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ABSTRACT
A method for estimating redshifts of galaxy clusters based solely on resolved Sunyaev–
Zel’dovich (SZ) images is proposed. Given a high-resolution SZ cluster image (with a FWHM
of ∼1 arcmin), the method indirectly measures its structure-related parameters (amplitude,
size, etc.) by fitting a model function to the higher-order wavelet moments of the cluster’s
SZ morphology. The applicability and accuracy of the wavelet method are assessed by ap-
plying the method to maps of a set of clusters extracted from hydrodynamical simulations
of cosmic structure formation. The parameters, derived by a fit to the spectrum of wavelet
moments as a function of scale, are found to show a dependence on redshift z that is of the type
x(z) = x 1 exp(−z/x 2) + x 3, where the monotony of this functional behaviour and the non-
degeneracy of those parameters allow inversion and estimation of the redshift z. The average
attainable accuracy in the z estimation relative to 1 + z is ∼4–5 per cent out to z � 1.2, which is
comparable with photometric redshifts. For single-frequency SZ interferometers, in which the
ambient fluctuating CMB is the main noise source, the accuracy of the method drops slightly
to 〈� z/(1 + z)〉 ∼ 6–7 per cent. Other complications addressed include instrumental noise,
cold cores and systematic trends in baryon fraction with cluster mass.

Key words: methods: numerical – galaxies: clusters: general – cosmic microwave back-
ground – distance scale.

1 I N T RO D U C T I O N

Inverse Compton scattering of cosmic microwave background
(CMB) photons off thermal electrons of the hot intracluster medium
(ICM) of galaxy clusters produces fluctuations in the surface bright-
ness of the CMB, an effect known as the thermal Sunyaev–
Zel’dovich (SZ) effect (e.g. Sunyaev & Zel’dovich 1972, 1980;
Rephaeli 1995). Imaging clusters of galaxies through their SZ signa-
ture has, until recently, been a very challenging undertaking. To date,
the development of detectors and new techniques have allowed high-
quality interferometric imaging of more than 50 clusters of galaxies
(Carlstrom, Holder & Reese 2002), despite incomplete coverage
of the Fourier plane. In the foreseeable future, the availability of
detectors in the microwave regime with angular resolutions sur-
passing 1 arcmin and sensitivities in the µK range (e.g. the South
Pole Telescope, described in detail in Carlstrom et al. 2002) will
enable the hot plasma in galaxy clusters to be probed out to large
redshifts, providing SZ-based wide-field galaxy cluster catalogues
and yielding a multitude of information about cluster formation and
the cosmological model (Birkinshaw 1999).

�E-mail: spirou@mpa-garching.mpg.de (BMS); pfrommer@mpa-garching.
mpg.de (CP); S.Zaroubi@astro.rug.nl (SZ)

In particular, the abundance of clusters as a function of redshift has
been shown to be a very sensitive probe of the cosmological model
(Eke et al. 1998; Henry 2000). The near independence of the line-
of-sight SZ amplitude and cluster redshift makes the SZ effect the
main tool for detecting galaxy clusters at high redshifts (0.5 � z � 2,
where the upper limit depends sensitively on cosmology). This range
of redshifts is especially important for probing the nature of the dark
energy of the Universe, since during this era it is expected to evolve
rapidly until it eventually dominates over the other cosmological
fluids. In order to obtain precise constraints on cosmological mod-
els it is essential to have accurate measurements of the redshift
distribution of galaxy clusters (see Haiman, Mohr & Holder 2001).

Normally, one determines the distance to the cluster by photo-
metric or spectroscopic observations of the cluster member galax-
ies. Unfortunately, this is a very challenging and time-consuming
task, in particular when one considers the very large number of
high-redshift clusters expected to be observed with future sensitive
SZ instruments – the Planck satellite alone is expected to detect
about 104 clusters (Bartelmann 2001). In order to replace photo-
metric follow-ups we aim at inferring the distance to a cluster from
SZ data alone for a future generation of experiments with increased
angular resolution of about 1 arcmin.

Theoretically, the cold dark matter (CDM) hierarchical cluster-
ing paradigm predicts a universal profile for dark matter haloes
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that depends on only two parameters: core radius and concentra-
tion (Navarro, Frenk & White 1995). In addition, the same theory
provides a very simple recipe for the mass-accretion history of a
given halo as a function of its formation and observation redshift
(Wechsler et al. 2002; van den Bosch 2002; Zhao et al. 2003). Us-
ing these relations together with simple assumptions such as hy-
drostatic equilibrium and isothermality, one can expect that, in the
framework of the spherical collapse model, the observable SZ flux
and apparent size should provide measures of the cluster’s mass and
distance.

Indeed, by using scaling relations, Diego et al. (2003) demon-
strated the viability of determining reliable morphological redshifts,
and examined various SZ observables with respect to their distance
sensitivity. Among those observables, they showed that the cluster
apparent size and central amplitude are promising distance indica-
tors, once their degeneracy is broken.

The main goal of this work is to derive redshifts of clusters based
solely on their resolved SZ images by modelling the evolution of
their structural parameters with redshift from the data set itself.
This phenomenological approach does not depend on a priori as-
sumptions about scaling relations that are valid only for spherically
symmetric and relaxed systems.

Specifically, the structural morphology of the cluster’s pressure
profile in an SZ observation is characterized by wavelet analysis.1

We are able to show that there is a simple relationship between the
distribution of moments over various scales in wavelet space and the
cluster properties that can be described with simple phenomenolog-
ical functions. Furthermore, the parameters of these functions are
shown to follow a well-defined and simple redshift dependence.
Wavelet analysis has been chosen because it maintains the scale and
positional information of cluster morphology, and hence it makes
isolation and suppression of various unwanted contributions to the
observed signal possible while it reliably upholds the underlying
behaviour. We note, however, that Fourier space analysis could in
principle yield very similar results.

Hydrodynamically simulated clusters are used to demonstrate the
method and to set limits on the redshift uncertainty expected in this
approach. The simulated clusters used in the analysis are close to
virialization; merging systems, for example, are excluded. Under
this restriction, the relationship between the observed quantity and
the cluster physical parameters as well as between the observed
quantity and the structural parameters are well defined. In addition,
simulated clusters ignore radiative and feedback processes, the ef-
fect of which is discussed later in the paper.

In the observational application, the evolution of the structural pa-
rameters following from wavelet decomposition could be calibrated
from a (relatively small) training set of high-quality SZ clusters with
known (photometric/spectroscopic) redshifts.

Our method relies crucially on the availability of resolved SZ-
cluster images. Therefore, throughout the paper we assume an in-
strumental resolution of 1 arcmin, for which massive clusters should
be resolved even at the largest redshifts considered here. Indeed, fu-
ture instruments such as the South Pole Telescope2 (Carlstrom et al.
2002) or the Atacama Cosmology Telescope3 are designed to yield

1 There are, of course, other ways of characterizing the cluster’s density
profile in an SZ observation that are more or less susceptible to noise, for
example the fitting of a β-profile (Cavaliere & Fusco-Femiano 1978) to the
electron density.
2 http://astro.uchicago.edu/spt/
3 http://www.hep.upenn.edu/∼angelica/act/act.html

observations of up to 104 galaxy clusters with masses �1014 M�
(2–10 µK beam−1 sensitivity) and ∼1-arcmin resolution.

This article is organized as follows. After basic definitions con-
cerning the SZ effect in Section 2, wavelets and wavelet transforms
of idealized cluster profiles are introduced in Section 3, and the sim-
ulations are outlined in Section 4. The capability of wavelets with
respect to distance estimation is examined in Section 5. Possible sys-
tematics are addressed in Section 6. A summary of the techniques
in Section 7 and of the results in Section 8 concludes the article.

2 S U N YA E V – Z E L ’ D OV I C H D E F I N I T I O N S

The SZ effect has been described in detail by many authors (for a
comprehensive review see Birkinshaw 1999); here we briefly re-
view its main aspects. The SZ effect arises because CMB photons
experience Compton scattering off electrons of the diffuse intra-
cluster plasma. The CMB spectrum is modulated as photons are
redistributed from the low-frequency part of the spectrum below
218 GHz to higher frequencies. The change in thermodynamic CMB
temperature arising from the thermal SZ effect is

�T

T
(φ) = y(φ)

(
x

ex + 1

ex − 1
− 4

)
� −2y(φ) for x � 1, (1)

where x = hν/k BT CMB is the dimensionless frequency. In the
Rayleigh–Jeans limit (x � 1), the change in temperature is asymp-
totically equal to −2y(φ). The SZ amplitude at location φ, which
is known as the Comptonization parameter y(φ), is defined as the
line-of-sight integral of the temperature-weighted thermal electron
density:

y(φ) = σTkB

mec2

∫
dl ne(φ, l)Te(φ, l), (2)

where m e, c and kB denote the electron mass, speed of light and
Boltzmann’s constant, respectively. T e(φ, l) and n e(φ, l) are the
electron temperature and electron number density at position φ and
distance l.

3 WAV E L E T S

3.1 Wavelet definitions

During the last decade, wavelet analysis has become a popular tool
in various data analysis and image processing applications. The
main appeal of wavelet functional bases stems from their simulta-
neous localization of a signal in both the wavenumber and position
domain, making orthogonal and complete projections on modes be-
longing to both spaces possible. In particular, the discrete wavelet
families, by virtue of their constituting a complete basis, provide a
unique and fast decomposition of the images into wavelet expan-
sion coefficients. Statistical analysis in terms of the qth moments
of the distribution of wavelet coefficients as a function of scale can
compress the signal contained in an image into a small number of
parameters and yields information surpassing that derived in tradi-
tional Fourier analysis.

Following Daubechies & Bates (1993) and Muzy, Bacry &
Arneodo (1993), the wavelet transform of a two-dimensional im-
age is defined as a convolution of the function y(x) to be analysed
with the wavelet ψσ (|x −µ|):

χ (µ, σ ) =
∫

d2x y(x) · ψσ (|x − µ|) . (3)

High values for χ (µ, σ ) are obtained in the case of a match be-
tween the features of y(x) and the wavelet ψσ (x) at position µ and
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scale σ . From the wavelet expansion coefficients χ (µ, σ ) on scale σ

at location µ one obtains the wavelet moments Xq(σ ) by integration
over all displacements µ:

Xq (σ ) =
∫

d2µ |χ (µ, σ )|q . (4)

The exponent q ∈ N defines the order of the wavelet moment Xq(σ ).
Values for q equal to or larger than 2 allow noise suppression. The
logarithm ln X (σ , q) of the wavelet moment as a function of logarith-
mic scale ln σ constitutes the wavelet spectrum. The Xq(σ )-statistic
is the main tool used in this study for characterizing the morphology
of SZ clusters.

3.2 Application of wavelets to a cluster profile

3.2.1 Analytic wavelet transform of a cluster y-profile

In order to illustrate our idea of determining cluster sizes via wavelet
decomposition, the wavelet transform of a King profile, which is
known to describe the SZ morphology of clusters to first order, is
performed. As an analysing wavelet, the Mexican-hat wavelet was
chosen for simplicity.

It is advantageous to compute the convolution in the definition of
χ (µ, σ ) in the Fourier domain. By virtue of equation (6), namely

χ (µ, σ ) =
∫

d2x y(x) ψσ (x − µ) (5)

= (2π)2

∫
d2k Y (k) �σ (−k) exp(ikµ), (6)

the convolution reduces to a mere multiplication of the Fourier trans-
forms Y (k) and �σ (k) of the image y(x) and the wavelet ψσ (x),
respectively. Restricting the order of the wavelet moment to q = 2
and inserting the convolution theorem (6) into the definition (4)
yields

X2(σ ) = (2π)4

∫
d2µ

∣∣∣∣
∫

d2k Y (k)�σ (−k) exp(ikµ)

∣∣∣∣
2

(7)

= (2π)6

∫
d2k |Y (k)|2 |�σ (k)|2 , (8)

where the replacement |�σ (−k)|2 = |�σ (k)|2 holds for real
wavelets.

The Mexican-hat wavelet is defined as the negative second deriva-
tive of a Gaussian:

ψMH(x) = ψMH(x) = −∇2
x

[
1

2πσ 2
exp

(
− x2

2σ 2

)]
, (9)

whereof the Fourier transform �MH(k) is derived by twofold partial
integration:

�MH(k) =
∫

d2x

(2π)2
ψMH(x) exp(−ikx) (10)

= 1

(2π)2σ 6

∫
rdr (2σ 2 − r 2) exp

(
− r 2

2σ 2

)
J0(kr ) (11)

= k2

(2π)2
exp

(
− k2σ 2

2

)
, (12)

where the azimuthal symmetry and the definition of the zeroth-order
Bessel function of the first kind, 2πJ0(kr ) = ∫ 2π

0
dφ exp(ikr cos φ)

was used in the first step. Thus, the Fourier transform of the wavelet,
�σ (k), is given by the Hankel transform of the second derivative of
a Gaussian.

For the determination of Y(k), we assume that the projected ther-
mal electron density can be described by a spherically symmetric
King profile, i.e. a β-model (Cavaliere & Fusco-Femiano 1978)
with β = 1, core radius rc and central value of the Comptonization
parameter y0:

y(x) = y(r ) = y0

[
1 +

(
r

rc

)2]−1

. (13)

Then, the Fourier transform is easily computed:

Y (k) =
∫

d2x

(2π)2
y(x) exp(−ikx) (14)

= y0r 2
c

2π

∫
dr

r

r 2
c + r 2

J0(kr ) = y0r 2
c

2π
K0(krc), (15)

where in equation (15) the definition of the zeroth-order modified
Bessel function of the second kind, K 0(kr c), was inserted.

Substitution of equations (12) and (15) into equation (8) and ex-
ploitation of the azimuthal symmetry of the functions y(x) and ψ(x)
yields an analytic integral for X 2(σ ):

X2(σ ) = 2πy2
0r 4

c

∫ ∞

0

dk k5 exp(−σ 2k2)K 2
0 (krc). (16)

After evaluation of the integral in equation (16), the wavelet trans-
form of the β-profile reads as follows:

X2(σ ) = π3/2 y2
0

2r 2
c

α6G3,1
2,3

(
α2

∣∣−2 1
2

0 0 0

)
, (17)

where the substitution α = r c/σ has been made. The function G
is Meijer’s G-function, the exact definition of which is given by
Gradshteyn & Ryzhik (1994). It is an interesting consistency to
note that, apart from the normalization, the functional shape of equa-
tion (17) depends only on α; that is, on the core radius rc expressed
in units of the wavelet scale σ .

3.2.2 Asymptotics of the analytical wavelet transform

The asymptotic behaviour of X 2(σ ) at the limit of σ � r c can be
explored by substituting the expressions given in equations (13)
and (9) into equation (6), and exchanging, by partial integration, the
function on which the Laplacian operates. In the limit of interest the
Gaussian can be replaced by a Dirac-δ distribution. Substituting all
of this into equation (4) yields that limσ→0 X 2(σ ) is proportional to
y2

0 and independent of σ ; that is, the normalization of the wavelet
spectrum measures the square of the central Comptonization param-
eter y0:

X2(σ ) = 32π

15

y2
0

r 2
c

for σ � rc. (18)

In the opposite limit, i.e. r c � σ , one can use the fact that the
King profile is highly peaked at the centre and that it is convolved
with a Mexican-hat wavelet, guaranteeing the convergence of the
integral in equation (16) at ∞. In the limit of r c → 0 this integral is
dominated by the value at k = 0. Therefore, one can approximate the
King profile with a Dirac-δ distribution and show that asymptotically
limrc→0 X 2(σ ) is proportional to σ−6:

X2(σ ) ∝ y2
0r 4

c

σ 6
for σ  rc. (19)

C© 2005 RAS, MNRAS
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Figure 1. Sensitivity of the wavelet spectrum to the cluster size. The second-
order wavelet moments X 2(σ ) are shown as a function of σ for various core
sizes r c = 0.5 (solid), r c = 1 (dashed), r c = 2 (dotted) and r c = 4 (dot–
dashed). The curves have been normalized to their asymptotic values for
σ → 0.

The sensitivity of the wavelet spectrum X 2(σ ) to cluster size rc

is illustrated in Fig. 1. The wavelet spectrum is constant for σ � r c,
has an rc-dependent break and drops off asymptotically ∝σ−6 for
σ  r c. Naturally, the scale σ , at which the transition from one
asymptotic regime to the other occurs, is determined by the value
of rc, i.e. by the cluster size.

With this example in mind, the wavelet moments Xq(σ ) obtained
from real data (Section 5.3) will be fitted with a power law with an
exponential cut-off, where the cut-off indicates the cluster size and
the amplitude is proportional to some power of the central Comp-
tonization parameter y0.

3.2.3 Finite instrumental resolution

The influence of finite instrumental resolution can easily be incor-
porated by an additional factor |B(k)|2 in equation (8):

X2(σ ) = (2π)6

∫
d2k |Y (k)|2 |�σ (k)|2 |B(k)|2 , (20)

where B(k) is the Fourier transform of the (azimuthally symmetric)
beam profile b(x), which is for simplicity assumed to be of Gaussian
shape with FWHM = √

8 ln(2) σb:

B(k) =
∫

d2x

(2π)2
b(x) exp(−ikx) with (21)

b(x) = 1

2πσ 2
b

exp

(
− x2

2σ 2
b

)
. (22)

This effectively replaces σ in equation (17) by the harmonic mean√
σ 2 + σ 2

b , which limits the range of accessible wavelet scales to
σ > σ b.

3.3 Analogy to power spectra in Fourier analysis

By interpreting the wavelet spectrum in equation (8) as the variance
of the fluctuations on the scale σ , it is possible to draw an analogy

to Fourier decomposition:

var [y(x)] = X2(σ ) = (2π)4

∫
d2k P(k) |�σ (k)|2 , (23)

where P(k) = (2π)2〈|Y (k)|2〉 is the Fourier power spectrum. The
wavelet ψ(x) now adopts the role of a filter function on scale σ .
This filter function reads in real space, in the case of the Mexican-
hat wavelet, as

ψMH(x) = 2σ 2 − x2

2πσ 6
exp

(
− x2

2σ 2

)
. (24)

Therefore, our method is equivalent to considering power spec-
tral analysis of filtered fields and higher-order Fourier space
moments.

4 S I M U L AT I O N S

The accuracy in the determination of redshift z was assessed by
examining the performance on numerical simulations. First, simu-
lations of cosmological structure formation including gas physics
were carried out in order to model the evolution of clusters
(Section 4.1). Subsequently, maps of the Compton-y parameter
were produced by using an interpolation kernel with an adap-
tive smoothing length for projecting the Compton-y parameter
along the line of sight (Section 4.2). By applying selection cri-
teria favouring virialized systems a cluster sample was compiled
(Section 4.3). Finally, with the aim of realistic single-frequency
SZ observations, we simulated the ambient CMB fluctuations
that act as the primary source of noise (Section 4.4) and com-
bined the resulting realizations of the CMB with the cluster maps
(Section 4.5).

The assumed cosmological model is the standard �CDM cos-
mology, which has recently been supported by findings from the
WMAP satellite (Bennett et al. 2003; Spergel et al. 2003). Param-
eter values have been chosen as M = 0.3, � = 0.7, H 0 =
100 h km s−1 Mpc−1 with h = 0.7, B = 0.04, n s = 1 and σ 8 = 0.9.

4.1 Smoothed particle hydrodynamic cluster simulations

A simulation of cosmological structure formation kindly provided
by V. Springel and L. Hernquist (Springel & Hernquist 2002; White,
Hernquist & Springel 2002) constitutes the basis of our analysis.
In a cubic box of comoving side length 100 Mpc h−1 with periodic
boundary conditions, a smoothed particle hydrodynamic (SPH) sim-
ulation comprising 2163 dark matter particles as well as 2163 gas
particles was run and snapshots were saved at 23 redshifts ranging
from z = 0.102 out to z = 1.114. The comoving spacing along the
line of sight of two subsequent boxes was 100 Mpc h−1. Adiabatic
gas physics and shock heating were included, but radiative cooling
and star formation were ignored, which does not result in significant
differences in SZ morphology, as shown by White et al. (2002), but
does impact on the scaling relations, as demonstrated by da Silva
et al. (2001).

Overdensities are identified using a friends-of-friends algorithm
with the linking length b = 0.164, which yields all member particles
of a cluster in conjunction with a spherical overdensity code, from
which virial quantities are estimated. We computed the mass Mvir

inside a sphere of radius rvir, interior to which the average density
was 200 times the critical density ρ crit = 3H 2

0/(8πG). The angle
subtended by twice the virial radius is denoted as θ vir. We imposed
a lower mass threshold of M vir � 5 × 1013 M� h−1.
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The simulation used here seems to be appropriate for assessing
the redshift estimation accuracy for a number of reasons. It pro-
vides a large number of suitable systems, so that the influence of
morphological variety can be studied, and the clusters are very well
resolved with respect to their baryonic profiles. Furthermore, the
cluster’s evolution has been modelled taking into account their cos-
mological environment.

A justified objection might be that the simulation is biased toward
low-mass systems, because high-mass systems form less frequently,
and, especially in small simulation boxes, the high-mass end of the
Press–Schechter function is sampled insufficiently. This shortcom-
ing could be remedied by using simulations of single objects, but
in the simulation at hand it would have been difficult to accumulate
sufficient statistics, or by using even larger simulation boxes while
upholding the mass resolution, which rapidly becomes computa-
tionally unfeasible.

4.2 SZ map preparation

Square maps of the Compton-y parameter of the selected clusters
were generated by SPH projection of all member gas particles onto
a cubic grid with 1282 mesh points. The (comoving) side length s
of the map was adapted to the cluster size, such that the comoving
resolution g = s/128 of the grid is specific to a given map. Examples
of SZ maps are given in Fig. 2.

If the particle p at position r p = (xp, yp, zp) has a smoothing
length hp, an SPH electron number density estimate np, and an SPH

Figure 2. Picture book of Sunyaev–Zel’dovich clusters. The upper panel shows clusters at high redshifts of z � 0.8, to be compared with clusters at low
redshifts of z = 0.174 in the lower panel. The columns contrast different morphologies in an exemplary fashion: relaxed systems (left column), elongated
clusters (centre column) and clusters in the phase of minor merging or mass accretion (right column). The grey-scale denotes the amplitude of y(x)′ =
log[1 + 105 y(x)] and the contours have a logarithmically equidistant spacing of 0.1 dex, i.e. the lowest contour denotes a common value of y = 2.5 × 10−6.
All of the clusters depicted above meet the selection criteria discussed in Section 4.3.

electron temperature Tp, the Compton-y parameter at the pixel at
position x is given by

y(x) = σTkB

mec2

h3
p

g2

∑
p

[∫ x+g/2

x−g/2

dx p

∫ y+g/2

y−g/2

dyp

∫ h p

−h p

dz p K
(

r

h p

)
n pTp

]

(25)

with r =
√

(x p − x)2 + (yp − y)2 + z2
p. (26)

Here, we assumed complete ionization and primordial element
composition of the ICM for the determination of electron number
density and temperature. In this way we produced projections along
each of the three coordinate axes. The function K is the spherically
symmetric cubic spline kernel suggested by Monaghan & Lattanzio
(1985), which was also used in the SPH simulation:

K(u) = 8

π




1 − 6u2 + 6u3, 0 � u � 1/2

2(1 − u)3 , 1/2 < u � 1

0 , u > 1

with u = r/h p. (27)

The fact that the kernel K is defined on a compact support
u ∈ [0 . . . 1] greatly reduces the computational effort required.
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4.3 Cluster selection

Clearly, the wavelet redshift estimation relies on the fact that clusters
are not in a state of violent merging, such that the cluster observ-
ables, namely the apparent size and integrated SZ flux, are linked via
scaling relations. Secondly, the wavelet analysis derives a single pa-
rameter describing the extension of the cluster from the break in the
spectrum Xq(σ ) of wavelet parameters, and hence elongated clus-
ters should be excluded from the analysis, because in those systems
the extension cannot be measured unambiguously. Consequently,
apart from the minimal mass of M min = 5 × 1013 M� h−1, which
translates into a minimally required line-of-sight Comptonization
amplitude ymin, clusters have been selected in order to show neither
double cores nor pronounced substructure. From the resulting sam-
ple, 10 clusters were selected randomly from each redshift bin. In
this sample, the ellipticity and the residual deviation from a β-profile
were measured, in order to provide a solid quantification.

(i) The SZ morphology is required to be not too elongated. By
fitting a two-dimensional β-model yβ (x) to the SZ profile ydata(x),
values for the semi-axes rx and ry are derived. 90 per cent of the
clusters within the selected sample have axis ratios q = ry/rx greater
than 0.8 and ellipticities e = √

r 2
x − r 2

y /rx below 0.6.
(ii) Residual deviations from the canonical β-profile ought to

be small. The rms deviation v of the cluster from the best-fitting
β-profile,

v =

√√√√〈(
ydata(x) − yβ (x)

yβ (x)

)2
〉

x

, (28)

was smaller than 25 per cent for 90 per cent of our clusters. In the
derivation of v, the region inside the virial radius was considered.

The 10 selected clusters from each of the 23 redshift bins yielded,
with the three orthogonal projections of each cluster, a total number
of 690 maps with which the accuracy of the wavelet method in esti-
mating redshifts was assessed. The distributions of the ellipticities
e and the integrated residuals v are shown in Fig. 3. The same dis-
tributions were derived for the smoothed cluster maps, in which the

Figure 3. Selection criteria: distribution of residual deviations v from the
best-fitting β-profile for unsmoothed (solid, circles) and smoothed (dashed,
diamonds) maps. The second set of lines shows the distribution of the ellip-
ticities e with (dot–dashed, squares) and without (dotted, crosses) smoothing.

effects of finite instrumental resolution have been incorporated. As
Fig. 3 suggests, the beam does not have a major impact on the mor-
phological properties of most of the cluster sample – this is because
of the narrowness of the beam (only 1 arcmin FWHM).

It should be emphasized that the selection by geometric criteria
is more stringent than the requirement of approximate relaxation:
while a scatter in the relation of the SZ observables with mass is ad-
missible, only regular systems without double cores or pronounced
elongation can be reliably described by the morphological wavelet
parameters we consider here.

4.4 CMB map generation

CMB anisotropies are assumed to be a particular realization of a
Gaussian random field. With the aim of simulating a realization of
the CMB on a square, flat map, we take temperature fluctuations
θ (φ) relative to the average CMB temperature of 〈T 〉 = 2.726 K to
be the independent random field:

θ (φ) ≡ T (φ) − 〈T 〉
〈T 〉 . (29)

The flat, two-dimensional power spectrum P θ (�) is defined via〈
�(�)�∗(�′)

〉 ≡ (2π)−2δD(� − �′)Pθ (|�|), (30)

where �(�) denotes the Fourier transform of θ (φ). The simulation of
the CMB temperature fluctuations on a flat square map now consists
of the following two steps.

(i) The angular power spectrum C � is computed for the flat
�CDM universe using the CMBFAST code by Seljak & Zaldarriaga
(1996). In addition to the cosmological parameters described in
Section 4, we use adiabatic initial conditions and set the primordial
He mass fraction to X He = 0.24 and the Thomson optical depth to
τ = 0.17 (Spergel et al. 2003). The angular power spectrum of the
CMB is normalized to COBE data. Since the SZ effect distorts the
CMB only on small angular scales, the flat-sky approximation �  1
is fulfilled and it is appropriate to replace the spherical harmonics
with plane waves. Hu (2000) has shown that the two-dimensional
flat power spectrum P θ (�) is approximately equal to its angular
analogue: C � � P θ (�).

(ii) Then, Gaussian random variables are generated on a complex
two-dimensional grid in Fourier space with variance σ 2(�) = P θ (�)
according to the absolute value of their wavevectors �. The inverse
Fourier transform brings the elementary waves to interference and
yields a realization of the temperature anisotropies θ (φ).

4.5 Simulated single-frequency SZ observations

For SZ clusters observed with a single-frequency interferometer
(e.g. the CBI experiment, Halverson et al. 2002),4 it is important to
examine the applicability of the Xq(σ )-statistic. For the purpose of
this paper, it suffices to consider observations at small frequencies
ν. Thus, the Compton-y maps are combined with realizations of the
CMB fluctuations by using equation (1) in the Rayleigh–Jeans limit:

T (φ) = [1 − 2y(φ)] [1 + θ (φ)] 〈T 〉. (31)

Fig. 4 shows the Compton-y map of a nearby cluster of
2.2 × 1014 M� h−1 at redshift z = 0.102 combined with a patch
of the CMB constructed by the algorithm described above. In this

4 http://www.astro.caltech.edu/∼tjp/CBI/
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Figure 4. Simulated temperature map of the CMB combined with
a foreground SZ cluster at z = 0.102 with virial quantities M vir =
2.2 × 1014 M�/h, r vir = 1.47 Mpc h−1 and k BT vir = 1.52 keV. At the clus-
ter centre, the SZ temperature decrement amounts to −1.8 mK and the CMB
temperature fluctuation with the highest amplitude is equal to 0.23 mK. A
total of 30 linearly spaced isothermals are drawn. In this case, the comoving
scale 1 Mpc/h corresponds to 11.5 arcmin.

map, the average CMB temperature 〈T〉 was subtracted. In order
to mimic observations, the resulting combined maps are smoothed
with a Gaussian beam with a FWHM of

√
8 ln(2) σb = 1 arcmin.

In the case of multifrequency SZ observations the SZ signature
can be easily distinguished from the CMB signal. Therefore, for
these cases the CMB background is ignored and not included in
the simulated cluster SZ images. Nevertheless, finite instrumen-
tal resolution was taken care of and the SZ maps were convolved
with a Gaussian kernel of

√
8 ln(2) σb = 1 arcmin (FWHM). This

approach is optimistic considering instrumental noise and point
sources, which distort the SZ frequency dependence and provide
additional flux at the SZ decrement frequencies. While the second
effect primarily diminishes the SZ detectability, it too generates
noise similar to instrumental noise as a result of the Poisson fluc-
tuation of the number of sources within an aperture. A detailed
discussion can be found in Section 5.8.

The beam width was assumed to be 1 arcmin (FWHM), which is a
reasonable choice considering the design values of currently planned
dedicated SZ telesopes. These experiments are able to marginally
resolve clusters out to redshifts of z = 0.7: at these distances, the
beam size (in terms of standard deviation) becomes comparable to
the core sizes of the least massive clusters considered here. At the
largest redshifts of z � 1.1 examined in this paper, the beam is
approximately twice as large as the cluster core.

5 A NA LY S I S

In this section, the analysis is explained step by step. After introduc-
ing the wavelet families (Section 5.1), the wavelet spectrum and the
parameters deduced from it are described (Sections 5.2 and 5.3). The
correlations of the wavelet spectral parameters with physical quanti-
ties are discussed (Section 5.4). The measurement principle and the
breaking of degeneracy is illustrated in Section 5.5. Next, the inter-

correlation of the wavelet parameters and the shape of the parameter
space are explored by principal component analysis (Section 5.6).
Then, gauge functions for modelling the redshift dependence of the
parameters are proposed (Section 5.7). Several issues for observers
are discussed in Section 5.8, for instance the influence of instrumen-
tal noise (Section 5.8.1), the influence of primary CMB fluctuations
on the wavelet spectrum and their suppression (Section 5.8.2), and
the impact of submillimetre point sources on the wavelet estimation
technique (Section 5.8.3). Finally, the redshifts of the clusters are
estimated by maximum likelihood techniques (Section 5.9).

5.1 Wavelet basis functions

In the analysis, a wide range of wavelets with different functional
shapes was employed, although the symlet wavelet basis introduced
by Daubechies & Bates (1993) yielded particularly good results.
Owing to their symmetry and peaked nature, symlets are seem-
ingly especially suited for analysing SZ morphologies, because they
do not impose a strong smoothing on the image in determining
the wavelet moments Xq(σ ). Other wavelet families that found ap-
plication in our analysis were Daubechies’ wavelets, coiflets and
biorthogonal wavelets. Fig. 5 compares the functional shapes of the
various wavelet families.

The analysis proceeds by measurement of the wavelet moments
on smoothed comoving maps of the Compton-y parameter following
the definition in Section 3. The scale σ of the resulting wavelet
spectrum is then converted to angular units. Because our SZ maps are
computed on a grid of 1282 mesh points with an adaptively chosen
side length for each cluster, our dynamical range of the wavelet
spectra always comprises approximately two decades. However, this
is not a fundamental limitation of this approach because the maps
are featureless below the smoothing scale of 1 arcmin (FWHM).

5.2 Measurement of wavelet quantities

In order to derive the actual flux decrement or, equivalently, the
decrement in antenna temperature, from the line-of-sight Compton-
y amplitude, the pixel value needs to be multiplied by the solid
angle it subtends. For the conversion, a standard �CDM cosmology
was assumed, the parameters of which have already been given in

Figure 5. The wavelet basis functions ψ(x) chosen for the analysis: symlet
(sym2, solid), Daubechies’ wavelet (db4, dashed), coiflet (coif1, dotted) and
the biorthogonal wavelet (bior1.3, dot–dashed).
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Section 4. Thus, the pixel amplitudes were modified according to

y(x) −→ y(φ) = y(x) · 4 arctan2

[
g

2w(z)

]
, (32)

where w(z) is the comoving distance in the model cosmology and g
denotes the comoving size of a single pixel. It should be emphasized
that the wavelet coefficients χ (µ, σ ) are evaluated on a comoving
grid, which is adapted to the cluster size before conversion of the
wavelet scale σ to angular units. This, however, should not pose a
problem for real observations, provided that the sampling scale is
of the same order of magnitude as the angular scale of our finest
pixels.

In order to obtain dimensionless quantities, the unit of the wavelet
ψσ (x) has been set to inverse steradians, such that the wavelet ex-
pansion coefficients χ (µ, σ ) and the wavelet moments Xq(σ ) are
dimensionless, irrespective of q. For numerical convenience, the
pixel amplitudes in the combined SZ maps have been multiplied by
1012, which scales the pixel amplitudes to be of order unity.

The summation in the definition of the wavelet moment Xq(σ )
in equation (4) discards the information about the position µ at
which the wavelet expansion coefficient χ (µ, σ ) is evaluated. Con-
sequently, the position of a cluster inside the observing frame does
not influence the wavelet decomposition.

5.3 Wavelet spectrum of SZ cluster maps

Owing to the lack of any analytical generalization of equation (17)
for q �= 2, to deviations of the Compton-y map from a King pro-
file and to the use of wavelets other than the simple Mexican hat,
we decided to explore phenomenological functions for describing
the wavelet spectrum. The simplicity of the shape of the wavelet
spectrum shown in Fig. 6 implies that the model function,

ln Xq (σ ) � a + s ln (σ/σ0) − σ/c, (33)

is able to extract all apparently contained information. In other
words, the spectrum is described by means of three quantities: the
amplitude a, the slope s and a break at c. The parameter σ 0 has been
included in equation (33) in order to obtain a formula that is dimen-

Figure 6. The spectrum of wavelet moments, together with the fitting for-
mula (33) for increasing wavelet moment order q: q = 2 (squares), q = 3
(circles, solid), q = 4 (stars, dashed), q = 5 (diamonds, dotted) and q =
6 (crosses, dot–dashed) for a single cluster. The wavelet moments Xq(σ )
follow from wavelet expansion with the sym2-wavelet.

sionally correct, although it does not yield any new information,
and this specific degree of freedom is already described by the
variable a.

The usage of equation (33) implicitly neglects information about
asphericity and effectively determines an average of the cluster’s
extension along its major axes. The problem would be significantly
complicated by including asymmetry and considering the vectorial
nature of σ (see Zaroubi et al. 1998, 2001).

Because the cut-off parameter c is of great importance to our
analysis, it needs to be derived reliably. Thus, the order of wavelet
moments q was restricted to q � 3, because larger q-values facilitate
the determination of c. From Fig. 6 it is obvious that an increase in
q suppresses the value of Xq(σ ) at small scales σ such that the curve
develops a maximum in the vicinity of c. In addition, by the choice of
large values for q, the wavelet expansion coefficients χ (µ, σ ) domi-
nated by CMB noise are suppressed relative to those obtained in the
central part of the cluster, and consequently higher-order wavelet
moments Xq(σ ) provide a cleaner measurement. The range of sensi-
ble q-values is restricted by the fact that for increasing q the moment
Xq(σ ) is successively dominated by the largest wavelet expansion
coefficient χ (µ, σ ) and no longer contains information of the struc-
ture to be analysed. In order to stabilize the fitting procedure we
interpolate in between the wavelet moments Xq(σ ). This is justi-
fied because we expect a smooth variation of the wavelet spectrum,
according to Section 3.2.1.

5.4 Correlations with physical quantities

The parameters derived from the fit to the spectrum of wavelet co-
efficients have a physical interpretation. As shown in Section 3.2.1,
the wavelet spectrum breaks at the cluster scale. Therefore, a cor-
relation is expected between the angular size of the cluster θ vir and
the cut-off c, as found in Fig. 7. Larger values of the weighting
exponents q shift the regression line to smaller values of c, which
can be understood by the fact that larger values of q suppress small
wavelet expansion coefficients arising at the outskirts of the cluster,
which in turn leads to a break in the wavelet spectrum at smaller
scales.

Figure 7. Wavelet-measured cluster size c versus angular extension θ vir

for increasing wavelet moment order q: q = 3 (circles) and q = 6 (crosses),
without including CMB fluctuations. The c-values were determined with the
sym2-wavelet.
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Figure 8. Wavelet amplitude a as a function of the integrated Comptoniza-
tion parameter Y for various weighting exponents q: q = 3 (circles) and
q = 6 (crosses), again without taking CMB fluctuations into account. The
sym2-wavelet was chosen as the analysing wavelet.

Similarly, the amplitude a determined by the fit is proportional to
the integrated Compton-y flux,

Y =
∫

d2φ y(φ) = kTvir

mec2

σT

dA(z)2

1 + fH

2
fb

Mvir

mp
, (34)

as illustrated in Fig. 8. Here, f b denotes the baryon fraction, f H the
hydrogen fraction, which determines the elemental composition and
has been set to the primordial value of 0.76, and mp is the proton
mass. d A (z) is the angular diameter distance in our cosmology.

The normalization a of the wavelet moments Xq(σ ) shows a
steeper dependence on the integrated Comptonization parameter
Y for larger choices of q, which is explained by the following argu-
ment. The amplitude a(q) reflects the normalization of the wavelet
moments Xq(σ ). The integral in equation (4) is dominated by the
largest wavelet expansion coefficient χ (µ, σ ), taken to the qth
power. On the other hand, the wavelet expansion coefficients χ (µ,
σ ) are proportional to the integrated Comptonization parameter Y ,
resulting in the observed relation ln

[
Xq (σ )

] ∝ a ∝ q ln(Y). As
a summary, Fig. 9 shows the wavelet spectra for three comparable
clusters situated at different redshifts, taking instrumental smooth-
ing into account. The figure illustrates how the amplitude and the
break of the spectrum decrease with increasing redshift.

The influence of instrumental smoothing on the wavelet parame-
ters can be summarized as follows. In the case of suppressed noise,
the amplitude a, being a measurement of Y , should be still reliably
measurable, in contrast to, for example, isophotal flux or related
quantities, despite the fact that it is systematically smaller owing to
the instrumental beam. The angular size, however, expressed by the
cut-off c, increases with increasing smoothing, but can still serve
as a measure for cluster size even in cases in which the size of
the instrumental beam becomes comparable to the cluster core. In
addition, this behaviour is supported by Fig. 10, in which a weak
deviation from proportionality towards larger values of c is easily
visible. Nevertheless, the value of c does not deteriorate significantly
as a result of the instrumental smoothing.

Finally, the slope s is purely a measure of instrumental smoothing.
Placing a given cluster at different redshifts would result in a blurred
image of the more distant one. Keeping in mind that there is a close
analogy between wavelet and Fourier transforms (as explained in

Figure 9. Wavelet spectra X4(σ ) of three clusters at redshifts z = 0.365
(circles, thick lines), z = 0.580 (squares, medium lines) and z = 0.826
(diamonds, thin lines), where instrumental smoothing has been ignored (open
symbols, solid lines) and properly taken account of (closed symbols, dashed
lines). The spectra were derived with the sym3-wavelet as the analysing
wavelet.

Section 3.3), the wavelet moment Xq(σ ) as a function of σ can be
interpreted as the variance of the wavelet-filtered field. The instru-
mental beam introduces an additional filtering to the Compton-y
map (cf. Section 3.2.3) and would cause the Fourier spectrum to
drop at smaller values of the wavevector k, because the instrumental
beam constitutes effectively a low-pass filter that erases structures
smaller than its extension. Comparing clusters at different redshifts,
it is clear that the drop in power happens at smaller scales in the case
of the more distant clusters. Thus the slope s, defined as d ln Xq(σ )/
d ln σ for σ � r c, is larger in the case of an unresolved cluster
compared with a resolved cluster. This measure of the influence of
finite instrumental smoothing varies only by a factor of 2 in slope
over the redshift and mass ranges considered here, but nevertheless

Figure 10. Distance-corrected wavelet amplitude a0 = a(z) + 2 ln (d A (z))
as a function of the distance-corrected wavelet cut-off parameter c0 =
c(z) + ln (d A (z)). The values have been determined in fits to the wavelet
spectrum X 3(σ ), which was derived with the sym2-wavelet as the analysing
wavelet.
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serves as an indicator of cluster distance. It should be emphasized
that the s-parameter does not try to extract information from scales
that are inaccessible as a result of instrumental smoothing. Wavelet
analysis of maps that are poor in features over a certain range of
scales generically results in power laws for Xq(σ ) for these scales.

5.5 Measurement principle

Now, it is necessary to illustrate how a measurement of the total
Comptonization Y and of the angular size θ vir suffices to derive
a distance estimate. For that purpose, clusters are placed at unit
distance and the distance dependences of the wavelet amplitude a
and the cut-off c are removed by the following formulae, since a is
a logarithmic measure of flux inside a solid angle element Y and c
is a logarithmic measure of angular extension θ vir:

a0 = a(z) + 2 ln (dA(z)) , (35)

c0 = c(z) + ln (dA(z)) . (36)

From the application of simple scaling arguments, the ratio a0/c0

is expected to be equal to 5. From the wavelet amplitude a one
obtains a0 ∝ ln(Y dA(z)2) ∝ ln(Mvir Tvir). Furthermore, from the
spherical collapse model it follows that T vir ∝ M2/3

vir (Navarro
et al. 1995), which yields, together with M vir ∝ r 3

vir, the relation-
ship a0 ∝ ln(r 5

vir). Substituting c0 ∝ ln(r vir) gives the final result
a0/c0 = 5.

Fig. 10 nicely illustrates how the degeneracy is broken and how a
simple measurement of flux and angular extension suffices to derive
a distance estimate. A crude fit to the distance-corrected wavelet
amplitude a0 as a function of distance-corrected wavelet cut-off pa-
rameter c0 yields a slope of approximately 5.8, which corresponds
well to the slope of ∼5 expected from the theoretical consideration
outlined above. If, hypothetically, the ratio a0/c0 were equal to 2,
the measurements of flux and angular size would be completely de-
generate and would not yield any distance information. This case
corresponds to discs of equal surface brightness, for which mea-
surements of flux and angular size are completely degenerate and
do not yield any distance information at all. It should be noted that,
by adopting the usual scaling relations, a systematic error in slope
is introduced that can amount to �20 per cent.

5.6 Principal component analysis

In order to investigate the shape of the parameter space spanned by
the three morphological descriptors a, c and s derived in the fit to
the spectrum of wavelet moments, a principal component analysis
(PCA; see, for example, Deeming 1964) was performed. PCA de-
termines a transformation to a new orthogonal coordinate system,
such that the variance of the data along the first axis is maximized.
In this way, the correlation properties, the effective dimensionality
and the redundancy of the parameters can be quantified.

From the fact that the first principal component is able to ac-
count for almost the entire variance of the data set, as can be seen
from Table 1, it can be concluded that the parameter space is tightly
constrained and all three parameters are interrelated. This result
holds irrespective of the choice of q, although the scatter increases
with higher choices for q. Given the physical interpretations of the
wavelet amplitude a and the cut-off c, it is obvious that the tight
correlation can be traced back to the self-similarity of clusters and
the cluster scaling relations linking T vir, M vir and rvir that follow
from the spherical collapse model, together with the dependence

Table 1. Results of the PCA. The variance explained by the first and second
principal components as a function of wavelet order q. The sym2-wavelet
was used as the analysing wavelet, and no CMB fluctuations were included
in the derivation.

q = 3 q = 4 q = 5 q = 6

1st principal component (per cent) 95.6 94.2 92.8 91.5
2nd principal component (per cent) 2.7 4.2 5.5 6.7

of these parameters on the redshift. The scaling relations for SZ
quantities derived by da Silva et al. (2004) support this view. Fur-
thermore, PCA suggests that all three fundamental parameters de-
pend on the redshift in a similar way, as will be shown in the next
section.

5.7 Redshift dependence of the wavelet parameters

The parameters a and c are expected to decrease with increasing
redshift z, the reason for which is quite apparent: the angular di-
ameter θ vir and the integrated Comptonization Y decrease because
of the increasing angular diameter distance d A(z) that enters θ vir

linearly and Y quadratically. Furthermore, clusters accrete mat-
ter during their formation history and thus are on average more
massive at later times, i.e. at smaller redshifts z (see, for exam-
ple, Wechsler et al. 2002; van den Bosch 2002; Zhao et al. 2003).
From the physical point of view, the dependence of a and c on red-
shift z is far from trivial, and, therefore, their functional behaviour
is described by an empirical approach. Among others, the expo-
nential function provides a good fit to the data, as illustrated in
Figs 11 and 12:

x(z) = x1 exp

(
− z

x2

)
+ x3, where x ∈ {a, c, s} . (37)

The optimized parameters xi, i ∈ {1, 2, 3}, for x ∈ {a, c, s}
in the gauge function equation (37) are given in Table 2 for the
case q = 3. It should be emphasized that the parameters stated
are only valid for image analysis with the sym2-wavelet, where the
maps have been smoothed with a Gaussian kernel with 1-arcmin
(FWHM), and the considered cluster sample, which is defined by the

Figure 11. Dependence of the wavelet cut-off parameter c on redshift z
without considering CMB fluctuations for q = 3 (circles, solid) and q = 6
(crosses, dot–dashed line). The analysing wavelet was the sym2-wavelet.
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Figure 12. Dependence of the wavelet amplitude parameter a on redshift
z without including CMB fluctuations for q = 3 (circles, solid) and q = 6
(crosses, dot–dashed line). The quantities were determined with the sym2-
wavelet.

Table 2. Fitting values for the gauge functions defined in equation (37)
for the cluster sample at hand and the sym2-wavelet basis. The order of the
wavelet moment Xq(σ ) has been set to q = 3. The values have been derived
without taking CMB fluctuations into account.

Parameter Variable i = 1 i = 2 i = 3

Amplitude a 10.5837 0.6475 −1.9570
Cut-off (arcmin) c 0.5124 0.5165 0.3809
Slope s 1.3423 0.4144 1.3803

selection criteria laid down in Section 4.3 and the minimal mass of
5 × 1013 M� h−1.

5.8 Noise contributions and their suppression

5.8.1 Influence of instrumental noise

The extent to which the wavelet spectra are affected by instrumen-
tal noise is a very important issue. Even though experiments such
as the ACT aim at achieving noise levels as low as σ T � 2–5 µK
per 3 arcmin2-pixel (depending on the channel, Kosowsky 2004),
instrumental noise nevertheless impacts on the shape of the wavelet
spectra. Fig. 13 shows the distorted wavelet spectra for two wavelet
families on SZ maps where uncorrelated pixel noise at a level equiv-
alent to (a pessimistic value of) σ T = 10 µK per square arcminute
has been added.

Instrumental noise can be characterized by an approximately
power-law component in the spectrum of wavelet coefficients Xq(σ ).
The influence of the noise on the wavelet spectrum is small and can
be suppressed either by choosing large q or by employing a smoothly
varying wavelet, for instance a member of the symlet family instead
of a peaked wavelet, such as the coiflet. Furthermore, the instru-
mental noise does not cause a significant deviation of the model
parameters a, c and s once the detection of the cluster is sufficiently
reliable, i.e. exceeding a value of 10σ , which is the case even for
the least massive clusters in our sample out to redshifts of z = 0.8.
At even higher redshifts, wavelet analysis will be seriously impeded
by instrumental noise.

Figure 13. Changes to the wavelet spectrum of a single cluster (situated
at z = 0.49) caused by instrumental noise: unperturbed wavelet spectrum
of the SZ cluster (circles, solid line), of pure instrumental noise (squares,
dot–dashed line) and of the combined map (diamonds, dashed line). Data
points were derived from simulated data and the joining line in the case
of the unperturbed wavelet spectrum is the result of the fitting functions
described by equation (33). The order of the wavelet moment is q = 6. As
analysing wavelets, the sym3-wavelet (thick lines, closed symbols) and the
coif1-wavelet (thin lines, open symbols) are compared.

5.8.2 Influence of CMB fluctuations

Clusters at high redshift z are characterized by their small angular
scale on which the underlying CMB is represented by a smooth
gradient as a result of Silk damping (Silk 1968). In this case the
wavelet analysis produces the same results irrespective of the CMB
noise owing to the distinct morphological feature of the cluster on
top of the smooth CMB gradient. Once clusters at lower redshifts
reach angular sizes comparable with characteristic scales of CMB
fluctuations, the wavelet analysis has to be made more sophisticated.
This complication in the wavelet analysis arises because wavelets
are primarily suited for determining morphological features rather
than singling out high-amplitude characteristics. Because the an-
gular scale of the clusters ranges between 10 and 1 arcmin, which
corresponds to multipole orders of � � 103. . . 104, it suffices to
consider the Silk-damping tail of the angular power spectrum of
the CMB. In the wavelet spectrum Xq(σ ) this translates into an ad-
ditional approximately power-law component XCMB

q (σ ), as can be
seen from Fig. 14:

ln XCMB
q (σ ) � aCMB + sCMB ln σ . (38)

This is a result of the discrete sampling of the wavelet moments
as well as of the inherent statistics of the wavelet spectra of order
q, which can be interpreted as suitably weighted q-point correlation
functions in Fourier analysis (cf. Section 3.3).

Fig. 15 shows the probability distribution function p(s CMB)ds CMB

of the slopes sCMB following from linear fits to the wavelet moments
Xq(σ ) for the range of qs considered here. Again, the sym2-wavelet
was chosen as the analysing wavelet. The slopes sCMB are not well
confined, keeping the vast range of angular scales in mind, which
in turn will make it difficult to subtract the CMB contribution to the
wavelet spectrum of the combined map.

In order to untangle the contributions from the CMB noise from
those of the cluster, one can pursue a variety of approaches. For
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Figure 14. Changes to the wavelet spectrum of a single cluster caused
by the fluctuating CMB: unperturbed wavelet spectrum of the SZ cluster
(circles, solid lines), of the pure CMB (squares, dot–dashed lines) and of
the combined map (diamonds, dashed lines). Data points were derived from
simulated data and the joining line in the case of the unperturbed wavelet
spectrum is the result of the fitting functions described by equation (33). The
order of the wavelet moment is q = 6 (thick) and q = 4 (thin). Again, the
analysing wavelet was the sym2-wavelet.

Figure 15. Distributions of the power-law slopes sCMB of CMB wavelet
spectra as a function of wavelet moment order: q = 3 (circles, solid line),
q = 4 (stars, dashed line), q = 5 (diamonds, dotted line), q = 6 (crosses,
dot–dashed line). The analysing wavelet is the sym2-wavelet.

example, CMB fluctuations underneath the cluster can be recon-
structed with spline polynomials and successively subtracted. Here,
we have masked the cluster and fitted 5th-order polynomials to the
remaining data points. Because the y-maps and the realizations of
the CMB are to leading order combined linearly, and because the
CMB is a smoothly varying field, it is possible to reconstruct the
CMB fluctuations from the environment of the cluster and inter-
polate to the cluster centre. The reconstructed CMB field can be
subtracted from the initial image, and, by applying wavelet de-
composition to the cleaned field, it is possible to obtain a wavelet

spectrum, from which the parameters a, c and s can be reliably
derived.

An important question common to the suppression of the CMB
and instrumental noise is the choice of a cluster mask region, either
for reconstructing the ambient CMB fluctuations with polynomials
or for reducing the contribution of pixel noise (which is proportional
to the map area) to the wavelet spectrum. As soon as the cluster is
detected at sufficient significance levels, it should be possible to
choose the cluster mask region according to a preliminary determi-
nation of the cluster size. Choosing too large a mask region results
in higher amplitudes of Xq(σ ) at large angular scales σ , but the
parameters of the model function a and c are relatively insensitive
to Xq(σ ) at large σ . Furthermore, it introduces a systematic trend
in measurements of a and c, which could be taken account of by
altering the functions that model the redshift dependence of those
parameters.

5.8.3 Influence of point sources

Point sources such as infrared galaxies and microwave-emitting
active galactic nuclei (AGNs) are yet another impediment to SZ
observations. They influence SZ observations in two ways. First,
the integrated flux of microwave sources inside the instrument’s
beam distorts the SZ flux modulation and diminishes the signal
at SZ decrement frequencies. Secondly, the Poisson fluctuation in
the number of sources inside the beam leads to an additional noise
component. While the first effect concerns the detectability of SZ
clusters, the second effect influences the wavelet analysis in a way
similar to instrumental noise.

The integrated emission from unresolved infrared galaxies makes
up the cosmic infrared background (CIB) (Puget et al. 1996; Lagache
& Puget 2000), the fluctuations of which become important at fre-
quencies above ν � 100 GHz (Aghanim, Hansen & Lagache 2004).
Lagache (2003) and White & Majumdar (2004) have estimated the
number counts of unresolved infrared galaxies at SZ frequencies.
In the easiest case, the sources are uncorrelated and the fluctua-
tions obey Poissonian statistics, but the inclusion of correlations is
expected to boost the fluctuations by a factor of ∼1.7 (Song et al.
2003). According to Aghanim et al. (2004), the resulting fluctuations
vary between a few 102 Jy sr−1 and 105 Jy sr−1. A proper modelling
would involve a biasing scheme for populating haloes, knowledge of
the star formation history, and template spectra in order to determine
the K-corrections.

In AGNs, the situation is similarly complex: the spectra show a
variety of functional behaviours, with spectral indices α generally
ranging from −1 to −0.5, but sources with inverted spectra α >

0 are commonplace. This variety makes it difficult to extrapolate
fluxes to the observing frequencies of CMB experiments. Two stud-
ies (Toffolatti et al. 1998; Sokasian, Gawiser & Smoot 2001) have
estimated the fluctuations generated by radio-emitting AGNs at SZ
frequencies and found them to amount to 103–104 Jy sr−1. How-
ever, AGNs are known to reside in high-density environments and
the proper modelling would involve a biasing scheme in order to
assign AGNs to the dark matter haloes. Apart from that, one would
have to assume spectral properties from a wide range of spectral
indices and AGN activity duty cycles.

Given the poor experimental constraints, no attempt is made to
model the influence of point sources on wavelet spectra. The ad-
ditional noise component arising from the fluctuating number of
point sources can be expected to influence wavelet spectra in a way
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similar to instrumental noise, and therefore all proposed methods of
suppression are applicable to this case as well.

5.9 Redshift estimation

In order to assess the accuracy of the redshift measurement, a max-
imum likelihood estimation is performed. The likelihood function
is defined as

L(z) = 1

(2 π)3/2 σa σc σs
exp

(
−

∑
x∈{a,c,s}

1

N

N∑
i=1

(xi − x(z))2

2σ 2
x

)
, (39)

and was evaluated for each bin separately; in other words, the index i
enumerates clusters within the redshift bin under consideration. N =
30 denotes the number of clusters within a single redshift bin. From
the position of the maximum in L(z), the most probable redshift
estimate z was derived and the accuracy of the estimate followed
from the 1σ confidence intervals; that is, the accuracy is determined
by the range in redshift z enclosing 68 per cent of the estimates. The
function was found to be symmetric about the maximum value and
hence the mean width is stated as the estimation accuracy. Fig. 16
shows the estimated redshift versus the real redshift for the cluster
sample derived by using all three parameters a, c and s. In compari-
son, the error bars become larger by a factor of �1.5 when including
the fluctuating CMB, as illustrated by Fig. 17. The measurement is
unbiased and the error relative to 1 + z rises slightly with increasing
redshift z.

The results for the various analysing wavelets as a function of
wavelet moment order q are summarized in Tables 3 and 4. Clearly,

Figure 16. Redshift determination and error estimation from all three pa-
rameters a, c and s that followed from wavelet analysis with the sym2-
wavelet. The upper panel shows the estimated redshift zest and its error �z,
and the lower panel shows the relative accuracy �z/(1 + z), both as a func-
tion of redshift zreal. Here, CMB fluctuations were not taken into account.
The value of the wavelet moments was set to be q = 3.

Figure 17. Redshift determination and error estimation from all three pa-
rameters a, c and s resulting from wavelet decomposition of the combined
maps (i.e. with CMB) using the sym2-wavelet. In the upper panel, the esti-
mated redshift zest and its error �z are shown as a function of real redshift
zreal. In comparison, the relative accuracy �z/(1 + z) as a function of zreal

is shown in the lower panel. Again, the order of the wavelet moments was
taken to be q = 3.

Table 3. Averaged accuracy (per cent) of the redshift determination relative
to 1 + z based on three parameters derived from the wavelet spectrum of
order q without the noise contribution from the fluctuating CMB.

Wavelet family Wavelet q = 3 q = 4 q = 5 q = 6

symlet sym2 4.1 4.4 4.7 4.8
symlet sym3 4.3 4.8 5.1 5.2
Daubechies’ db4 5.2 5.3 5.4 5.4
Daubechies’ db5 5.5 5.0 4.9 4.8
coiflet coif1 4.2 4.4 4.8 5.0
biorthogonal bior1.3 5.5 5.4 5.4 5.4

Table 4. Averaged accuracy (per cent) of the redshift determination relative
to 1 + z based on three parameters derived from the wavelet spectrum of
order q with the noise contribution caused by fluctuations in the CMB.

Wavelet family Wavelet q = 3 q = 4 q = 5 q = 6

symlet sym2 6.2 6.3 6.2 6.3
symlet sym3 6.7 6.5 6.4 7.2
Daubechies’ db4 6.9 6.8 6.9 6.9
Daubechies’ db5 7.6 7.4 7.3 7.2
coiflet coif1 6.1 5.9 6.0 6.8
biorthogonal bior1.3 7.5 7.4 7.2 7.3

the method starts to fail at redshifts �1, when the angular diameter
distance d A(z) develops a plateau and does not cause clusters to
appear smaller. The average attainable accuracy is stated relative to
1 + z in order to facilitate comparison with photometric redshifts.

C© 2005 RAS, MNRAS
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The accuracy degrades slightly with increasing q, which is the re-
sult of the suppression of small wavelet expansion coefficients, es-
pecially at small scales, and the resulting inaccuracy of the fitting
formula (equation 33) used to extract the spectral parameters a, c
and s from the wavelet spectrum.

Inclusion of the CMB in order to test the applicability of de-
termining morphological redshifts in the case of single-frequency
interferometers results in a deterioration of the redshift estimation
accuracy by a factor of close to 1.5. This is caused by imperfections
of the CMB removal by 5th-order spline polynomials.

It should be kept in mind that the given accuracy estimates de-
pend on the proprties of the selected cluster sample. The insufficient
sampling of the high-mass end of the Press–Schechter function can,
in particular, be expected to play a significant role, and leads to a
systematic underestimation of the redshift accuracy.

6 S Y S T E M AT I C S

SZ clusters would be self-similar and would perfectly follow scal-
ing relations provided several requirements were fulfilled, namely
(i) virial equilibrium (T ∝ M2/3); (ii) structural identity, ex-
pressed in equal form factors; (iii) a universal baryon fraction;
and (iv) the absence of non-gravitative heating and cooling pro-
cesses. Each of these assumptions can be challenged and leads
to deviations from the self-similar scaling relationships. While
the first two points are included in the numerical simulation
and are limited by the selection criteria, they increase the scat-
ter in the relationships between virial quantities, or, equally, be-
tween the wavelet parameters a, c and s. Systematic trends caused
by tilted scaling relationships (see Section 6.1) and the forma-
tion of cool cores (formerly referred to as cooling flows) (Sec-
tion 6.2) as well as the necessity of preselecting clusters (Sec-
tion 6.3) need to be addressed separately.

6.1 Influence of tilted scaling relations

Analyses of X-ray observations carried out by Arnaud & Evrard
(1999) and Mohr, Mathiesen & Evrard (1999) suggest a weak trend
of the cluster baryon fraction with cluster mass M and a deviation
from the universal value f b = b/m. This is the result of feedback
processes such as galactic winds that more effectively deplete the
ICM of baryons in low-temperature clusters compared with that in
high-temperature clusters.

The dependence, in particular, of the wavelet parameter a, which
is a logarithmic measure of the SZ flux Y , would be increased in
more massive clusters and would thus increase the scatter in a of
a cluster sample at a given redshift. The quoted analyses of X-ray
data find the baryon fraction to show a relative variation amounting
to �10 per cent at fixed temperature, i.e. at a fixed depth of the po-
tential well for a sample of local clusters. Apart from the systematic
component, which can in principle be removed, once high-quality
X-ray data improves our understanding of this phenomenon and
allows proper modelling, the stochastic contribution can only be
constrained to be at most of equal relative influence to �Y/Y as the
scatter in morphology.

The baryon fraction is estimated from X-ray observations that
sample the gas at the cluster core, whereas the SZ effect will be sen-
sitive to the gas at much larger scales. Therefore, since the observed
trend is probably the result of the complicated hydrodynamic and
feedback processes at the cluster centre, the trend is expected to be
much weaker on the scales probed by the SZ effect.

6.2 Cool cores of clusters

In order to estimate the accuracy of the method outlined above, we
have so far used only non-radiative hydrodynamical simulations that
lack cooling processes. Thus we need to address the influence of the
cool cores of clusters on our proposed method. After an analytical
investigation following Section 3.2.1 we compare clusters with and
without cool cores and show how the morphological changes in
cool-core clusters affect the wavelet spectra.

6.2.1 Analytical wavelet transform of cool-core clusters

Instead of a single King profile we assume that the SZ emission of
a cool-core cluster can be described by a double King profile for
reasons of analytical feasibility:

y(x) = y(r ) =
2∑

i=1

yi

[
1 +

(
r

ri

)2
]−1

, (40)

where the second term describes the additional enhancement owing
to the cool core. Deprojection of this two-dimensional profile by
means of Pfrommer & Enßlin (2004) yields

pe(R) = ne(R) kBTe(R) = mec2

σT

2∑
i=1

yi

πri

B
(

1
2 , 3

2

)
(

1 + R2/r 2
i

)3/2 , (41)

where R denotes the three-dimensional radius and B(a, b) denotes
the β-function (Abramowitz & Stegun 1965). Thus we obtain for
the ratio of the central values of the Comptonization parameters yi

y2

y1
= p2 r2

p1 r1
∼ 1

2
, (42)

where we have inserted typical values for cool-core clusters,
p2/p1 ∼ 3 and r 2/r 1 ∼ 1/6. The second-order wavelet moment
of cool-core clusters can be obtained by analogy with the non-cool-
core case:

XCF
2 (σ ) = 2π

∫
dk k5 exp(−k2σ 2)

∣∣y1r 2
1 K0(kr1) + y2r 2

2 K0(kr2)
∣∣2

.

(43)

This second-order wavelet moment shows an increasing ampli-
tude and a decreasing cut-off parameter compared with the one
without a cool core.

6.2.2 Numerical analysis

In order to scrutinize these findings we apply our method to non-
radiative simulations of clusters to which we add an enhanced emis-
sion to mimic the SZ emission of the cool core. In Fig. 18, the result-
ing spectra of wavelet moments are shown together with the fitting
formula (equation 33) for increasing wavelet moment order q.

It can clearly be seen in Fig. 18 that the enhanced emission arising
from the cool core yields a slightly higher amplitude of the wavelet
spectrum on small scales. Extracting information from the wavelet
spectrum by means of equation (33) reveals slightly higher values
for the amplitude a and smaller values for the cut-off c on the per
cent level. However, this influence is minimized when considering
finite instrumental resolution, particularly for high-redshift clusters.
In any case, if a prominent cool core is sufficiently well resolved it
could be masked and replaced by an interpolation in between the
mask boundaries.
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Figure 18. The influence of cool cores on the spectrum of wavelet moments,
together with the fitting formula (33) for increasing wavelet moment order
q: q = 2 (squares), q = 3 (circles, solid lines), and q = 4 (diamonds, dashed
lines) for a single cluster without instrumental smoothing. Open symbols
are values derived from the simulated non-cool-core cluster, whereas filled
symbols denote the corresponding cool-core cluster.

Figure 19. Distance-corrected wavelet amplitude a0 = a(z) + 2 ln (d A(z))
as a function of distance-corrected wavelet cut-off c0 = c(z) + ln (d A(z))
for the selected clusters (circles) and all clusters (crosses) extracted from the
simulation outputs. The wavelet moments Xq(σ ) were considered for q = 4,
and the sym3-wavelet was employed as the analysing wavelet.

6.3 Wavelet analysis of unselected clusters

It is an important issue to quantify the deterioration of the wavelet
method when applied to clusters of arbitrary morphology. In merg-
ing systems, for instance, one observes a doubly peaked wavelet
spectrum, in which the peak at large σ reflects the angular size
of the merger system itself, whereas the second peak at smaller σ

corresponds to the scale of the merging objects. In these systems,
the model function equation (33) does not yield a good fit to the
spectrum of wavelet coefficients Xq(σ ) and hence fails to extract
sensible values for the parameters a, c and s. Similarly, pronounced
substructure causes deviations from the wavelet spectrum and yields
additional power on scales smaller than the cluster scale. In these
cases, the model function (cf. equation 33) does not necessarily pro-

vide a fit to the wavelet spectrum Xq(σ ) and it cannot be expected
that the wavelet quantities a and c reflect cluster properties such
as Y .

In Fig. 19, the distance-corrected wavelet amplitude a0 =
a(z) + 2 ln (dA(z)) is given as a function of the distance-corrected
wavelet cut-off c0 = c(z) + ln (dA(z)), for all clusters resulting from
our simulation (in total 3957 maps) and, for comparison, for the
selected subsample. The wavelet parameters were derived from a fit
to the spectrum Xq(σ ) of order q = 4 with the sym3-wavelet as the
analysing wavelet. While in Fig. 10 the data points follow a narrow
track along a ∝ c5, this behaviour is not observed in Fig. 19. Espe-
cially for clusters at small wavelet cut-offs c, the scatter in wavelet
amplitude a is doubled and data points fall below the region cov-
ered by the selected subsample. This might be hinting that clusters
exhibit substructure, because in these cases the sizes are system-
atically underestimated by the fit to the wavelet spectrum Xq(σ ).
Furthermore, a strong scatter in cut-off c is introduced. Given these
significant deteriorations that can only be partially compensated by
changes in the redshift model equation (37), the redshift estimation
accuracy is significantly affected.

In comparison with the work of Diego et al. (2003), the distance
estimation accuracy is almost doubled, which is partly the result of
the selection of clusters. Only in systems with small deviations from
spherical symmetry can the morphological parameters be reliably
derived and used to indicate the cluster distance.

7 R E D S H I F T E S T I M AT I O N I N A N U T S H E L L

This section will provide a short summary of how to apply our
method to an SZ survey for estimating redshifts, providing a tem-
perature map of a patch on the sky with resolved images of clusters.

(i) Once a cluster candidate has been localized at a particular
position of the map, this cluster and its ambient field have to be cut
out. If the number of grid points amounts to below 642 sampling
points, the mesh should be refined by interpolation in order to reach
a dynamical range of approximately two decades. This is important
in order to provide a sufficiently broad range of scales to be probed
by the wavelet decomposition.

(ii) The wavelet spectrum of the map is obtained by wavelet trans-
forming the map, preferably using the symlet basis functions (see
Section 3.1). The morphological information contained within the
wavelet spectrum can be extracted by means of the model function
of equation (33). In the case of single-frequency observations, the
ambient CMB field cannot be separated from the SZ signal of a clus-
ter. The method described in Section 5.8.2 might be applied in order
to reconstruct the wavelet spectrum of the pure SZ cluster signal.

(iii) The redshift dependence of the wavelet parameters (am-
plitude a, cut-off c, and slope s) follows the functional form of
equation (37). However, the single model parameters depend on the
definitions of the particular wavelets and the details of the survey,
including the various sources of noise and the cluster detection cri-
teria. The most promising way of determining the parameters of the
gauge functions laid down in equation (37) would be to derive them
from a training set of clusters with known (photometric) redshifts.
The final redshift estimate of the cluster is most conveniently deter-
mined by means of maximum likelihood analysis, as described by
equation (39).

8 S U M M A RY

In this paper, a method of estimating the redshift of a cluster based
on the wavelet decomposition of its resolved SZ morphology is
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presented. From a fit to the spectrum of wavelet moments three
spectral parameters are derived, which in turn are non-degenerate
and indicative of cluster distance. These parameters are utilized,
through a maximum likelihood technique, to estimate the cluster’s
redshift. In the maximum likelihood technique, empirical gauge
functions describing the wavelet parameter’s z-dependence are used.

First, the method was tested on a simple analytical case. The spec-
trum of Mexican-hat wavelet moments can be derived analytically
for a King profile, which is known to describe the Compton-y am-
plitude of clusters well. The spectrum of wavelet coefficients, as a
function of wavelet scale σ , exhibits a break at the cluster scale rc

and may thus serve as a measure of the cluster’s size. In addition,
the asymptotic behaviour of the wavelet spectrum in the limits of
σ  r c and σ � r c can be understood. The derivation of wavelet mo-
ments of order q = 2 is analogous to considering the Fourier power
spectrum of the Compton-y map, filtered with Fourier transformed
wavelet. The shape of the spectrum of wavelet moments of order
q = 2 from the analytic calculation is consistent with one obtained
by applying wavelet decomposition to simulated SZ cluster maps.

The method was then applied to set of numerically simulated
SZ clusters with 1-arcmin (FWHM) resolution – comparable to
the resolution of future SZ experiments. The sample comprises
690 cluster maps distributed in 23 redshift bins, which is a large
cluster sample compared to other simulations. The clusters are cho-
sen such that they are not in a merging state and their SZ image is not
too elongated, two criteria that favour clusters close to virialization.
Moreover, in order to simulate single-frequency observations, the
cluster maps were combined with realizations of the CMB which
constitutes the main source of noise.

The method was tested for a range of wavelet functions (e.g. sym-
let, coiflet, Daubechies, biorthogonal). The average attainable accu-
racy in estimating redshifts is found to be almost independent of the
specific functional form used, although the symlet basis yielded the
best results. However, the method could benefit from improvements
concerning the choice of the wavelet basis. For instance, one could
try to construct an optimized wavelet specifically for β-profiles that
yields maximized wavelet coefficients χ (µ, σ ).

As expected, there is only a weak change in accuracy with re-
spect to the order q of the chosen wavelet moment Xq(σ ). This,
however, is likely to change when applying the wavelet analysis to
noisy images, because, for higher values of q, uncorrelated noise
is suppressed relative to the cluster’s signal, and concentrating on
higher values for q should provide a more robust measurement
of the set of structural parameters a, c and s. The increment of
q itself is limited by numerics – this is the case when the wavelet
moment Xq(σ ) is dominated by the largest wavelet expansion coeffi-
cient χ (µ, σ ), and no longer reflects the dependence on the wavelet
scale σ . In this limit, the wavelet spectrum would exhibit a generic
power-law behaviour: Xq(σ ) ∝ σγ (q) for large q. The structural pa-
rameters a, c and s were found to depend on redshift z by a simple
exponential (equation 37). The free parameters in this equation can
be determined from a (relatively small) sample of SZ cluster images
with known redshift.

The accuracy of determining cluster distances has been assessed
by maximum likelihood estimation. The method yields accuracies
of 4–5 per cent relative to 1 + z, which is competitive with pho-
tometric redshifts, but reaches out to larger distances. At redshifts
of z � 1, the accuracy is expected to degrade because the angular
diameter distance d A(z) starts to level off and thus sets the limit of
applicability. For single-frequency data, the CMB fluctuations can
be removed with a simple polynomial reconstruction approach; the
accuracy in the redshift estimation is then decreased to 6–7 per cent.

In this work we have considered two major systematic effects that
might degrade the accuracy of the method. The first is the varying
baryon fraction with cluster mass, which has been studied only for
local cluster samples. While the systematic trend could in principle
be corrected for, the stochastic contribution will always add to the
uncertainty of the distance determination. Another systematic effect
is the influence of cool cores at the cluster’s centre. In this case we
have been able to show that the uncertainty added to the redshift
estimate is very small, mainly because the volume occupied by the
cool-core region is limited to the cluster’s core.

Although the result in the distance estimation is stated in terms
of redshift, it should be emphasized that a specific cosmology is
assumed, an assumption that is needed for converting the observ-
ables, namely the wavelet parameters, to a distance estimate. The
distances following from the analysis have been expressed as red-
shifts because of their elementary interpretation, but the implicit
assumption of an underlying cosmology should be kept in mind
when comparing with, for example, photometric redshifts. For that
reason, the precision of the method presented is limited by the accu-
racy to which the cosmological parameters are known. Apart from
being a distance indicator, the redshift also plays the role of an
evolutionary parameter.

Comparing this work with the pioneering paper by Diego et al.
(2003), our expectations concerning the accuracy of morphological
redshifts are even more optimistic: without fitting β-profiles to the
observational data, it is possible to describe the cluster’s SZ mor-
phology solely by relying on wavelet decomposition. Furthermore,
we describe the spectrum of wavelet moments with a small set of
structural parameters that have a lucid physical interpretation, pro-
vide a non-degenerate distance measurement and enable redshift
determination owing to their monotonic decline with redshift. The
most important difference is that the redshift dependence of the
structural parameters is calibrated with the data set itself, without
the need for prior and simplifying assumptions. In spite of the small
number of observables considered here, the accuracy in the redshift
estimation of this method is doubled in comparison with that of
Diego et al. (2003), even for a single-frequency experiment.
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