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Random Number generators

“Computer generated random numbers” is conceptually a 
contradictory notion. Computer generate random numbers based on a 
fixed recipe that is set by the programmer, how can a fixed formula 
generate an infinitely large set of completely random numbers? 
Obviously, we'll not solve this complicated issue here, however, from 
this opening you can probably realize that  there are no truly random 
number generators produced by computer (example will follow 
momentarily) their proper name is actually “pseudo-Random number 
generators”.



Putting the philosophical issues aside, this issue has practical side, one 
has to be extra careful with random number generators. In the 
history of computer analysis of data there are many examples of very 
badly written random number generators that led to a vast many 
wrong conclusions, the most infamous of such routines is the one 
called RANDU that was widespread on IBM mainframe computers. 

Despite all what have been said, random number generators, provided 
they are well tested,  constitute one of the main tools scientists have 
in their disposal to analyse and model data.

A typical random number generator is a function or subroutine 
RAN(seed) that requires the user to provide an “initial random 
number“ called the seed from which the routine generates a number, 
the next input seed is automatically generated by the previous step. 



●Almost all supplied random number generators fall under the name 
congruential generators (Lehmer 1948), which create a sequence 
of integers from the following simple recipe 
●             
●

●Pros: This algorithm is  fast in generation of numbers and 
requires very few operations per call.
●

●Cons: Not free of sequential correlation on successive calls.
●

●Routine RANDU (IBM Corp.):
● “We guarantee that each number is random individually,
● but we don’t guarantee that more than one of them is random.”

Ij+1 = aIj + c (modm)



The Transformation method
– We know that if y=y(x), then:

– We know how to generate a uniform  random number,  
   so that the probability of it being between x and x+dx is:
 

  – Therefore we need to solve the differential  equation:

– The solution is:                                where 

• This method is used to generate normal, 
   exponential and other types of distributions 
   where the inverse is well defined and easy 
   to obtain.

p(y) = p(x)
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The Transformation method: 
exponential deviates

As an simple example consider the case of an exponential distribution

From the previous relation we can produce a realization of this 
distribution from a uniform deviate x through the transformation:

p(y)dy = e¡ydy

y(x) = F¡1(x) = ¡ lnx



The Transformation method: 
Gaussian deviates

An important example for the application of the transformation 
method is the Box-Müller method for generating random gaussian 
deviates with a Gaussian (normal) distribution.

This method makes use of the fact that it is possible to find a 
function that generates the 2-dimensional Gaussian distribution

from two uniform deviates x
1
 and x
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Acceptance rejection method
 – Generate a random deviate of f(x) (more tractable function).
 – Generate a second deviate to decide whether to accept 
   or reject that x.
 – Ratio of accepted to rejected points is the ratio of the area 
   under p to the area between p and f.
- This is very useful for generating: Gamma distribution deviates,
    Poisson deviates and binomial deviates. 



Bootstrap
● The bootstrap is a name generically applied to statistical 

resampling schemes that allow uncertainty in the data to be 
assessed from the data themselves, in other words, “pulling 
yourself up by your bootstraps”.

●  Given n observations z
i
, i=1,...,n and a calculated statistic S, e.g., 

the mean ,  what is the uncertainty in S?

● The procedure:

− Draw n values z’
i
 from the original data with replacement

− Calculate the statistic S’ from the  “bootstrapped” sample
− Repeat L times to build up a distribution of uncertainty in S



Bootstrap Assumptions
1. Your sample is a valid representative of 
the population.

2. Bootstrap method will take sampling with 
replacement from the sample. Each sub 
sampling is independent and identical 
distribution (i.i.d.). In other word, it 
assumes that the sub samples come from 
the same distribution of the population, but 
each sample is drawn independently from 
the other samples.



Bootstrap: Applications
Here are some typical statistical examples of problems that you 
can use Bootstrap method to solve
1. Suppose you have some sample data but your sample is quite 
small that you are not sure the population theoretical distribution 
of your sample. How could you estimate the variance of the mean 
average of your sample?
2. You have two samples from unknown distribution, name them X 
and Y. You want to know the distribution of ratio Z = X/Y and 
want to derive some useful statistics (such as mean and standard 
deviation) from the distribution of the ratio.
3. You have two samples A and B and you want to test whether 
they come from the same population
4. You have regression model                        
 and you want to get the confidence interval 
of the parameters      and     .

y = ®x+ ¯

® ¯



For a given statistic, one often wants to calculate the bias and 
error with both are as small as possible. One practical way of doing 
so, in the absent of knowledge of underlying distribution, is from 
the data itself through the so called Jackknife analysis. The basic 
idea is calculate the statistic repeatedly while each excluding one 
(or more) data points from the estimation of the statistic. 

Jackknife analysis is related, albeit less general,   to the bootstrap 
method discussed earlier. Its main advantage, however, is in its 
simplicity. 

Jackknife analysis



Here we'll rigorously proof that the Jackknife analysis works for a 
certain case. Assume we are after a statistic s which we want to 
estimate from n data points, E(sn). We'll assume that the estimator 
is biased although asymptotically unbiased. For example, assume 
that the bias in the estimation is given by:

We can make n samples of n-1 observations, define a new statistic:

Which less biased than E(sn):

Jackknife analysis

E(sn)¡ s =
1X

i=1

ai=n
i

s0n = nsn ¡ (n¡ 1)sn¡1;AV = sn + (n¡ 1)(sn ¡ sn¡1;AV )

E(s0n)¡ s = ¡a2=n2 +O(n¡3)



The LOFAR telescope





L
o
w 
B
a
n
d 
A
n
t
e
n
n
a

H
i
g
h 
B
a
n
d 
A
n
t
e
n
n
a



LOFAR test stations images
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