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ABSTRACT
We describe and compare several post-correlation radio frequency interference clas-
sification methods for use in radio astronomy. Since data sizes of observations grow
with new and improved telescopes, and new telescopes such as LOFAR are being
built in populated areas, the urge for completely automated, robust methods for ra-
dio frequency interference mitigation is high. We investigated several classification
methods and find that on the data sets we used the most accurate among them is
the SumThreshold method, a new method formed from a combination of existing
techniques, including a new way of thresholding. This iterative method estimates the
astronomical signal by doing a surface fit in the time-frequency plane. With a the-
oretical accuracy of 95% recognition and approximately 0.1% false probability rate
in simple simulated cases, the method is in practice as good as the human eye in
finding RFI. In addition it is fast, robust, does not need a model of the data before
it can be executed and works in almost all configurations with its default parame-
ters. By receiver operating characteristics analysis on artificial data, we compare this
method to a mitigation technique based on the singular value decomposition of the
time-frequency matrix and several others. Even in the best cases, the singular value
decomposition shows significant errors in classification.

Key words: instrumentation: interferometers – methods: data analysis – techniques:
interferometric – radio continuum: general.

1 INTRODUCTION

Around 1980, when the radio spectrum was getting more
and more occupied by the technical advancements of hu-
man kind (Pankonin & Price 1981), radio observers started
to mitigate the radio frequency interference (RFI) caused by
electronic equipment (Thompson, Gergely, & Vanden Bout
1991). Until recently, on-line thresholding and manual flag-
ging of post correlated data used to be sufficient to suppress
RFI artefacts in the data. However, as the volume of data
increased significantly in size, the required sensitivity of ob-
servations and the contamination of RFI by an increased
usage of electronical equipment grew, new methods had to
be developed to deal with the situation.

RFI mitigation can be applied in two different stages:
a pre-correlation stage and a post-correlation stage. Strong
RFI can be detected in the first stage of interferometry, be-
fore correlation. Any residual RFI has to be removed during
the data reduction or imaging stage, which is often per-

formed manually, for example by finding appropriate clip-
ping levels for contaminated baselines until the reduced data
is free of artefacts. The pre-correlation mitigation stage is
very powerful, as during this step the observational data is
available at the highest resolution. For example, methods
exist to blank or subtract short periodic radar RFI bursts
on-line (Niamsuwan et al. 2005), leaving the astronomical
signal intact with only a very slightly increased signal to
noise ratio. However, pre-correlation methods have to han-
dle large amounts of data in very short time. Therefore,
these methods can often only access limited dimensions of
the data, such as the data from a single dish or station or
the data from a small time range only, because of hardware
constraints.

Several methods from signal processing have been used
to perform the first pre-correlation mitigation stage, such as
thresholding using a Neyman-Pearson detector (Leshem &
van der Veen 2000), spatial filtering with eigenvalue decom-
position of a spatial correlation matrix (Leshem & van der
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Veen 2000), the CUSUM method (Baan, Fridman, & Millenaar
2004) and adaptive cancellation with a reference antenna
(Barnbaum & Bradley 1998). During the post-correlation
phase, flagging is often the only option left. Other options
for post-correlation mitigation include using an independent
RFI reference signal to subtract the RFI (Briggs et al. 2000),
fringe fitting (Athreya 2009) or post-correlation spatial fil-
tering, but none of them are applicable or sufficient in all
cases or for all types of RFI.

In modern observatories that operate at low frequencies
such as the Westerbork Synthesis Radio Telescope (WSRT),
the Giant Metrewave Radio Telescope (GMRT), the Low
Frequency Array (LOFAR), and the Expanded Very Large
Array (EVLA), RFI mitigation is an essential component
in the signal processing. In the case of LOFAR, there are
high sensitivity requirements, especially from the Epoch of
Reionization project (see Jelić et al. (2008); Thomas et al.
(2009) for recent progresses), yet in what might be a busier
RFI environment, in data sets up to a petabyte in size. RFI
mitigation before correlation remains important (Boonstra
et al. 2005), yet the amount of data is too large for manual
post-correlation flagging, implying the need of automated
flagging strategies.

RFI comes in many types (Fridman & Baan 2001). The
strong RFI that is problematic is often either local in fre-
quency, such as RFI caused by television stations, airplanes
and radar, or is local in time, i.e., broadband RFI, caused
by phenomena as lightning, high-voltage power cables and
electrical fences. Sometimes, the frequency of RFI drifts over
time as shown later in Figure 6(a), which can be caused by
Doppler shifting of a satellite signal or by imperfect trans-
mitters. A different class of RFI is caused by weakly trans-
mitting but stationary – and therefore systematic – devices
on site. This class of RFI is hard to recognize, as it might
cover all channels in a spectral band. In fringe stopping in-
terferometers, the fringe rotation causes this type of RFI
to have a sinusoidal response in the time-frequency domain
(Thompson, Moran, & Swenson 1986). This RFI can be rec-
ognized and subtracted in various ways, as for example de-
scribed fairly recently by Athreya (2009).

To select an RFI strategy, several considerations should
be taken into account:

• The achieved true/false positive ratio of the RFI clas-
sification;
• The speed of the algorithm;
• Detection or recovery; whether detection and flagging

of contaminated areas is sufficient. In certain situations, it
might be necessary to recover contaminated data, i.e., to
subtract the RFI from the data;
• The effects of RFI mitigation on the noise. Differences

in the observed noise strength caused by RFI is for exam-
ple fatal for the LOFAR Epoch of Reionization experiment
(Jelić et al. 2008).

In this paper we will evaluate the effectiveness of sev-
eral automatic post-correlation RFI mitigation methods and
their combinations. The methods will be compared to each
other in order to be able to pick a general optimal post-
correlation RFI strategy. We will do this by testing the
methods on artificial data and data from WSRT that has
been observed at the frequency range of LOFAR. Testing
the methods on WSRT data will also provide an indication

of the effects of the RFI environment on future LOFAR ob-
servations.

In the next section we describe a new method to flag
RFI. We present our results including the comparative study
in section 3. In section 4 we discuss the results. In section
5 we discuss some future directions of further efforts in this
area.

2 METHODS

Radio astronomers have developed their own ways of deal-
ing with RFI during data reduction within the many astro-
nomical software packages. Still in many cases, this implies
flagging by hand – a tedious and time consuming job. Many
toolkits, such as aips1, aips++2, miriad3 and newstar4,
provide specific features to perform flagging, such as the
FLAGR task in aips++. Astronomers have automated the
process further by designing scripts in which common sig-
nal processing techniques such as thresholding, smoothing,
line detection and curve fitting are combined. This has for
example been described by Winkel, Kerp, & Stanko (2006).
Another common signal processing technique known as Sin-
gular Value Decomposition has recently been used for the
automatic removal of broadband RFI in GMRT observations
(Pen et al. 2008). We will describe some of the techniques
available that relate to a new method we will introduce, and
finally we will explain the new method itself.

2.1 Post-correlation thresholding

Since RFI increases the measured absolute amplitude,
thresholding is an effective method that is often used to
remove strong RFI. The threshold level is often globally de-
termined, or sometimes set relative to the variance or mode
distribution parameters per baseline, which can be stabily
estimated with for example the Winsorized variance or mode
(Fridman 2008). All values that are outside a certain range
around the mean or median are flagged as bad data, and
not used in subsequent data reduction. Sometimes, a cer-
tain amount of samples around this bad data sample are
flagged as well. Most astronomical reduction toolkits pro-
vide options to threshold part of a data cube, allowing dif-
ferent thresholds, at the cost of an increased effort for the
astronomer. An important consequence of thresholding is
that good data is selected with a bias; when many non-
contaminated samples are above the threshold, flagged and
not used in subsequent data reduction, artefacts such as in-
correct flux densities might be caused in the image plane. It
is therefore important to have a low false-probability rate of
RFI detection.

1 aips: Astronomical Image Processing System,
http://aips.nrao.edu/.
2 aips++, sequal of aips, http://aips2.nrao.edu/.
3 miriad, a data reduction package tailored for the Australia
Telescope Compact Array (ATCA),
http://www.atnf.csiro.au/computing/software/miriad/.
4 newstar, a data reduction package tailored for the 45-m radio
telescope of the Nobeyama Radio Observatory (NRO),
http://www.nro.nao.ac.jp/~enewstar/.
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2.2 Surface fitting and smoothing

A surface fit of the correlated visibilities V (ν, t) as a function
of frequency ν and time t can produce a surface V̂ (ν, t) that
represents the astronomical information in the signal. Re-
quiring V̂ (ν, t) to be a smooth surface is a good assumption
for most astronomical sources, as the observed amplitude
of astronomical sources tend not to change rapidly in the
time and frequency direction, while specific types of RFI,
on the other hand, create sharp edges in the time/frequency
domain. The residual between the fit and the data contains
the system noise Nnoise(ν, t) and the RFI, NRFi(ν, t), which
can then be thresholded without the chance of flagging astro-
nomical sources that have visibilities with high amplitude.

Several suitable surface fitting methods exist. As an ex-
ample, in Winkel et al. (2006) a pipeline is described in
which a two-dimensional low order, dimensional indepen-
dent polynomial is iteratively fitted on time-frequency tiles
in the data using a least square fit:

V̂k(ν, t) =

NνX
i=1

ak,iν
i +

NtX
i=1

bk,it
i + ck, (1)

where V̂k is the fitted surface that represents the astronom-
ical information in the k-th tile, Nν , Nt are the polyno-
mial order for the frequency and the time respectively and
ak,i, bk,i, ck are the coefficients of the fit for tile k.

The fit is performed iteratively, and values which have
been flagged in previous iterations are excluded from the fit.
This can be done by introducing a weight function WF (ν, t),
where WF (ν, t) = 0 indicates that the value is flagged or
outside the boundaries of the measured time or frequency
range, and WF (ν, t) = 1 means the value is accepted. The
fit is performed by minimizing an error function Ek for each
tile:

Ek =
X

ν

X
t

WF (ν, t)f(V̂k(ν, t), V (ν, t)) (2)

where f(a, b) = a2 − b2 for a least squares fit or f(a, b) =
|a− b| for a fit with a minimal absolute error.

An example of this approach after a few iterations can
be seen in Figure 1. In simple cases, the surfaces that are
created with this approach represent the astronomical infor-
mation reasonably well, and the method is also quite fast.
However, as polynomial fits tend to show deviations near
the borders, the method is inaccurate near the borders of
each tile.

Compared to tile-based approaches, sliding window
methods tend to be more accurate. A simple example of
a sliding window approach is to calculate the average of a
window of size N ×M around each data value:

V̂ (ν, t) =
1

count

1
2 NX

i=− 1
2 N

1
2 MX

j=− 1
2 M

WF · V (ν + i∆ν, t + j∆t), (3)

with

count =

1
2 NX

i=− 1
2 N

1
2 MX

j=− 1
2 M

WF (ν + i∆ν, t + j∆t) (4)

This method is still fast and creates a surface without
tile edges. However, the sliding window average represents
the astronomical signal less well. For example, peaks in the

(a) V̂ (ν, t) (b) V̂ (ν, t)− V (ν, t) (c) Thresholded

Figure 1. Tile-based polynomial fitting applied to the raw vis-
ibilities of a 144m WSRT baseline of a 3C196 observation at
140 MHz (see §3.3). Panel (a) shows the tiled fit of the astro-
nomical signal. Panel (b) shows the difference between the fitted
astronomical signal and the observed signal used for threshold-
ing. Panel (c) shows the flags on top of the original signal. The
flags established by single pixel thresholding cover the RFI when
verified by eye, though many false positives can be seen which are
caused by (“normal”) noise. The tile size used for this image is
30 frequency channels with 10 kHz width × 50 time scans with
10s integration time.

original function cause square-shaped edges in the fit, which
in the end cause classification inaccuracies.

One way to overcome this problem is to calculate the
local median instead of the local average. Values that have
been flagged in a previous iteration should be ignored by
the median calculation. The median is insensitive to peaks
and the surface created by the local median remains smooth
when the window is slided over the data. The median how-
ever is not always a good estimator of the sliding window
centre sample specifically, as all samples have equal weight.

Another way to overcome the problem is to calculate a
weighted average. Consider a weight function Wd(i, j) that
depends on the two components i, j that represent the dis-
tance in respectively time and frequency direction to the
centre of the window:

V̂ (ν, t) =

P 1
2 N

i=− 1
2 N

P 1
2 M

j=− 1
2 M

Wd(i, j) (WF � V ) (νi, tj)

weight
(5)

With

weight =

1
2 NX

i=− 1
2 N

1
2 MX

j=− 1
2 M

Wd(i, j)WF (ν + i∆ν, t + j∆t) (6)

This can be calculated very fast, since (5) is the convolution
operation Wd ∗ (WF � V ) and (6) is another convolution
Wd ∗WF , giving:

V̂ = ((WF � V ) ∗Wd)� (WF ∗Wd) (7)

Where � and � are the elementwise multiplication and divi-
sion operators. A good choice for Wd is the two-dimensional
(dimensional independent) Gaussian function:

Wd(i, j) = exp

„
− i2

2σ2
ν

− j2

2σ2
t

«
(8)

Together, equation (7) and (8) essentially describe a
weighted Gaussian smoothing operation, or more specific,
a Gaussian smoothing operation with missing data. The
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parameters σν and σt can be used to specify the level of
smoothing in respectively the frequency and time direction.
Since the weight function is dimensionally separable, the
convolutions can be dimensionally separated:

V̂ =
(WF � V ) ∗ Uν ∗ Ut

WF ∗ Uν ∗ Ut
(9)

With Uν(i) = Wd(i, 0) and Ut(j) = Wd(0, j). Each of the
convolutions in (9) is a one dimensional convolution, and
this is therefore a fast operation.

2.3 The cumulative sum method

The cumulative sum (CUSUM) method is a well known analy-
sis method used to detect changes in the distribution param-
eters (Page 1954), such as in quality control in productional
environments. If the cumulative sum of sequential samples
exceeds an adaptive threshold, the system enters an alarmed
state and changes can be made to correct quality. In its com-
mon form, the likelihood for two values of the distribution
parameters is used to compute the threshold.

To turn this method into an RFI mitigation strategy,
the total observed power or power received at a certain fre-
quency of a single dish can be used as the sequential input
values to the CUSUM method and the likelihoods of either vari-
ance or mean of RFI can be estimated using the variance of
the signal (Baan et al. 2004). Observing can be stopped as
soon as RFI is detected, and continue when reception has
turned back to normal. This method can be easily imple-
mented for on-line RFI detection, as it is simple and fast.

The CUSUM method does not estimate the start time
of the change, it only detects the change quickly, which
nevertheless might cost time and thus some bad data may
be leaked until the method detects faint RFI. Hence, the
method is more applicable for a first rigorous check on the
data then to actually perform flagging. The subsequent sec-
tions will describe a method that combines the detection
strength of the CUSUM method with the possibility to per-
form flagging off-line.

2.4 Combinatorial thresholding

RFI bursts often affect multiple samples which are connected
either in frequency or time. We will now introduce a new
threshold mechanism that makes use of this knowledge: we
will flag a combination of samples when a property of this
combination exceeds some limit. Assume that A and B are
neighbouring samples. In normal thresholding, we will look
at each of the samples A and B individually and flag one
of them if it exceeds some “single sample” threshold χ1.
For combinatorial thresholding, a new flagging criterium is
added: if A and B do not exceed the single sample threshold
χ1 individually, they still can get flagged when A and B are
both exceeding a somewhat lower threshold χ2. If not, they
are combined with a third neighbour, C, and thresholded
at χ3, etc. The more connected samples are combined, the
lower the sample threshold.

Given a set of strictly decreasing thresholds, {χi}N
i=1, a

value will be classified as RFI in case it belongs to a com-
bination of i values in either time or frequency direction, of
which all absolute values are above threshold χi. To deter-
mine whether a single sample should be flagged because of

an RFI sequence in the frequency direction, the following
rule is applied:

flagνM (ν, t) = ∃i ∈ {0 . . . M − 1} : ∀j ∈ {0 . . . M − 1} :

|V (ν + (i− j)∆ν, t)| > χM

Where M is the number of samples in a combination. The
flagging rules for the time direction are correspondingly de-
termined. Finally, a sample is flagged if any of the two rules
evaluates to true. We will call this method the VarThreshold
method.

We will show a simple example to demonstrate the
method. Consider the following values:

V =

0@1 2 1 4
4 1 1 4
2 2 1 4

1A (10)

Each row represents a frequency channel and each col-
umn represents a time scan. Assume the high values in the
fourth column were caused by broadband RFI. When us-
ing a normal threshold χ = 3, all samples with value 4
would be thresholded, including one false positive. If how-
ever we would use combinatorial thresholding, with χ1 = 5
and χ2 = 3, we would threshold only the three broadband
RFI samples.

The method can be described as thresholding all sam-
ples at a certain χM and subsequently filtering all samples
that have less than M samples in both directions. From
this perspective, it is easy to add other morphological con-
straints. The above method looks for straight lines in the
horizontal or vertical direction. An enhanced version might
flag connected shapes covering a specific area size, or shapes
that form a line or curve in the plane, possible not connected,
that are likely to be caused by RFI.

2.4.1 VarThreshold parameters

The following list of parameters need to be optimized to
make efficient use of this approach:

• The false positive rate on uncontaminated samples. The
lower the value, the more RFI remains. The higher the value,
the more uncontaminated samples will be flagged. We will
discuss this in §2.4.2.
• A set that defines which samples are combined. For this

we define M, a set containing the number of samples that
will be combined for each sample in each of the four direc-
tions. Ideally, each sample will be combined with all sam-
ples of either the same frequency or the same time, i.e.,
M = {i ∈ Z : 1 ≤ i ≤ max(Nν , Nt)}, with Z the set of in-
tegers. Empirically, a small subset M = {1, 2, 4, 8, 16, 64}
works almost as good and saves summing and comparing
many samples.
• The set of thresholds {χM : M ∈M} for the different

number of combinations M . The total set of thresholds is
expressed by two parameters, χ1 (the threshold on a single
sample) and ρ, using the following formula:

χi =
i · χ1

ρlog2 i
(11)

A value of ρ = 1.5 empirically seems to work well for the
VarThreshold and the below defined SumThreshold method.
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To find χ1 for a desired false probability rate, ρ is kept con-
stant and the χ1 value is binary searched by performing mit-
igation on data selected from the distribution of the noise,
with the values {χi}i∈M computed as in (11), until the false
probability rate is close to the desired rate.

Since the method is combined with a surface fitting strategy,
the following parameters are added:

• The number of iterations to be performed. The resulting
accuracies are good with about 5 iterations.
• The iteration sensitivity as a function of the iteration

number, η(i). In each iteration, the threshold sensitivity is
increased (more samples are flagged). To accomplish this, all
the thresholds {χi}i∈M are decreased by dividing them with
a factor of η(i). Only during the last iteration a sensitivity
of 100% will be used. By slowly increasing the sensitivity
a first bad fit of the background won’t have much effect,
since only the very strongly RFI contaminated samples are
removed. Using an exponential function for η(i) was found
to work well.

2.4.2 The VarThreshold false positive ratio

Assume that R ∼ D(σNs), where R is the residual of the

complex correlated visibilities V and the surface fit V̂ , and
D is a distribution with parameter σ. The probability that
a non-RFI contaminated sample from the residual is larger
than χ can be determined with:

∀ν∀t : P (|R(ν, t)| ≥ χ) =

−χZ
−∞

ϕσ(x)dx +

∞Z
χ

ϕσ(x)dx, (12)

where ϕ(x) is the probability density function of the distri-
bution D(σN∫ ). Note that the term

R −χ

−∞ ϕσ(x)dx is only rel-
evant when the distribution contains negative values – unlike
the Rayleigh distribution – and the values are thresholded
above χ as well as below −χ.

The combined threshold false positive rates can best
be calculated numerically, since an analytic calculation is
rather complex, even for M with a single combined thresh-
old χM . This is because the thresholding of samples is de-
pendent on each other, hence it needs to take into account
that the probability of flagging a single sample is not the
expected rate of flagged samples. For example, assume that
R(ν1, t1) and R(ν2, t2) are independent when they are not
RFI contaminated. This is the case if the fit represents the
astronomical data and system noise is uncorrelated. With
the VarThreshold strategy, the probability Pfalse for a sin-
gle non-contaminated sample R1 to be flagged in one of the
four combinations with M = 2 with one of its neighbours
R2...5 can be calculated with:

Pfalse = P (|R1| > χ ∧ ∃i ∈ [2 . . . 5] : |Ri| > χ) (13)

= P (|D| > χ)− P (|D| > χ) (1− P (|D| > χ))4 .

Larger M will make the formula become more complex.
The total false positive ratio (the total percentage of sam-
ples that will be flagged being false) will differ from (13),
since the probability of each flagged sample depends on the
probability of its neighbouring samples.

Figure 2 shows the result of calculating the total false
positive ratio numerically, for several values of M .
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Figure 2. The false positives of the VarThreshold method when
flagging with a single combination M = {M} without surface
fitting. Samples were selected from a Rayleigh distribution, which
is the distribution of the visibility amplitudes. χ is relative to the
mode of the distribution.

2.5 The SumThreshold method

Now we will present a variation on the VarThreshold

method that improves the classification performance. This
method, named the SumThreshold method, is a flagging
method that combines samples like the VarThreshold

method. In this alternative case, the sum of a combination
of one or more other samples is used as threshold criterium.
As in the VarThreshold method, the threshold χM is vari-
able and depends on M , the number of samples that are
summed.

Unlike the VarThreshold method, this method allows
a sequence of samples to be flagged when there are sam-
ples in the sequence that contain values below the sequence
threshold value. However, without an additional rule, there
are situations in which this method might flag too many
samples. For example, consider the sequence [0, 0, 5, 6, 0, 0]
that represents a strong RFI contamination in two samples.
When the SumThreshold method without a second rule is
applied with average threshold values χ1 = 7, χ2 = 5,
χ3 = 4, . . . , χ6 = 1.8, all six values would be thresholded,
as their average exceeds 6χ6. The following rule is there-
fore added: the values are thresholded in the order χ1, χ2,
. . . , χM . When a lower threshold has already classified sam-
ples as RFI contaminated, the samples will be left out of
the sum and replaced by the average threshold level. In the
example case, the values 5 and 6 will be classified as RFI
by the second threshold, and therefore will be replaced by
χ6 when combining all the six samples. The average of the
sequence for the sixth threshold is therefore calculated as
(0 + 0 + χ6 + χ6 + 0 + 0) /6 = 2

6
χ6. As a consequence, only

the samples with values 5 and 6 are flagged.

2.5.1 The SumThreshold false positive ratio

We calculate the theoretical false positive ratio for M = 2
like in the VarThreshold method. The probability P (Tχ,1,2)
that the sum of two independent random samples exceeds a
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Figure 3. The probability of a false positive when thresholding
with a single combination M = {M} using the SumThreshold

method without surface fitting. The Rayleigh distribution was
used for the simulation. χ is the average threshold relative to
the distribution mode, thus a combination of samples was thresh-
olded when their sum exceeds χ × M × σ. The false ratio for
M ≥ 2 is different from the VarThreshold method (Figure 2).
Because of this difference, the parameter ρ used to calculate the
set of thresholds as in (11) need to be optimized for the methods
individually. Although the false ratio is not decreased when com-
paring this method with the VarThreshold method, the true ratio
is often increased (Figure 8).

certain value χ is given by:

∀ν1ν2t1t2 : P (Tχ,1,2) = P [R(ν1, t1) + R(ν2, t2) ≥ χ]

= P (D(2σNs ) ≥ χ)

=

∞Z
χ

ϕ2σ(x)dx (14)

When thresholding the average of a combination of two
samples, each sample will occur four times in a hypothesis
test, once with each of its neighbours. On uncontaminated
samples, the probability of a false positive for each of these
tests is given by (14). The probability for a false positive
with the four tests applied on each sample becomes:

P (Tχ,1×4) = P (Tχ,1,2 ∪ Tχ,1,3 ∪ Tχ,1,4 ∪ Tχ,1,5)

Because the tests {Tχ,1,i}5i=2 are dependent on each
other, it is much easier to calculate the false positive
rates numerically. This can be performed by applying
SumThreshold on a large amount of data selected from the
distribution D. The result of such a simulation is in Figure 3.

2.6 Singular Value Decomposition

A singular value decomposition (SVD) is a mathematical
tool for finding the singular values of a matrix, which can
exhibit certain properties of the matrix.

A singular value decomposition consists of finding the
complex unitary M × M and N × N dimensional matrices
U and V containing respectively a left and right singular
vector in each row, and the diagonal, M × N dimensional
real matrix Σ containing the singular values, such that:

A = UΣV T (15)
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Figure 4. The distribution of the singular values of two artificial
measurements: one containing Gaussian noise only, the other
containing Gaussian noise poluted by broadband RFI. In this ex-
ample, the first five singular values are affected by the broadband
RFI. In general, the number of singular values that are affected
by RFI and the possibility to recognize them varies depending on
the orthogonality properties of the RFI.

RFI is mitigated from the data set by performing this de-
composition on a matrix A. Each element Aij represents the
measured flux, where i is a baseline/frequency index and j
a time index. Each given matrix A has a unique solution
for the singular values Σ, if the singular values are sorted,
but there is no unique solution for U and V (for example,
A remains equal when all values in U and V are negated).
It is assumed that the highest singular values represent the
singular values of the RFI data. To mitigate the RFI, the
highest singular values in Σ are set to zero and the new
matrix Â is recomposed from U , Σ and V .

The number of singular values to be removed or set to
zero has to be chosen in such a way that only the RFI is re-
moved. The singular values that correspond to RFI are often
strong outliers, while the singular values of Gaussian noise
form a smooth curve. The position of the abrupt change in
the curve of the singular values is used as the number of
singular values to be removed, as is shown in Figure 4.

2.6.1 Properties

Let L = min(M, N), then:

Aij =

LX
k=1

UikΣkkVjk (16)

U and V are unitary, UU = I with U the Hermitian trans-
pose, and the rows and columns of the matrices form by
definition a complex orthonormal basis. This implies:

∀i ∈ [1..M ] :

LX
j=1

U2
ij = 1 (17)

Hence there is at least one non-zero value in each row and
column of the matrices U and V , and setting a non-zero
singular value to zero changes A. If A contains real values
only, equation (17) implies that all values in U and V are
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between −1 and 1, and removing a singular value Σii can
alter each value in A by at most Σii. In the complex case,
removing a singular value can alter the absolute value of
each value in A at most by Σii. In general, setting Σii to
zero subtracts a matrix Γi with rank 1 from A, as (Γi)jk =
UjiΣiiVki, and thus all columns are linear dependent on each
other.

The orthogonality properties imply that the order of the
rows and columns in the original matrix A do not change
the singular values: the order of the rows and columns is
irrelevant for the SVD method to detect RFI. Intuitively,
the SVD method does not “distinguish” between a smoothly
increasing amplitude, caused by astronomical sources, and
RFI, and might fail to correctly subtract/detect RFI because
of the astronomical signal.

If RFI is to be separated from the signal, the RFI and
the signal have to adhere to the following properties:

• All columns containing RFI (and consequently all rows)
have to be orthogonal to the astronomical signal. In other
words, for any column or row a in the matrix, aRFI ·
asignal = 0, with aRFI the RFI component and asignal the
signal component in the data.
• The singular values of the RFI are substantial higher

than the singular values of the astronomical signal. This
requires the RFI to be strong.
• The individual RFI columns are either fully linear de-

pendent or fully orthogonal to each other. If the individual
RFI components are partially dependent, the largest part of
the RFI is removed and the singular value of what is left
of the RFI might not have enough ’gain’ to be removed or
flagged.

Iteratively fitting a surface and subtracting the surface,
as in §2.2, might improve the compliance to the first re-
quirement, although it increases the execution time of the
method. Another way to improve compliance to the require-
ment is to remove the astronomical signal by subtracting a
good model beforehand.

It is useful to note that unitary transformations do not
change the singular values of a matrix, although they might
change the singular vectors. Since the Fourier transform is a
unitary transformation according to Parseval’s theorem, the
following equation holds:

A = USV ⇔ F(A) = U ′SV ′ (18)

The consequence of this is that it does not matter whether
the SVD method is executed in the time-frequency domain,
the time-lag domain, or another Fourier domain, since set-
ting singular values to zero in the Fourier domain would set
the singular value to zero in the original domain.

2.7 Input data types

The combined thresholding methods described in this paper
can be applied on several types of data: auto-correlated or
cross-correlated, on specific polarizations or Stokes parame-
ters, on amplitude or on phase, etc.

We have compared flagging on cross-correlations and
auto-correlations. The cross-correlations of each baseline can
be processed with one of the flagging methods, resulting in
N(N−1)/2 correlations to be processed. Alternatively, every

antenna can be individually flagged by processing the auto-
correlations, and samples in a baseline might be flagged if
either of the corresponding samples in the individual an-
tenna auto-correlations have been flagged. Only N correla-
tions need to be searched for RFI in this case. On top of
the benefit of speed, the RFI is stronger in auto-correlations
and the data contain no fringes from astronomical sources,
as auto correlations do not have interference patterns, offer-
ing an improved accuracy in RFI detection. On the down
side, some RFI might be present in auto-correlations that
would have been mitigated by cross-correlation, and detect-
ing RFI in auto-correlations potentially throws away some
usable data in the cross-correlations.

In cases where the polarization of the observed electro-
magnetic waves is measured, the polarization might contain
valuable information for RFI classification. For now, we have
processed each polarization individually, without exploiting
relations between polarizations.

3 RESULTS

3.1 Surface fitting results

In §2.2 we described several surface fitting methods to esti-
mate the astronomical signal in the frequency-time domain.
We found that the surface fitting methods when combined
with one of the classification methods do not differ much in
accuracy. A sliding window approach was found to be more
stable compared to a tile based approach. The Gaussian
weighted average, a polynomial fit and the window median
for the subtracted surface were found to be approximately
equal in their accuracies after optimizing their parameters
such as the window size, the Gaussian kernel size and the or-
der of the polynomial, though their parameters do influence
the accuracy.

Finding global parameters that always work well (or
automatic procedures to find the parameters) is not trivial.
The algorithm can handle data with very different charac-
teristics: it can be applied on XX, XY, YX or YY polariza-
tions, auto- or cross-correlations from either long or short
baselines, for LOFAR or for WSRT data, before or after
calibration, et cetera. To use the same surface fitting pa-
rameters in all these different situations, the window size
and if applicable the Gaussian kernel size needs to be rather
small. The expected amplitude changes of celestial signals
are usually much less in the frequency direction, and setting
the window size larger in the frequency direction improves
stability. We used a typical size of the sliding window of
40 frequency channels × 20 time scans and Gaussian ker-
nel parameters of σν = 15 and σt = 7.5. The numbers are
based on trials on different observed and artificial data sets.
The parameters are relative to the number of channels and
number of time steps. For WSRT data, a channel is 10 kHz
wide and a time scan is 10 seconds long. LOFAR will have
a 1 kHz × 1 second correlation output resolution. For best
results, the length and width of the window should be about
three times the Gaussian kernel size or larger.
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(a) Recomposed image from the low singular values.

(b) Recomposed image from the high singular values.

Figure 5. SV decomposition of test set A (Figure 7(a)): noise with broad band RFI covering all channels homogeneously. The recomposed
image from the low singular values (top panel) looks very promising: none of the RFI is left and the noise seems to be untouched. However,
a recomposition of the matrix with only high singular values (bottom panel), i.e., the part that has been subtracted from the image, shows
that the noise is affected in an unpredictable way by the decomposition. This is the best case for the SVD method; in more realistic
scenario’s, the data should include residual astronomical signal and broadband RFI that might not be linearly dependent.
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(a) Original observation
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(b) After removing the highest singular values from the image
(note the different flux scale).

Figure 6. The auto-correlated data in this image demonstrates the inability of the SVD method to remove sources that slowly change
frequency over time (e.g., because the source has a changing velocity in the direction of the antenna). This type of RFI seems to be
relatively common in low frequency WSRT data. The RFI in this particular example is so strong that it can be easily removed by
thresholding, but this plot is to illustrate the effects of such RFI. When the frequency-changing signal is faint and cannot be removed by
thresholding, applying SVD will, like in this example, change the astronomical information in the data in an unpredictable way.

3.2 RFI classification on artificial data

Both the SVD and threshold methods show accurate results
on removing line RFI and broadband RFI. The SVD method
is not suitable for removing frequency-varying RFI, and thus
has to be complemented with other techniques to remove all
RFI. However, the SVD method can be used to subtract
and remove the RFI from the image, leaving the astronom-
ical signal intact. For this to be succesful, considerable as-
sumptions about the mathematical properties of RFI and
the astronomical signal have to be true: the time-frequency
matrix with the RFI components has to be orthogonal to
the time-frequency matrix of the astronomical signal, and

the different RFI components have to be either orthogonal
to each other or linear dependent on each other.

As it is hard to quantitatively compare RFI mitigation
methods based on data sets of which the characteristics of
the RFI can not be known for sure, several artificial test
sets were created. These sets are shown in Figure 7 and con-
tain broadband RFI only. Since the RFI was added artifi-
cially, the location of the RFI in the time-frequency domain
is known, and the accuracy of the methods can be tested
quantitatively. The results are drawn as receiver operating
characteristic (ROC) curves in Figure 8. ROC curves show
the true probability rate against the false probability rate.
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(a) Test set A: noise with broadband RFI contaminating
all channels, ordered from strong (left) to weak (right).

(b) Test set B: broadband RFI contaminating a part of
the channels

(c) Test set C: broadband RFI contaminating different
channels

(d) Test set D: a simulated observation of the cross-
correlation of three point sources being close together
added to test set C

(e) Test set E: a simulated observation of the cross-
correlation of five distant sources added to test set A

(f) Test set F: as E, but RFI as in test set C

(g) Test set G: as F, but Gaussian smoothed before
adding RFI

(h) Test set H: a high frequency background signal
added to test set C

Figure 7. The artificial test sets containing broad band RFI, used for testing and parameter optimization. In all images, time is along
the horizontal and frequency along the vertical axis. All test sets simulate a similar baseline.

Different accuracies and characteristics of the methods can
easily be compared in ROC graphs.

The SumThreshold shows a considerably better accu-
racy in all the test sets. Test sets A and B contain RFI that
is completely linear dependent, and the SVD method works
also very well in these sets. The SVD method could actually
be used to subtract the RFI, instead of flagging the data and
not using the data. However, to mitigate the RFI in test set
C, the methods have to deal with RFI that is neither or-

thogonal nor completely dependent on each other, and thus
the SVD methods starts showing a decreased accuracy.

A normal thresholding strategy was also tested to com-
pare the results. When performing normal thresholding with
a surface fit as in the SumThreshold method, the accuracy
for thresholding actually decreases in the test cases without
astronomical signal (see the curves with label “Fit + sim-
ple threshold” in Figure 8). This is partially due to the the
fact that we optimized the surface fit for the SumThreshold

method. Further more, since the accuracy of the threshold-
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Figure 8. The ROC curves produced by applying various RFI detection methods to the test sets. The closer an ROC curve passes the
left-top of the graph at 100% true positives with 0% false positives, the more accurate the method is.
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(a) SVD performed on test set H (71.0% recognized, 0.6% false).

(b) SumThreshold performed on test set H (99.4% recognized, 0% false).

Figure 9. The results of two mitigation methods applied on test set H.

ing is not very good, the fit is influenced by the undetected
RFI, causing more errors.

When astronomical information is added as in test set
E and a more complex background is added as in test set
F, the SVD method shows an increased inaccuracy in mit-
igating the RFI, as can also be seen in Figure 9. However,
in test set G, the background of test set F is Gaussian
smoothed and subtracted, as is done before thresholding,
and the SVD method shows an improved accuracy, though
still not as good as the SumThreshold method. Test set H
shows that the linear dependency of the RFI is not the only
requirement for succesful mitigation with the SVD method:
the added RFI is completely linear dependent in this test
set, but the background is still causing low accuracies in the
SVD method.

It should be noted that some of these test sets are mea-
suring the theoretical accuracy on unorthogonal but not
completely independent RFI contamination, and this was
shown in §2.6 to be the hardest case for the SVD method.
When in practise the RFI does behave orthogonal or depen-
dent, the results might be quite different. Nevertheless, it is
unlikely that all RFI contaminations that are measured by
different antennea at different times are always either linear
dependent or orthogonal.

The presented test sets simulate a single baseline, while
in a real measurement, the SVD method will exploit the cor-
relation of RFI between different antennae. This will how-
ever also decrease the probability that all RFI is either or-
thogonal or linear dependent.

3.3 Automatic flagging of WSRT data

To test the various RFI flagging algorithms we have used
WSRT data in the LFFE band from 138-157 MHz obtained
in November/December 2007. These observations have been
described and analysed by Bernardi et al. (2009a,b) to which
we refer for details about the astrophysical motivation and
calibration. For our analysis, however, we used the raw un-
calibrated visibilities. The correlator integration time for
these data was 10s. A total of 8 bands of 2.5 MHz width

were available. The central frequencies of these bands are
located at 139.3, 141.5, 143.7, 145.9, 148.1, 150.3, 152.5 and
154.7 MHz. Each band was covered with 512 spectral chan-
nels. The data were Hanning tapered, yielding an effective
spectral resolution of 9.8 kHz. Therefore, adjacent spectral
channels are highly correlated. A total of 13 telescopes par-
ticipated in the observations providing a total of 78 inter-
ferometers with baselines from 36 till 2736 meters. All four
cross-correlations between the orthogonal linearly polarized
feeds were used in the analysis.

We have tested the various methods on several data
sets. Especially the SumThreshold method in combination
with Gaussian smoothing shows excellent results. Figure 10
shows a typical time-frequency diagram of WSRT data
around 140 MHz and the application of the SumThreshold

method. Although the smoothed surface is slightly affected
by the RFI after five iterations, as faint artefacts are visi-
ble in the smoothed surface around places where RFI used
to be, the effect is so small that it does not pose a prob-
lem for the SumThresholding method. However, it makes
the calculated false probability rate inaccurate, as the false
probability calculations assume independence between the
residual samples. When validating the results by visual in-
spection, we see far less false detections than the calculated
false probability rate.

We were able to use the same parameters for any sit-
uation in the WSRT data, and therefore completely auto-
mate the flagging process. Even at baselines and frequen-
cies with dramatic RFI contamination of up to 50%, the
SumThreshold flagging method remains stable and accurate.
Figure 11 shows for example a badly contaminated band of
WSRT data, that is almost perfectly RFI flagged.

4 CONCLUSION AND DISCUSSION

In this article we have shown several approaches to deal
with RFI that is left after correlation. The results show that
automated flagging with the SumThreshold method works
well for broadband and peak RFI. In all cases, the default
parameters for the method work well, although parameter

c© 0000 RAS, MNRAS 000, 000–000



12 A.R. Offringa et al.

(a) Original (b) Automated flagging result

(c) Smoothed (d) Difference

Figure 10. Time (horizontal) vs. frequency (vertical) plots of uncalibrated WSRT data, cross-correlations of antenna C vs. D. and the
application of the SumThreshold automated flagging procedure. Panel (a) shows one hour of the amplitude of a 3C196 observation, panel
(b) shows the result of the flagger, panel (c) shows the fitted surface after 5 iterations, and panel (d) shows the difference between panel
(a) and panel (c).

tweaking might in some cases improve the classification. In
the artificial broadband RFI situations, it detects 80% of
the artificially inserted RFI with less than 0.1% error, and
often approaches a 99% recognition almost without error.
With this, the accuracy of this method is as accurate as can
be expected from manual flagging. In the case of WSRT,
the new method does not improve the dynamic range of the
data compared to manual flagging, but the method saves a
considerable amount of work.

New telescopes such as LOFAR and SKA mandate ro-
bust automatic procedures, as these telescopes will produce
data sets that exceed current measurements in volume by
orders of magnitude, losing the ability to flag or check base-
lines or subbands individually.

The ROC analysis shows that the SumThreshold

method is to be preferred above the VarThreshold and SVD
methods. The SVD method can be used in some respect to
detect RFI, but is less accurate. If the SVD method were
to be used to subtract the RFI in order to use RFI contam-
inated samples nevertheless, instead of only detecting and
flagging the RFI, it can be expected that the method leaves
artefacts in the data with yet unknown characteristics. For
WSRT data, these artefacts look as bad as the broadband
RFI itself.

All methods have been tested without assuming a data
model. Subtracting the model before RFI detection might
improve the classification further. Nevertheless, the detec-
tion accuracy with and without a model do not differ much.

As such, going back and forth between flagging data and
creating a model is not necessary in most cases.

5 FURTHER WORK

RFI with a moderate strength that can be detected by eye
was found to be of no concern for automatic flagging meth-
ods in sensitive telescopes such as WSRT. However, differ-
ent kind of RFI might still pose problems. Certain weak RFI
might be present in many channels for a substantial dura-
tion of the observation, such as radiation that leaks from
cabins in situ. This might pose a problem for observations
that require long integration to achieve its required signal-
to-noise ratio, such as the LOFAR-EoR project, if the RFI is
persistent in time, since these might cause systematic errors.
There are some interesting ways to remove these, and one of
them is the fringe-fitting RFI mitigation method described
by Athreya (2009). Although this technique works at the
GMRT, preliminary tests with the fringe-fitting RFI miti-
gation method on WSRT and LOFAR data do not show a
strong presence of this type of RFI, and removing very weak
RFI with a similar method requires more work. Therefore,
to determine whether this type of RFI is really present, and
whether it might be removable is yet to be seen.

An important next step is to consider practical is-
sues in RFI mitigation techniques. For example, the influ-
ence of many RFI mitigation methods, post as well as pre-
correlation methods, need to be simulated, since we never
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(a) Original

(b) Automated flagging result

Figure 11. Time (horizontal) vs. frequency (vertical) plots of
WSRT data, cross-correlations of antenna 1 vs. 2: a particular
bad band at 121.3 MHz - 123.7 MHz of an observation of 3C147,
showing that the method remains robust in one of the worst cases
at the WSRT.

know what the image plane ought to look like. Also, which
post and pre-correlation methods can be combined? Under
which practical circumstances do RFI mitigation methods
fail? How can we be sure that astronomical detections are
not caused by RFI, or by the methods that try to reduce
RFI? Answering these questions is important for establish-
ing the reliability of new RFI mitigation methods and their
regular use by astronomers.

Although, at this point, it seems to be of little concern
to improve the SumThreshold automatic flagging method
any further, it might be interesting to improve it by com-
bining more information for detection and using fuzzy logic
to decide the sample classification. An interesting example is
to include phase information in the recognition, as only the
amplitude information has been used so far by the thresh-
old methods. For example, Figure 12 shows that the phase
contains valuable information about a sample: in uncontam-
inated samples, the phase is likely to be near zero rotation,
while many contaminated samples do have a phase devi-
ating from zero. Other distinguishing information could be
contained in the polarization information per sample and in
the combination of different baselines.

Based on the low frequency observations with the
WSRT, it can be expected that the radio environment of
LOFAR is sufficiently clean for senstive astronomical exper-
iments. In a future paper we will fully analyse and describe
the LOFAR environment and the effectiveness of the RFI
strategies.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1  2  3  4  5  6

O
cc

ur
en

ce
s

Phase (Rad)

Total
Uncontaminated

RFI

Figure 12. Typical histogram of the phase in a short baseline
of a WSRT observation. The RFI was detected by using the
SumThreshold method. The plot implies that RFI-contaminated
samples have a much higher probability to have a phase deviat-
ing from zero, and the phase thus contains valuable information
for RFI detection.

Finally, we like to express that the methodology of RFI
flagging, or any kind of error detection, needs to change by
the introduction of telescopes such as LOFAR, that generate
very large amounts of data, disallowing the astronomer to
browse through the data for “the baseline that was produc-
ing this artefact” or “the timestep that corresponds with
these stripes in my image”. Therefore, another important
next step is to be able to automatically detect errors that are
caused by RFI, calibration issues, broken hardware, faulty
software or any step in the complicated pipeline of a radio
observatory.
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