Statistical Methods for Astronomers Winter 2008

(12-02-2008 - 04-04-2007)

Lecturers: Russell Shipman (x7753) and Saleem Zaroubi

russ@sron.nl :ZG 276 saleem@astro.rug.nl :ZG 282

Course Times: Lecture: Tuesday: 11:15 - 12:45

Lecture: Friday: 11:15-12:45

Werkcollege: Wednesdays or Thursdays for an hour

(exam somewhere between 7^{th} and 25^{th} of April)

Course Place: ZG 161 for both lectures and exercises.

Resources:

- Practical Statistics for Astronomers, J.V. Wall and C.R. Jenkins (ISBN 0-521-45616-9)
- Statistics in Theory and Practice, Robert Lupton, (ISBN 0-691-07429-1)
- Numerical Recipes. Press, Teukolsky, Vetterling, Flannery (ISBN 0-521-43064-X)
- Kapteyn computing facilities.
- Saleem and Russ

•

Course description:

Each week we will have a lecture and work assignments. Some of the work assignments will require a bit of programming. There will also be a project due at the end of the course. This year the project will be a computer investigation which will culminate in a presentation and report. We'll discuss the project in more depth when the time comes.

Evaluation:

• Final Exam: 50%

• Project: 35%

• Work Assignments: 15% (includes class participation).

Syllabus for Statistical Methods for Astronomers

Week 1 (11-02-2008 – 15-02-2008 : Russ) Introduction:

At the end of the courses the students will be to:

- 1. Describe the purpose of statistics.
- 2. State the role of probabilities in decision making.
- 3. Describe the properties of a probability distribution function
- 4. Identify the Uniform, Normal, Poisson, Binomial and Cauchy p.d.fs
- 5. Identify a Bivariate Gaussian distribution.
- 6. Calculate the characteristic functions of these p.d.f.s
- 7. Define expectation values
- 8. Define standard measures for "center and width" of a distribution
- 9. Describe/calculate how p.d.f.'s change with various combinations of random variables
- 10. Calculate moments of a p.d.f using the characteristic function of that p.d.f.
- 11. Describe conditional probability.
- 12. Write Bayes Theorem
- 13. Properly formulate a problem using Bayes Theorem
- 14. Properly marginalize a variable.
- 15. Describe the Central Limit Theorem

Week 2 (18-02-2008-22-02-2008: Saleem) Monte Carlo

At the end of the courses the students will be to:

- 1. Describe situations where it is useful to "generate" your data.
- 2. Apply the bootstrap method to estimate uncertainties.
- 3. Create random numbers drawn from the uniform distribution.
- 4. Identify limits of computational methods (how many random numbers can be generated before repeating.
- 5. Create random numbers from a given p.d.f.
- 6. Identify Discrete Distributions
- 7. Marginalize a parameter from a distribution.
- 8. Simulate observed data
- 9. Describe the steps needed to simulate data

Week 3 (25-02-2008 to 29-02-2008: Russ) Statistics and Expectations:

At the end of the lectures the students will be to:

- 1. Define a statistic
- 10. Identify the differences between a statistic and a distribution parameter.
- 11. Identify the moments of a distribution with the Expectation values of the distribution.

- 12. Define the terms: biased, consistent, closeness and robust in terms of a statistic.
- 13. Define the covariance in terms of the Expectation value.
- 14. Describe the method for combining distributions. (including using the characteristic function.
- 15. Identify the distributions of some standard statistics: average, sample variance
- 16. Describe a correlation in terms of the Bivariate Normal distribution.
- 17. Describe a "Fishing Trip"
- 18. Describe ways in which a calculated correlation may be misinterpreted.
- 19. Write the estimator for this correlation coefficient and the distribution of this estimator.
- 20. Describe how Bayesian correlation testing differs from classical correlation testing
- 21. Describe a Non-parametric test for correlations

22.

Week 4 (03-03-2008 to 07-03-2008: Saleem) Numerical Fun with Correlations: At the end of the courses the students will be to:

- 1. Define a partial correlation
- 23. Define Principal Component Analysis (PCA)
- 24. Apply PCA to a data set
- 25. Calculate Eigen values...
- 26. Describe how FFT's work.
- 27. Calculate a convolution of real data using an FFT
- 28. Calculate the power spectrum from an FFT

Week 5 (10-03-2008 to 14-03-2008: Russ) Hypothesis Testing

- 1. Describe the Basics of Hypothesis Testing
- 29. Apply t and F tests
- 30. Calculate the Bayesian Evidence to distinguish between two models
- 31. Identify and apply the following Non-parametric single sample tests
 - 1. Chi-square test
 - 2. Komogorow-Smirnov on-sample test
 - 3. one sample runs test of randomness
- 32. Identify and apply the following non-parametric two independent sampletests.
 - 1. Fisher exact test
 - 2. Chi-square two sample (k-sample-) test
 - 3. Wilcoxon -Mann-Whitney U test
 - 4. Kolmorogov-Smirnov two-sample test

33.

Week 6 (17-03-2008 to 21-03-2008 Russ and Saleem) Data Modeling

1. Define and apply the maximum likelihood method

- 34. Define and use the Hessian and relate this to the covariance matrix.
- 35. Describe the method of Lease Squares and identify how this is different than the MLE
- 36. Describe and apply a Bayesian likelihood analysis
- 37. Calculate the uncertainties in model parameters from the MLE, least squares and Bayesian analyses.
- 38. Determine the significance of model parameters
- 39. Describe and apply the minimum chi-square method.
- 40. Describe how to expand modeling using hierarchical models.
- 41. Identify how to calculate the evidence of a model and how to chose between two models.
- 42. Test a model fit to data

Week 7 (24-03-2008 to 28-03-2008: Russ and Saleem) The Project

1. Description/Development and Analysis

Week 8 (31-03-2008 to 04-04-2008: Russ and Saleem) The Project continued

- 1. More Analysis
- 43. Presentations
- 44. Hand in of project

Project includes the actual analysis, write up and presentation.

Exam: somewhere between 7th and 25th of April