b is the linear bias parameter for a given
population of mass tracers. This assumption seems to hold on very
large (linear) scales and it is supported by both observational evi-
dence (e.g. Baker et al. 1998; Seaborne et al. 1999) and numerical
studies (e.g. Blanton et al. 1999).

Many authors have used the peculiar velocities of galaxies and
their redshift-space positions to estimate the value of β = �0.6

m /b,

�E-mail: saleem@mpa-garching.mpg.de

under the hypotheses of linear theory and linear biasing. These anal-
yses have been typically carried out using two alternative strategies.
In the so-called density–density comparisons a 3D velocity field
and a self-consistent mass density field are derived from observed
radial velocities and compared to the galaxy density field measured
from large redshift surveys. The typical example is the comparison
of the mass density field reconstructed with the POTENT method
(Bertschinger & Dekel 1989; Dekel, Bertschinger & Faber 1990)
from the MARK III catalogue of galaxy peculiar velocities (Willick
et al. 1997a) with the galaxy density field obtained from the IRAS
1.2-Jy redshift catalogue (Sigad et al. 1998). The various applica-
tions of density–density comparisons to a number of data sets have
persistently led to large estimates of β, consistent with unity (see
Sigad et al. 1998 and references therein). The alternative approach
is constituted by the velocity–velocity analyses. In this second case
the observed galaxy distribution is used to infer a mass density field
from which peculiar velocities are obtained and compared to the
observed ones. The velocity–velocity methods have been applied to
most of the velocity catalogues presently available yielding system-
atically lower values of β, in the range 0.4–0.6 (see Zaroubi 2002a,
for a summary of the most recent results).

Both density–density and velocity–velocity methods have been
carefully tested using mock catalogues extracted from N-body sim-
ulations. They were shown to provide an unbiased estimate of the β

parameter. Yet, when applied to the same data sets, the discrepancy
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in the β estimates turned out to be significantly larger than the ex-
pected errors. Accounting for mildly non-linear motions (e.g. Sigad
et al. 1998; Willick et al. 1997b) or allowing for possible deviations
from a pure linear biasing relation consistent with the observational
constraints (see discussion in Somerville et al. 2001; Branchini
et al. 2001) does not explain this discrepancy (Berlind, Narayanan
& Weinberg 2001). velocity–velocity comparisons are generally re-
garded as more reliable as they require manipulation of the denser
and more homogeneous, redshift catalogue data. Whereas, the
density–density comparisons involve manipulation of the noisier
and sparser velocity data. In any case both classes of methods are
quite complicated and it is hard to understand how systematic errors
can arise and propagate through the analysis. Therefore, it is likely
that these systematics affect the β parameter estimation.

The purpose of this work is to address, and possibly solve, the
density–density versus velocity–velocity dichotomy. We achieve
this goal by using the novel Unbiased Minimal Variance estimator,
recently proposed by Zaroubi (2002b). The UMV estimator allows
one to reconstruct an unbiased cosmological field at any point in
space from sparse, noisy and incomplete data and to map it into a
dynamically-related cosmic field (e.g. to go from peculiar veloci-
ties to overdensities). The UMV is applied here to the SEcat cata-
logue of peculiar velocities (Zaroubi 2002b) to reconstruct both the
mass density and peculiar velocity fields. These fields are then com-
pared with the analogous quantities predicted from the distribution
of IRAS PSCz galaxies (Saunders et al. 2000) of density–density
and a velocity–velocity analyses. In Section 2 we briefly review
the basics of the UMV estimator. The SEcat and PSCz catalogues
are presented in Section 3. Error estimation from mock catalogues
is described in Section 4. The density and velocity fields obtained
by applying UMV to SEcat are compared in Section 5 with the
analogous quantities deduced from the PSCz data set. Finally, in
Sections 6 we discuss the results and present our conclusions.

2 T H E U M V M E T H O D

The derivation and general properties of the UMV estimator have
been already presented and discussed by Zaroubi (2002b). There-
fore, we only review its main properties. As in the case of Wiener
filter (Wiener 1949; Zaroubi et al. 1995), the UMV introduces a gen-
eral framework of linear estimation and prediction by minimizing
the variance of the estimator with respect to the underlying signal,
subject to linear constraints on the data. The solution of the mini-
mization problem yields the UMV estimator, which was shown to
be a very effective tool for reconstructing the large scale structure
of the Universe from incomplete, noisy and sparse data (Zaroubi
2002b).

One of the main drawbacks of the Wiener filter is that it sup-
presses the amplitude of the estimated signal. The suppression fac-
tor is roughly equal to the Signal2/(Signal2 + Noise2) ratio, i.e.
in the limit of very poor signal-to-noise ratio data, which in the
context of this work correspond to galaxy peculiar velocities, the
estimated field approaches zero value. By contrast, the UMV esti-
mator has been specifically designed to not alter the values of the
reconstructed field at the locations of the data points, thus avoiding
spurious suppression effects. An unbiased estimate of the recon-
structed field at any point in space is then obtained by interpolating
between the data points, according to the correlation function as-
sumed a priori. Like the Wiener filter the new estimator can be used
for dynamical reconstructions, i.e. to recover one dynamical field
from another measured field, e.g. mass over-density from radial pe-

culiar velocity. These two properties make the UMV estimator a
very appealing tool for studying the LSS and CMB.

Here we apply the UMV estimator to reconstruct the density
and velocity fields in the local Universe from the radial peculiar
velocities of the SEcat galaxies. The data points consist of a set
of observed radial peculiar velocities, uo

i , measured at positions r i

with estimated errors εi , assumed to be uncorrelated. The observed
velocities are thus related to the true 3D underlying velocity field
v(r ), or to its radial component ui , via

uo
i = v(r i ) · r i + εi ≡ ui + εi , (2)

We assume that the peculiar velocity field v(r ) and the density
fluctuation field δ(r ) are related via linear gravitational-instability
theory, δ = f (�m)−1∇ · v, where f (�m) ≈ �0.6

m and �m is the
matter mean-density parameter. Under the assumption of a specific
theoretical prior for the power spectrum P(k) of the underlying
density field, we can write the UMV estimator of the 3D velocity
field as,

vUMV(r ) = 〈v(r )ui 〉〈ui u j 〉−1uo
j (3)

and the UMV estimator of the density field as,

δUMV(r ) = 〈δ(r )ui 〉〈ui u j 〉−1uo
j . (4)

Within the framework of linear theory and assuming that the
velocities are drawn from a Gaussian random field, the two-point
velocity–velocity and density–velocity correlation matrices (brack-
eted quantities in equations 3 and 4) are readily calculated. Note
that the normalization of the power spectrum drops out of the field
estimation. The calculation of these matrices is discussed elsewhere
(Górski 1988; Zaroubi et al. 1995, 1997; Zaroubi, Hoffman & Dekel
1999).

The assumption that linear theory is valid on all scales enables us
to choose the resolution as well. In particular it allows us to use two
different smoothing kernels for the data and for the recovered fields.
In our case no smoothing was applied to the radial velocity data while
we choose to reconstruct the density and velocity fields with a finite
Gaussian smoothing of radius, R. This choice alters the velocity–
velocity and density–velocity correlation functions that appear in the
first bracketed terms of the right hand side of equations (3) and (4),
respectively, by introducing a multiplicative term exp[−k2 R2/2] in
the model power spectrum.

The amplitude of the reconstructed matter density field given in
equation (4) is proportional to f (�m)−1, while that of the density
field obtained the PSCz galaxy distribution is proportional to the
biasing parameter, b. Therefore, the comparison between these den-
sity fields will constrain the value of β = f (�m)/b. The velocity
field reconstruction from the SEcat data set, however, is independent
of �m and b. Hence in the velocity–velocity comparison β enters as
a solution of equation (1) for the PSCz velocities, with the matter
density given as the ratio δ(P SCz)/b, where δ(P SCz) is the PSCz
density field.

The error covariance matrix, or variance of the residuals, of the
reconstructed density and velocity fields could be calculated theo-
retically (Zaroubi 2002b). However, in order to give a more com-
plete account of the various errors that enter the calculation (e.g.
non-linear effects) here we choose to calculate the error from mock
catalogues (see Section 4).

It is interesting to compare the UMV algorithm with other
methods of reconstruction used for similar purposes. In the con-
text of mass-density reconstruction from radial peculiar velocities,
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comparison with the POTENT algorithm (Bertschinger & Dekel
1989; Dekel et al. 1990) is of special interest. The main assumption
behind the POTENT algorithm is that the flow field, smoothed on
large scale, is derived from a velocity potential. The potential flow
assumption is a direct result of linear theory but can also be em-
ployed in the quasi-linear regime until the onset of shell crossing,
when an extension of equation (1) applies (Nusser et al. 1991). PO-
TENT could be viewed as a direct inversion method which uses the
minimum amount of assumptions, but suffers from the problems of
direct deconvolution of very noisy data.

In conclusion, the UMV reconstruction can be regarded as a com-
promise between the POTENT algorithm, which assumes no reg-
ularization but might be unstable to the inversion problem of de-
convolving highly noisy data, and the WF algorithm, which takes
into account the correlation between the data points and therefore
stabilizes the inversion, but constitutes a biased estimator of the
underlying field.

3 T H E DATA S E T S

The main data set used here is the SEcat catalogue of galaxy peculiar
velocities which results from the merging of 1300 spiral galaxies
taken from the SFI catalogue (Giovanelli et al. 1997a,b; Haynes
et al. 1999a,b) and about 2000 early-type galaxies from the ENEAR
catalogue grouped into ≈750 independent objects (da Costa et al.
2000a). For each object the radial velocity and inferred distance,
corrected for Malmquist bias (Freudling et al. 1995; da Costa et al.
2000b), are provided along with the velocity errors that typically
amount to ∼19 per cent of the galaxy distance.

Merging different peculiar velocity catalogues may result in spu-
rious flows and lead to systematic errors in the reconstruction pro-
cedure. However, several pieces of evidence indicate that this is not
a serious problem for the SEcat catalogue. First of all, both the SFI
and ENEAR catalogues are intrinsically homogeneous as they con-
sist of uniform data covering most of the sky. Secondly, as shown
in Bernardi et al. (2000b), the distance relations independently cal-
ibrated in the two sets are consistent with each other and the differ-
ence in the Hubble constant deduced from each catalogue is ≈ 5 ±
10 km s−1 Mpc−1. Finally, different statistical analyses carried out
using either samples lead to consistent results (e.g. Borgani et al.
2000; da Costa et al. 2000b; Nusser et al. 2000; Zaroubi et al. 2001
and references therein). Some of the main characteristics of these
samples are summarized in Fig. 1. The sky distribution (upper pan-
els), redshifts (central panels) and peculiar velocities (lower panels)
of the SFI and ENEAR galaxies are quite similar, especially when
accounting for the expected tighter spatial correlation and higher
peculiar velocities of the ENEAR early-type galaxies. Further evi-
dence for the consistency of the two catalogues will be provided in
Section 5 (e.g. see Figs 5 and 7, later).

The substantial number of galaxies and the large sky coverage
(the unobserved region is given by a zone of avoidance of about 15◦

about the Galactic plane) allow a dense and uniform sampling of the
velocity field. Moreover, since SEcat contains both early- and late-
type galaxies, we can sample both high and low density regions and
therefore minimize possible biases that might have affected other
analyses based on a single population of objects.

To estimate the β parameter one needs to compare the densities
and/or velocities reconstructed from a radial velocity survey with
those recovered from a direct probe of the density field, namely
a redshift survey. Here we use the models obtained by Branchini
et al. (1999) from the distribution of IRAS PSCz galaxies under
the assumptions of linear biasing and linear theory. The PSCz red-

shift survey (Saunders et al. 2000) provides the angular positions
and redshifts of ∼15 000 IRAS galaxies distributed over almost all
sky (the zone of avoidance is about 8◦) with a median redshift of
8500 km s−1 and is therefore suitable for modelling the density and
velocity fields within the same region in which the UMV recon-
struction is performed. The typical error associated with the PSCz
density and velocity models are significantly smaller than those re-
constructed from the SEcat velocities and therefore will be ignored
in the subsequent analysis.

4 M O C K C ATA L O G U E S A N D
E R RO R E S T I M AT E S

To test the performance of the method when applied to the SEcat
catalogue, we construct mock catalogues based on the ‘Constrained
Realization GIF’ simulation carried out by Mathis et al. (2001).
This simulation starts from initial conditions with a smoothed lin-
ear density field which matches that derived from the IRAS 1.2-Jy
galaxy survey and tracks the formation and evolution of all dark
matter halos more massive than 1011 solar masses out to a distance
of 8000 km s−1 from the Milky Way up to the current epoch. Galax-
ies in the original mock catalogue are sampled from the N-body
simulation at the same position of the real galaxies. Realistic mock
catalogues are obtained by assigning errors to the position and veloc-
ity of mock galaxies consistent with observations. We construct 100
mock catalogues that differ only in the realization of errors added
to the position and velocity of the galaxies. Measured peculiar ve-
locities in the mock catalogues are then obtained after performing a
Malmquist bias correction according to the recipe given by Willick
et al. (1997a).

The density and 3D velocity fields within a region of 60 h−1 Mpc,
smoothed with a Gaussian filter of radius of 12 h−1 Mpc (G12 here-
after), were reconstructed from each of the 100 mock catalogues.
Both N-body and reconstructed density and velocity fields were
specified on a regular grid with a mesh size of 2.5 h−1 Mpc and re-
constructed radial velocities at the actual location of the data points
were interpolated from the grid. Errors in the reconstructed densities
and peculiar radial velocities were estimated from the 100 Monte
Carlo realizations.

Note that we do not use the peculiar velocities of the mock galaxy
catalogues of Mathis et al. (2002). Instead, the peculiar velocities
of our mock galaxies are obtained from those of of the dark matter
particles. This implies neglecting the so called velocity bias which
is expected to be small on the large smoothing scale involved in our
reconstruction (see e.g. Carlberg 1994).

Fig. 2 shows the quality of the reconstruction from mock
SEcat catalogues. The comparison of the original underlying den-
sity with the one reconstructed from ideal mock catalogues (i.e. with
no velocity errors) in a region in which the estimated reconstruction
errors are �0.2 shows that their relation is well described by a linear
function with a slope of 0.99 (see below). This demonstrates that the
sampling density of the data is sufficiently high. Note that the den-
sity of the original catalogues close to the boundaries is suppressed.
This effect is due to finite smoothing length and does not affect our
analyses which are carried out to distances well within the edges of
the mock catalogues. The other three maps shown in Fig. 2 were ran-
domly chosen from the 100 mock catalogues reconstructions. The
similarity of the reconstructions are quite evident, especially within
the region of small reconstruction errors. The scatter plot quantifies
this similarity for one of the mock catalogues. An inspection of the
radial peculiar velocity reconstruction shows a similar quality of
results.
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Figure 1. (Upper panels) The projected distribution of the SFI (left panel) and ENEAR (right panel) galaxies in galactic coordinates. Crosses indicate positive
peculiar velocities, open circles negative; and the size of the symbols is proportional to the amplitude of their peculiar velocity. (Middle panels) The redshift
distribution of the SFI (left panel) and the ENEAR (right panel) galaxies. (Lower panels) The peculiar velocity distribution of the the SFI (left panel) and the
ENEAR (right panel) galaxies.

Left panel of Fig. 3 shows β as estimated by applying the UMV
reconstruction algorithm to the mock catalogues and comparing the
results with the true density and velocity fields using the following
χ 2 statistic,

χ 2 = 1

N

∑

σδ�0.2

{δi (mock) − β[δi (original) + �δ]}2

σ 2
δ

, (5)

where δi (mock) is the density as reconstructed from the mock
SEcat catalogue; δi (original) is the original density, and σδ is the

rms difference between the reconstructed densities from the mock
catalogues and the original density at the same point in space. The
free parameters here are β and the offset between the two fields, �δ.
The latter is introduced to account for the uncertainty in defining
the mean density of the sample. This offset is expected to be zero
in the mock catalogue analyses and can only be non-trivial when
comparing the density fields obtained from two different catalogues
(such as the true SEcat and PSCz catalogues). The density–density
comparison is carried out over N points, randomly selected from the
10× N at which the estimated errors are less than 0.2. The expected
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Figure 2. Comparison of the original and reconstructed G12 smoothed density maps on the mock supergalactic plane. In all panels the solid and dashed line
contours denote positive and negative densities respectively. The bold-solid line denotes the zero level density. Contour spacing is 0.1. The very thick solid
contour marks the area within which the reconstruction errors are less than 0.2. The upper left hand panel shows the underlying density field of the simulation.
The degradation of the original density map towards the edges is spurious and due to the finite size of the smoothing radius. The upper right hand panel shows
the reconstructed density from the SEcat mock catalogue before adding errors to the distances and velocities. The other three maps show reconstruction from
SEcat mock catalogues with realistic noise. The lower right-hand panel shows a typical scatter plot of the density within the comparison region of the original
versus the reconstructed density from one of the mock catalogues (with noise); the points used in the scatter plot are 1/10 randomly sampled from the grid
points with estimated reconstruction errors less than 0.2.
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Figure 3. The distribution of the value of β relative to the real one as estimated from 100 mock SEcat catalogues in the density–density comparison (left panel)
and velocity–velocity comparison (right panel). The value of the measured β for the catalogue without noise is β = 0.99 and 1.01 for the density and velocity
reconstruction respectively.

values of β and �δ are unity1 and zero respectively. The left panel
of Fig. 3 shows that the estimated β is unbiased and has a mean and
variance of 1.01 and 0.1, respectively. The estimated value of �δ is
−0.03 and has a variance of 0.04.

Naturally, most of the grid points used in the comparison – even
after diluting their number by a factor of 10 – do not have statistically
independent errors. Therefore, the statistic used in equation (5) is not
optimal. In other words, had the data points used in equation (5) been
independent then it would indeed be sufficient to use the likelihood
contours obtained after minimizing the χ2 statistic to determine
the uncertainty of the results. On the other hand, had these data
point been totally dependent with about only one degree-of-freedom
then the error obtained from the likelihood analysis would be a
gross underestimate unless the cosmic-variance like errors over the
whole sample were also estimated and taken into account. Normally,
the best way to go about estimating the scatter in the results that
takes into account the partial dependency of the data points and
their limited number is to perform a very large number of Monte
Carlo simulations – of the order of 102–103 – to ensure an accuracy
of a few percent. This however is very time consuming and not
feasible with available computer resources. Therefore, we choose to
assume that the errors are totally independent and use equation (5) in
order to estimate the most likely β and �δ values. The uncertainties
are then determined by adding in quadrature the likelihood errors
and the uncertainties obtained from the scatter in the value of β,
obtained from the 100 mock catalogues. In our sample, these two
sources of errors are not totally independent. However, by treating

1 The density reconstruction is performed hereafter normalizing with the
correct value of f (�m = 0.3) therefore the comparison is expected to yield
a bias parameter of unity.

them as such allows one to obtain a conservative upper limit on the
errors.

In order to validate our approach it is important to estimate the
number of degrees of freedom in the sample,N d.o.f.. In the case of no
noise correlations except those introduced by the G12 smoothing,

Figure 4. The sorted spectrum of the eigenvalues of the noise correlation
matrix. The modes that account for 95 per cent of the variance are the
first 20.
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Nd.o.f. ≈ 23 in a sphere of radius 50 h−1 Mpc , which represents the
ratio of the total volume to the effective volume of the G12 filter.
In the case at hand, however, the calculation is more subtle and
involves numerical estimation of the noise correlation matrix from
the 100 Monte Carlo simulations at each grid point with error less
than 0.2 and finding its eigenvalues. Then Nd.o.f. is identified with
the number of significant eigenvalues of this matrix (see Zaroubi
et al. 1995 for the treatment of a similar problem). Specifically,
Nd.o.f. is the number of the highest eigenvalues that account for
95 per cent of the variance, found here to be about 20 (see Fig. 4).
The eigenvalues of most of the remaining eigenmodes drop by orders
of magnitude. This number, 20, reflects the number of effective
smoothing volumes and the additional correlation introduced by the
UMV filter.

The same strategy is adopted for the velocity–velocity compari-
son. In this case the statistic of choice is,

Figure 5. The G12-smoothed, overdensity field on the supergalactic plane reconstructed from SEcat, ENEAR and SFI catalogues. All reconstructions assume
a Standard CDM power spectrum apart from the map shown in the upper right panel for which we have assumed an �m = 0.3CDM power spectrum. The
very thick solid contour marks the area within which the reconstruction errors from the SEcat catalogue are less than 0.2. In all panels the solid and dashed line
contours denote positive and negative densities respectively. The bold-solid line denote the zero level density. Contour spacing is 0.1.

χ 2 = 1

Ndata

∑

DataPoints

[
ui (mock) − βui (original) − �H◦ri

]2

σ 2
v

, (6)

where u(mock) and u(original) are the radial velocities of the mock
and original data respectively. Ndata is the number of data points,
�H◦ is the offset in Hubble constant, ri is the distance of the data
point i andσv is the uncertainty in the radial velocity as obtained from
the mock catalogues. The velocity–velocity comparison is carried
out over the radial velocities at the location of the data points. The
argument regarding the χ 2 statistic used here is identical to the one
discussed for the density–density comparison. Right panel of Fig. 3
shows that the mean and variance of β in this case are 0.97 and
0.12, respectively. The offset in Hubble constant is 0.2 ± 0.5 km
s−1 Mpc−1. The value of β estimated from the noise-free mock
catalogue is 1.03. From the noise correlation matrix we estimate
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Nd.o.f. ≈ 17. The lower value obtained here reflects the longer range
of velocity correlation.

Willick et al. (1997b) have suggested in their VELMOD method
to estimate β from velocity data by minimizing residuals and their
correlations simultaneously with minimizing the likelihood, there-
fore, allowing the calibration of the distance estimator while evaluat-
ing β. Whereas in our analysis we assume that the distance indicator
has been calibrated independently.

The analysis of the mock catalogues shows that the UMV returns
an unbiased estimate of the underlying density and velocity fields
from which β can be determined with an accuracy of 10 per cent.
This error is purely random and takes into account the scatter of the
best fit β value but does not include the scatter in the estimation of
each individual value of β which will be added later.

This analysis could in principle be extended to smaller smooth-
ing kernels. Besides the validity of linear theory required in this
analysis, the density of the sky coverage might be also an important
factor since an insufficient coverage might result in the dominance if
noise in most of the sampling volume. An extension of the analysis
to a 900 km s−1 smoothing kernel (hereafter, G9) shows that the
results of the analysis are consistent with the G12 comparison but
the uncertainties are much higher especially in the density–density
comparison. Therefore, the smoothing kernel used in the rest of the
paper is G12.

5 T H E F I E L D – F I E L D C O M PA R I S O N

Here we apply the UMV estimator to the true SEcat catalogue to
obtain the G12-smoothed density and velocity fields assuming a
power spectrum of a flat CDM model with h = 0.5, �m = 1.0
as a prior. These cosmological parameters determine the shape of
the power spectrum only and are not used anywhere else in the
analysis. Unlike the outcome of the Wiener Filter estimator, the
UMV-reconstructed density and velocity fields, for dense sampling
of the sky, are unbiased and therefore can be used for quantitative
comparisons.

Before proceeding further in analysing the SEcat catalogue, it
is useful to compare the reconstruction we obtain from the SEcat
peculiar velocities with those obtained from the SFI and ENEAR
separately in order to support our claim regarding the consistency the
latter two. Figs 5, 6 and 7 show the similarity between the density and
velocity reconstruction of the three catalogues. We also note that,
as demonstrated in the same figures, changing the power spectrum
prior has a very small effect on the results.

The reconstruction of the PSCz model density and velocity fields,
performed according to Branchini et al. (1999), requires an input
value for β; here we use β = 0.5. However, the dependence of the
reconstructed density field on the input β is very weak while the
model peculiar velocity roughly scales linearly with β. This depen-
dence results in a systematic error of about 2 per cent on the final
result. Model PSCz velocities were obtained at the reconstructed
positions of PSCz galaxies in real space. Both masses and velocities
were then smoothed with a G12 filter to obtain the PSCz density and
velocity fields on a regular grid with a mesh size of 2.5 h−1 Mpc.
Finally, G12-smoothed PSCz velocities have been interpolated at
the positions of SEcat galaxies. Here we compare the SEcat fields
with those of the PSCz, all smoothed with a G12 filter. The errors
on the model density and velocity fields are much smaller than the
SEcat ones (see Branchini et al. 1999) and will be ignored in the
following comparisons.

Figure 6. A quantitative comparison between the SFI and ENEAR G12-
smoothed. reconstructed densities. The densities of both SFI and ENEAR
were reconstructed on a grid with mesh size of 2.5 h−1 Mpc. The densities
shown in the scatter plot are from grid points randomly selected with a
rate 1/10 from those with reconstruction errors less than 0.2. The size of
the symbols is inversely proportional to their errors. The solid line with a
slope of unity has been drawn to guide the eye. The agreement between the
two reconstructions is very good except for a small number of points with
δ(SFI) ≈ −0.5 and δ(ENEAR) ≈ 0.

5.1 The density–density comparison

The left panels of Fig. 8 show the G12 smoothed UMV reconstructed
density field map in three planes at different supergalactic Z (the
central plane refers to Z = 0, i.e. the supergalactic plane) obtained
from the SEcat peculiar velocities within a box of 160 h−1 Mpc
aside, centred around the Local Group position. The main features
of our local Universe are easily identified in the UMV map on the
supergalactic plane , including the Great Attractor on the left and the
Perseus-Pisces supercluster in the lower right. There is also a hint
of the Coma cluster, which lies just outside the sample, in the upper
part on the map. Similar features also characterize the PSCz density
map shown on the right-hand panel of Fig. 8. This map, obtained by
Branchini et al. (1999), has the same smoothing (G12) and shows
the same region of the Universe.

A quantitative density–density comparison is carried out using
the following χ 2 statistic

χ 2 = 1

N

∑

σδ�0.2

[δi (SEcat) − β(δi (PSCz) + �δ)]2

σ 2
δ

, (7)

where δi (SEcat) and δi (PSCz) are the SEcat and PSCz densities
respectively, �δ is the offset in the mean density and σδ are the
density reconstruction error at each point as estimated from Monte
Carlo realizations of mock-SEcat catalogues. The best fit β and �δ

parameters are those that minimize equation (7). Here again the sum
is over grid points randomly sampled at a rate of 1/10 from those
that have errors less than 0.2. As in the mock catalogues analysis,
here Nd.o.f. ≈ 20.

In previous density–density comparisons (e.g. Sigad et al. 1998)
the authors chose to minimize the χ 2 with respect to 1/β instead of
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Figure 7. The top left panel compares the G12-smoothed peculiar radial velocities reconstructed from the SFI catalogue versus those reconstructed from the
SEcat catalogue, both measured at the location of the SFI data. The solid line represents the best linear fit to the scatter plot. The top-right panel compares
ENEAR and SEcat reconstructed velocities at the positions of the ENEAR galaxies. The two bottom panels refer to the SEcat catalogue only and compare
velocities reconstructed assuming a CDM model (Y axis) with those reconstructed from the standard CDM model (X axis). Peculiar velocities shown in the
bottom-left panel refer to points with estimated error less than 100/kms. All points are considered in the bottom-right panel. In all plots the size of the symbols
is inversely proportional to their errors.

β directly. Since the main source of errors in our analysis are the
uncertainties in the measured galaxy velocities, adopting a direct
or inverse β minimization of the χ 2 statistic does not make much
difference. Here we choose to minimize with respect to β.

Each point in the scatter plot displayed in the lower panel of Fig. 9
shows the comparison between the SEcat and PSCz overdensities,
measured at the same locations. The comparison is restricted to the
1/10 randomly chosen points with σδ < 0.2. The slope of the solid
line gives β = 0.57.

A zero-point offset �δ = 0.18 is also detected. We interpret it as a
mismatch in the average density in the two samples. The mismatch in

the mean fields is caused by the PSCz density field which was found
to be systematically larger than the IRAS 1.2-Jy density field within
a 60 h−1 Mpc sphere (Teodoro, Branchini & Frenk 2000). This
mismatch arises due to the incompleteness of the PSCz catalogue at
low fluxes.

The upper panel in Fig. 9 shows the 1σ , 2σ and 3σ likelihood con-
tours in the β −�δ plane obtained from equation (7). The marginal-
ization of this distribution with respect to �δ gives the error estimate
on the value of β which is of the order of 0.08 (≈15 per cent). Adding
to this error the error estimated from the distribution of bias shown
in Fig. 3 one obtains β = 0.57+0.11

−0.13.
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Figure 8. The panels on the left show the maps of the G12-smoothed, density fluctuations UMV-reconstructed from the SEcat catalogue. The central panels
show the same field reconstructed from the distribution of PSCz galaxies. The maps of density residuals, computed for β = 0.57�δ = δSEcat − δPSCz are shown
on the right-hand panels. The central maps show the density fields on the supergalactic planes. The maps on the upper and lower panels show the density fields
at supergalactic Z = pm20−1 Mpc, respectively. The very thick contour marks the boundaries of the volume within which the estimated reconstructed error is
�0.2; the volume used for comparisons.

To estimate the goodness-of-fit of the parameters obtained from
the χ2 analysis, we calculate the distribution of the residuals,

ξ = δ(SEcat) − βM L

[
δ(PSCz) − �δ

]

σδ

, (8)

where βM L is the best fit β parameter and σδ is the error on the UMV
estimated density field. If the model correctly describes the data, this

distribution should be Gaussian with a rms of unity. The histogram of
ξ is shown in Fig. 10 along with the best fitting Gaussian distribution
(dashed line), whose rms is almost unity.

To check the robustness of the result we have repeated the density–
density comparison by drawing three additional samples defined at
different error thresholds and re-estimating the values of β. Adopt-
ing the thresholds σδ = 0.3, 0.4 and 0.5 we obtained β = 0.54, 0.53
and 0.52, respectively.
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Figure 9. The upper panel shows the 1σ , 2σ and 3σ likelihood contours
from the δ–δ comparison in the β–�δ plane. The scatter plot in the bottom
panel compares the G12-smoothed UMV-reconstructed SEcat density field
to the PSCz density fluctuations, both measured at grid points 1/10 randomly
selected from those with reconstruction errors σδ < 0.2. The size of the
symbols is inversely proportional to their errors.

5.2 The velocity–velocity comparison

The UMV-velocity reconstruction procedure is different from the
one used for the density. SEcat radial velocities are calculated at
the location of the data points from the reconstructed 3D veloc-
ity which has been homogeneously smoothed with a G12 filter
through the UMV operation. Here we compare these velocities to the
G12-smoothed model PSCz velocity sampled at the same locations.
Therefore, unlike for the density–density case, the number of points
used in the velocity–velocity comparison is determined directly by

Figure 10. The histogram represents the distribution of the normalized resid-
uals (ξ ). The dashed line shows its best Gaussian fit with a rms value of
σ = 1.03, as indicated in the plot.

the number of points in the SEcat catalogue. This comparison is
carried out using the following χ2 statistic

χ 2 = 1

N

∑

DataPoints

[ui (SEcat) − βui (PSCz) − �H◦ri ]
2

σ 2
v

, (9)

where u denotes the G12-smoothed radial velocities, �H◦ is a local
perturbation to the Hubble constant, ri is the radial distance of the
point i and σv is the error in the UMV reconstruction. The resulting
velocity–velocity scatter-plot is shown in the lower panel of Fig. 11
along with the best fitting line. Here the slope of the line constitutes
an estimate of β = 0.51. The zero-point mismatch, �H◦ represents
a spurious ‘breathing-mode’ which is to be expected given the aver-
age density mismatch found in the density–density comparison. A
perturbation of �H◦ = 1.5 km s−1 Mpc−1 was found and its associ-
ated spurious radial motion, �H◦r , was subtracted from the PSCz
peculiar velocities shown in the lower panel of Fig. 11. The two
zero-points are found here to be consistent with the prediction of
the linear theory relation:

�H◦ = −�0.6
m

3
�δ(< r )H◦, (10)

where �δ(<r ) is the mean-density mismatch within a radius r.
The upper panel of Fig. 11 shows the likelihood contours in the

β − �H◦ plane obtained by calculating the χ2 distribution given
in equation (9). From the iso-probability contours of 1σ , 2σ and
3σ levels shown in the upper panel of Fig. 11 we obtain that
β = 0.51 ± 0.06, fully consistent with the estimate of β from the
density–density comparison. The uncertainty here is a combination
of the errors estimated from Figs 3 and 11.

The analysis of the velocity–velocity residuals is performed sim-
ilarly to those of the density–density residuals. The resulting distri-
bution of the residuals is shown in Fig. 12 as a histogram. Here again
the rms value found for the best fit Gaussian distribution (dashed
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Figure 11. (Upper panel) The 1σ , 2σ and 3σ likelihood contours in the
β–�H◦ plane from the SEcat versus PSCz velocity–velocity comparison.
(Bottom panel) The G12-smoothed, reconstructed SEcat and PSCz are com-
pared at the locations of the SEcat data points. The size of the symbols is
inversely proportional to the reconstruction errors.

line) is very close to unity indicating the adequacy of the PSCz ve-
locity model with β = 0.51. The slight excess in the positive tail
of the histogram is due to presence of few outliers, easily identified
below the best fitting line in the lower panel of Fig. 11. The size of
those points clearly indicates that they have very large errors, which
would exclude them from any reasonable noise data-cut analysis.
Moreover, their number is very small and therefore their influence
on the final result is negligible.

6 S U M M A RY A N D D I S C U S S I O N

In this paper we have applied the new UMV estimator to re-
cover the density and velocity fields in the local Universe from the

Figure 12. The distribution of the residuals from the velocity velocity com-
parison. The dashed line shows a Gaussian fit with σ = 1.06.

SEcat catalogue of galaxy peculiar velocities. In order to obtain
the so called β parameter, these fields have been compared with
those modelled from the spatial distribution of IRAS PSCz galax-
ies assuming linear theory and biasing. Previous estimates of β

from density–density comparisons, mainly based on the POTENT
algorithm (Bertschinger & Dekel 1989; Dekel et al. 1990), have
yielded a large value (β ≈ 1 cf. Sigad et al. 1998), inconsistent with
the smaller values (≈0.5) independently obtained from all recent
velocity–velocity VELMOD (Willick et al. 1996; Willick & Strauss
1998; Branchini et al. 2001) and ITF (da Costa et al. 1998; Nusser
et al. 2000) comparisons.

For the first time the UMV method provides a common method-
ological framework in which to perform velocity–velocity and
density–density comparisons. The velocity–velocity comparison
yields a value of β consistent with that measured in the VELMOD
and ITF analyses. However, the value of the same parameter ob-
tained from our density–density comparison is significantly smaller
than those obtained from the POTENT analyses (cf. Sigad et al.
1998). The β parameters from both v–v and δ–δ comparisons pre-
sented here are in agreement, yielding a β ≈ 0.55 with an estimated
error of the order of 0.1.

In contrast with the POTENT algorithm, the new UMV method
reconstructs the density field from peculiar velocities while taking
into account their underlying correlation properties. The regulariza-
tion aspect of the UMV estimator significantly improves the stability
of the inversion, which is especially important given the low signal-
to-noise ratio of peculiar velocity data. The regularization obtained
by this method is very similar to the one provided by the Wiener
filter method (Zaroubi et al. 1999). However, the UMV has been
designed to provide an unbiased estimator of the underlying signal,
a property that the Wiener filtering method lacks. These two aspects
make the UMV estimator a very useful tool for reconstruction from
peculiar velocity data.

In our error analysis we have shown that for the best fit value
of β the density and velocity residuals are normally distributed.
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This indicates that the PSCz density and velocity fields constitute
an adequate model for those reconstructed with the UMV estimator.
The fields only differ by a monopole term, corresponding to a mis-
match in the the mean density within 60 h−1 Mpc which is caused
by the known incompleteness of the PSCz catalogue at faint fluxes
(Teodoro et al. 2000). This also implies that the effect of the non-
linear dynamics and amount of non-linear and stochastic biasing
on the scales involved in our analysis is negligible relative to the
measured peculiar velocity errors.

The results presented in this paper are quite encouraging since for
the first time the two ways of estimating the value of the β param-
eter give a consistent result. Our results also suggest that the UMV
estimator is a promising tool for the problem of reconstructing the
dynamical fields from the observed radial peculiar velocities and
therefore could be applied to other data sets. In particular, to recon-
struct the large scale structure from the incoming large and uniform
surveys that will provide both the spatial distribution and peculiar
velocities of extragalactic objects e.g. SDSS and large cluster sur-
veys with kinematic Sunyaev–Zel’dovich measurements.

Our present density–density comparison results are in marked
contrast to those obtained by earlier work, including those from
the recent analysis of the Mark III catalogue using the POTENT
method (e.g. Sigad et al. 1998), and raises the question on the origin
of this discrepancy. The Mark III catalogue, as shown for example
by Davis, Nusser & Willick (1996) and more recently by Courteau
et al. (2000), suffers from systematic calibration errors that would
cause a systematic error in the estimation of β. However, these errors
are not expected to overestimate the value of β by more than a factor
of two. An application of the UMV method to the Mark III catalogue
shows that the obtained values of β are somewhat higher than those
obtained from the SEcat catalogues by 0.1–0.2. Moreover, the v–v-
like VELMOD analysis yield consistent values of β when applied to
Mark III and SFI data sets (Willick et al. 1997b; Willick & Strauss
1998; Branchini et al. 2001). Based on these arguments, one could
speculate that the most likely explanation to the inconsistent results
is a conspiracy of both the systematics errors in Mark III and some
noise-driven inversion instability in the POTENT reconstructions.
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