
Cosmology

● Teacher: Saleem Zaroubi 

● Room 182, phone 34082, email: saleem@astro.rug.nl

● Office hours: You are always welcome to come to my office for  short 

questions. It is better to set an appointment.

● Teaching assistants: Ewoud Wempe and Fabian Gunnink.

Emails:  wempe@astro.rug.nl and f.j.gunnink@student.rug.nl

● Problem sets are mandatory (5 out of 7 at least)

● Written exam at the end of the term

● Lecture slides could be obtained from my website: 

http://www.astro.rug.nl/~saleem
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The two sphere 
model of 

Asristotle
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The orbits of stars in the night sky

History of Cosmology



The Universe according to Ptolemy 



The Copernican Revolution



The Copernican revolution and the 
Scientific Revolution

Kepler

The three laws of 
planetary motion

Galileo

The first scientist

Newton

NATURE and Nature’s 

Laws lay hid in 

Night: 

God said, “Let Newton 

be!” and all was 

light.               



General Theory of Relativity
1915

General Relativity
Gravity = Geometry

Newtonian Physics

Gravity = Force



Einstein wanted a static 
Universe (1917), but the 
equations always gave 

an expanding or 
contracting  solutions 

(Friedmann 1922, 
Lemaitre 1927, ).

The Universe’s

Expansion



Key Observations in Cosmology

● Olbers' Paradox: why the night sky is dark?

●  The Universe on large scales is homogeneous and 

isotropic. 

● Hubble expansion.

● Cosmic Microwave Background Radiation.

● Abundance of elements in the Universe.

● The Universe's content (the dark sector)
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Olbers' Paradox 

Main assumptions:  
1. The Universe is infinite
2. The distribution of stars is uniform throughout the Universe.
3. The Universe has lived for ever.
4. The luminosity of stars does not change with distance.
If that is the case, then the night sky should NOT be dark!  

Assume that the number of stars per unit 
Volume is n, and that each radiates with a 
Fixed Luminosity, L. Hence, the contribution 
of a shell at radius r and with dr to the 
observed intensity is: 

Hence

r
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Olbers' Paradox

The paradox is demonstrated in these two figure!
The question then remains, why is the night sky dark?
Obviously, the night sky is dark which means that one or more of our 
assumptions is wrong. In what follows we will examine them.
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Olbers' paradox 

Possible resolution for the paradox:

1. There is too much dust obscuration to see the rest of the stars.
This explanation is wrong since the dust after being heated for 

long enough time it will start emitting itself (blackbody rules) 
which we don't see.

1. The Universe has a finite number of stars.
Still, we know that the number of stars is large enough for the sky 

to be bright.
1. The star are not distributed uniformly. 
This is possible (in say a fractal distribution) but against evidence!
1. The Universe expands and redshifts the stars out of the visible.
This is correct (see later) and partially explains the paradox
1. The Universe is young, distant stars' light hasn't reached us.
It turns out that this is the most important effect in resolving the 

paradox.
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The Cosmological Principle

After the Copernican revolution the idea that we are at the center of the Universe has been 
discarded once and again. Pushing this notion further one can deduce that indeed there is 
no preferred point in the Universe nor there is a preferred direction. These types of 
arguments have lead to a basic assumption in Cosmology which states that the Universe 
is homogeneous and isotropic. These two assumptions combined constitute what is known 
as the “Cosmological Principle”. 

Note that the two requirements are fundamentally different and having one does not imply 
the other. Here are two examples of distributions that are either homogeneous or isotropic:

Isotropic pattern with respect to the center Homogenous but not isotropic12



The Cosmological Principle

Though these assumptions are easy to make in theoretically, proving that they 
hold in the real Universe is a different matter altogether. In fact, the Universe 
around us is anything but homogeneous and isotropic. This is certainly the 
case on earth, the solar system and the Galaxy. But even on larger scales it is 
hard to argue that these two assumptions hold. The Universe actually is not 
isotropic and homogeneous even on scales of 100 Mpc. 

This image shows a reconstruction of the 
matter density field within a 200 Mpc/h box 
centered at the Milky way (located at the 
center). This reconstruction is done using 
galaxy peculiar velocity data and it clearly 
show deviation from the Cosmological 
principle.  
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The Cosmological Principle

It is only on very large scales that 
the homogeneity and isotropy of 

the Universe becomes apparent. 

The APM galaxy survey includes 
3 million galaxies and spans 
very large scales and could be 
shown consistent with isotropic 
Universe on very large scales. 

Sloan Digital Sky Survey has 
shown that the Universe also 
approached homogeneity on 
very large scales. The result 
shown in this figure is taken 
from Hogg et al. 
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The Cosmological Principle

The most striking evidence for the Universe's isotropy comes 
from the cosmic microwave background measurement which 
we will discuss shortly.

All of these data have led to rephrasing of the cosmological 
principle which now states that the Universe is homogeneous 
and isotropic on sufficiently large scales.

These assumption together with Einstein's general theory of 
relativity (normally referred to as GR) led to the derivation of the 
key equations that describe the Universe's geometry given by 
the metric known as Friedmann–Lemaître–Robertson–Walker 
metric (sometimes the metric is called after a subset of these 
names, e.g., in the Ryden book it is called the Robertson-
Walker metric).  
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The Hubble expansion

Evidence for an expanding Universe was first presented by the american 
astronomer Edwin Hubble who carefully constructed a distance ladder to 
measure extragalactic distances with the help of Cepheid period 
measurements. Hubble correlated the measured distances of the 
Cepheids in other galaxies with their redshifts. The redshift measures the 
line-of-sight speed of a certain galaxy to the observer. The redshift is 
defined as z= (l-l0)/l0 = Dl/ l0where l is the measured wavelength and l0 is 
the rest-frame wavelength.    
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The Hubble expansion

From this correlation Hubble formulated his famous law where 
he interpreted the redshift as a doppler shift and related it to the 
line-of-sight velocity of the galaxy,

Where c is the speed of light, 
and H0 is a constant known 
now as the Hubble constant. 
Note that Hubble obtained a 
value of 500 km/s/Mpc for his 
constant about an order of 
magnitude larger than the 
modern value of this constant 
which is 72 km/s/Mpc (see 
figure).
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The Hubble law

To put Hubble's observation more mathematically, the distance between two 
points increases with time in a manner proportional to their distance at a given 
time (similarity). Then the distance between two points could be written as:

Hence the relative velocity along the vector connecting between the two points is:

Obviously, since the expansion is homogeneous and isotropic this will be true for 
any two points in space. 

Now, one can use this law to estimate the age of the Universe. Assume that there 
is no force between the two points in discussion then will be moving in constant 
velocity, hence the ratio between their distance to their relative velocity at a given 
time will give the time the two points spent  getting away from each other:
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The Hubble law

This gives about 14 Gyrs as the age of the Universe. This is roughly the correct age. One 
should note however that this relation is  just an order of magnitude estimate since we 
know that gravity acts against the expansion of the Universe and the expansion rate of the 
Universe changes with time, i.e., H(t).

In general, Hubble law comes naturally in Big-Bang models. If one assumes General 
Relativity and the cosmological principle the result give a geometry of an expanding 
Universe. Such solutions were disliked by Einstein, and he invented the cosmological 
constant in order to reach a non-expanding Universe solution. We'll discuss this in detail 
in the coming lessons.

Hubble law exists also in a non-Big-Bang models such as the steady state model which 
was proposed by Herman Bondi, Thomas Gold & Fred Hoyle. This model assumes the, so 
called, perfect cosmological principle in which the Universe is not only symmetric under 
translations (homogeneous) and rotation transformation (isotropy) but also with time. In 
such a Universe the properties of the Universe do not change with time (constant density, 
Hubble constant, etc.).

The Steady State model was one of the most serious contender for a cosmological theory 
and by the middle sixties it was the preferred model for most astronomers. However, the 
discovery of the Cosmic Microwave Background radiation, a thermal relic from the early 
Universe, which clearly tipped the balance in favor of the Big Bang model.

19



CMB observations

Two Nobel prizes dedicated to this field: discovery, 
blackbody radiation and fluctuations20



CMB: Blackbody radiation

Blackbody radiation arises when an idealized body reaches thermal equilibrium between 
the incident  electromagnetic radiation which is total absorbed, i.e., perfect absorber, 
and then re-emits for obvious reasons the same amount of energy, that it has just
 absorbed. The spectrum of the emitted radiation is a very specific spectrum, 
known as blackbody radiation. In such body the energy density of photons in the frequency
 range between              is given by the formula: 

The total energy density of blackbody radiation is                         , called Stefan-
Boltzmann Law, where

One can also calculate the number density of photons from the Planck distribution 
which is,

where the numerical factor is:

It is also useful to remember that photon pressure is:     
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CMB global properties
Assuming no external sources of energy (i.e., heating), then one can use the first law 
of thermodynamics dQ=dE+PdV to obtain dE= -PdV. Now remember that                      
and                           .   

Substituting the two terms in the first law, equation one obtains the following equation:

Remember that V ~ a3(t)   which gives the very nice result                                         
this could be simply related to (1+redshift) which makes it easy to obtain the photon 
temperature of the Universe at any redshift provided the local temperature is 
measured.
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The COBE satellite has indeed measured the 

CMB temperature to be 2.726K.



The  abundance of elements in the 
Universe

● Abundance of elements (nucleosynthesis)

The Universe contains mainly Hydrogen
and Helium
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Evidence for dark matter and dark energy

Dark matter

●Galactic rotation curves
●Velocity dispersions of galaxies
●Galaxy clusters and gravitational 
lensing
●Cosmic microwave background
●Sky Surveys and Baryon Acoustic 
Oscillations
●Lyman-alpha forest
●Structure formation
●......
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Dark Matter



Galaxy Clusters



Gravitational lenses



Galaxy Clusters
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CMB observations

Two Nobel prices dedicated to this field: discovery, 
blackbody radiation and fluctuations29



The BOOMERANG Experiment



The total energy of the Universe is 

zero

Ω= 1



The Cosmic Energy Budget

1 =W



Geometry of the Universe

The assumption in this course is that the student did not learn 
general relativity. Therefore, derivation of the geometric, 
dynamical and thermal properties of the Universe will not be 
done rigorously, but rather, presented in an ad hoc manner.

General relativity is a generalization of special relativity to include 
the effect of gravity. In its formulation Einstein (1915) extended 
special relativity principles to include the Equivalence principle 
which states that gravitational mass and inertial mass are 
equivalent.   

g(=a)

a (=g)

Even Einstein can not tell 
whether the elevator is 
accelerating upwards or he is 
pushed  downwards  by a 
gravitational force.
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Einstein vs. Newton
As a result of this insight (and after about 7 years of trying) Einstein was able to 
construct a very powerful theory that describes the behavior of gravity. This theory 
led to a fundamental change in the interpretation of the laws of dynamics. 

In the case of classical mechanics Newton laws 
allow us to solve for the motion of particle under 
gravity by: 
1- Newton gravity law determines the force felt 
by a body with mass M; F=GMm/r2. 
2- This force in turn determines how the body 
moves in space (F=ma).

However, in the case of General Relativity the 
motion of a certain is determined as follows: 
1- the Mass, or more accurate energy, 
distribution determines the geometry of 
spacetime, i.e., the curvature of space-time at 
each point. 
2- In turn, this geometry determines how the 
body is moving.

In this course we will use the Newtonian interpretation of motion and speak of real forces 
and motions. This is good enough for our purpose in this course, although one should 
bear in mind that this is not an accurate description of nature, which is described much 
better with General Relativity and Einstein’s interpretation of it.
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Geometry of the Universe

In special relativity the geometry is described by the so-called Minkowski metric:

Minkowski metric is flat, i.e., the spatial coordinates describe a Euclidean (flat) geometry.
A particle in such a geometry has three possible worldlines (trajectories or geodesics): 
1. ds2<0 time-like
2.  ds2=0 light-like (in GR this will be called null geodesy)
3.  ds2>0 space-like 

worldline

In a spherical coordinates one can write the Minkowski metric 
as:
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Curved Spaces

Positively curved 
Space

Negatively curved 
Space

Flat 
Space
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Curved Spaces

The modification of the Minkowski metric in curved spaces requires GR, however, 
here will try to derive a simple generalization of this metric for a homogeneous 
and isotropic Universe (remember, the cosmological principle). 

Positively curved surface: Imagine a sphere with radius R. A great circle drawn in 
the surface of the sphere is a circle that shares the same center of the sphere. 
For example, on the surface of Earth such a circle would be the equator or any 
circle which passes through both the south and north poles. Now a line element 
along a great circle with arc length r from the pole is given by the following metric: 

R sin(r/R)
R

r
dr

dq

r/R

Now, this could be generalized as follows:

Equator
R

Great circle
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Curved Spaces

In case the space is negatively curved one can show that a line element could be written 
as:

The three metric for a homogeneous and isotropic three-dimensional space could be 
simply written as:

Where

and the k is called the curvature constant and it attains a value of 0 for a flat space, +1 

for positively curved space and -1 for a negatively curved space. If the space is curved 
then the quantity R is called the radius of curvature.

One could also express this metric differently by choosing, for example, another radial 
coordinate,                  , then the metric is written as:

The two forms of writing the metric are equivalent and differ only in the choice of radial 
coordinate.  

38



Geometry of the Universe: The Friedmann- 
Lemaître-Robertson-Walker Metric

Generalization of the 3D curved metrics to space-time (4D) metric is very simple. The 
spatial part is the similar as the 3D case, except that one needs to take into account the 
expansion of the Universe. Therefore, the metric is either:

The addition of the scale factor, a(t), here accounts for the expansion of the Universe. Also 
notice the change in R to R0 which now indicates that the space is uniformly curved.
Obviously, the metric could also be written as:

The time coordinate is called cosmological proper time or in short cosmic time; k is the 
curvature constant mentioned earlier.

Historic remark: The first to come with such a solution for a homogeneous and isotropic 
space was the russian physicist Alexander Friedmann in 1922-1924,  though his work 
remained unnoticed. In 1927, Georges Lemaître, a Belgian priest and lecturer at the 
University of Leuven, rediscovered the same solution which he published in a Belgian 
journal. Eddington noticed this paper and republished it in English in 1930. In the 1930 
Robertson (US) and Walker (GB) also found the same metric. The name of the metric is 
often named after a subset of the 4 names mentioned above. In Ryden's book the metric 
is called the Robertson-Walker metric.
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FLRW-Metric: Basic implications

Proper distance, is the distance between the observer and a certain point in space, say a 
galaxy, at a fixed time, t:

Since for a given galaxy both q and f are constants the equation becomes simply

Integrating this equations gives:

Which brings immediately to mind, Hubble law:

At t=t0 the Hubble parameter becomes Hubble constant, H0. Notice, that Hubble law is 
valid at every instance in cosmic time but with varying value of the constant.

The fact that we recover Hubble law is not surprising since we designed our metric to do 
so. However, in proper GR derivation this results comes out naturally as a genuine 
prediction of the theory.
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FLRW-Metric: Basic implications

Another important implication of this result is that at a large enough distance from us 
galaxies will recede at a speed faster than that of light.  It so happened that this distance for 
a Hubble constant of 70 km/s/Mpc is about 4300 Mpc. 

The fact that the speed of such galaxies is larger than the speed of light in not a major issue 
as in GR, unlike in Special Relativity, there is no constraint on the relative velocity larger 
than c except in a local sense. In other words, special relativity applies locally to space time 
but not globally. There is no restriction in GR in the expansion rate of space itself.

Now we move to derive the null geodesic along a direction connecting the observer to a 
distant object with the purpose of. In this case we'll take q and f are constants and the 
condition is that ds=0 (just like light moves on the light cone in special relativity). One can 
easily show that (see exercise) :

where we chose a(t0) to be one.
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Cosmic Dynamics

In order to determine the dynamics of the Universe in full rigor one must bring to 
bare the full power of GR, specifically using the so-called Einstein equation which 
describes gravity in space-time that is being curved as a result of the matter and 
energy distribution in it, much like Poisson equation in classical gravity. However, 
since here we assume no previous knowledge in GR we will derive the main 
equations that describe the dynamics of the Universe by using Newtonian 
description. This approach will get us far but still we need to assume a number of 
things that arise naturally in the GR derivation of the equations.

The equations that we are going to derive for a homogeneous and isotropic 
Universe were initially derived by Friedmann himself but were not given enough 
attention until the discovery of Hubble law 7 years later.   

Imagine a uniform sphere of mass Ms and 
radius Rs(t) and density (t). Conservation of 
energy gives the following equation for the 
expansion velocity:

Here U is the total energy of the system 
(constant of integration)



Friedmann's Equation

Now we recall that the distribution of matter within the sphere is uniform and depends 
only on time, yielding:

We could also express the radius of the sphere in relation to its radius at a specific 
time (comoving radius) which gives,

Putting everything together gives:

With some manipulations we obtain the so called Friedmann equation in its 
Newtonian form:

It is clear that the integration of this equation depends on whether U is positive, zero 
or negative. For a U>0 the sphere will expand for ever, for U=0 it will stop at infinity 
and for U<0 it will re-collapse. 
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Friedmann's Equation

Now we will recast the same equation in GR terms. Friedmann's equation then takes 
the following form: 

Where we have substituted r = e/c2 which basically says that one needs to take into 

account any component in the sphere that contributes to the energy density. The 
second term that we replaced is due to the proper relativistic treatment and yields that 
the second RHS term depends on the curvature of the Universe and its “radius”.

Now in the case of a flat Universe (k=0) at z=0 the LHS of this equation becomes H0
2 

(known as the Hubble constant) which gives the density known as the critical density, 
namely the density of the Universe that will make it flat (assuming no extra-ingredients 
in the Universe, like cosmological constant which we will discuss later).

Obviously, one can show that the critical energy and density at any time (redshift) is 
given by 
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Friedmann's Equation

The current value of these quantities are given in the book (based on H0 = 70±7 km s-1Mpc -1) 

It is also customary to write energy density in units of the critical energy density, namely, in 
terms of the dimensionless parameters:

The Friedmann equation could then be written in a very “economical” manner:

This is a very interesting form of the equation as it interprets the curvature as some sort of 
energy density. It should be emphasized that this is not a energy density term but rather a 
geometrical term that arises from the Gmn term of Einstein's equation and not the Tmn which 
gives the real energy density of the Universe that is only given by W. 
Another comment that has to be mentioned here is that the we have mentioned W generically 
without discussing the contribution due to its various components, e.g., matter, radiation, etc. 
This will be discussed and developed in subsequent lectures.
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Thermodynamics and the acceleration equation

As important as Friedmann's equation is, it can not give us a solution of how the 

Universe will evolve as it has two unknowns, a(t) and e(t). Hence another equation 

is needed. In order to get another equation, we will take the derivative of the 
Friedmann equation which could be complimented by thermodynamic relations that 
will allow us to solve for both quantities depending on the Universe's ingredients 
and their equation of state.

For a homogeneous Universe where there is no exchange of heat between its parts 
the expansion is adiabatic, namely, the heat flow into a given region dQ is 0. 
Therefore, from the first law of thermodynamics one concludes that,

Where E is the internal energy, P the pressure and V the volume. Substituting the 

volume of our sphere V=4p/3 rs
3 a3 and energy of the sphere E=V(t) e(t) and some 

manipulations we reach the following equation about the rate of change in the 
energy density of the Universe: 
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Acceleration equation and equation of state

Taking the time derivative of Friedmann's equation and substituting the rate of change in the 
energy density of the Universe we obtained in the last equation yields,

This equation gives the acceleration rate of the Universe.

Clearly, if the Universe has normal pressure component, then the it will decelerate. However, 

if the pressure is negative (also known as tension) then under certain condition (P < -e/3) 

the Universe can accelerate.

In other words, the fate of the Universe in this model hinges upon the relation between P 

and e, i.e., the equation of state of the Universe, which in turn depends on its constituents. 

For cosmological important substances, the equation of state could be written as simple 
linear relation,                 where       is the dimensionless equation of state parameter.                               
.  This parameter is 1/3 for relativistic particles (photons and neutrinos), 0 for dust and 
around -1 for dark energy (cosmological constant) component. The equation of state 
parameter has one main restriction and that it should be ≤ 1. This will be proven in the 
werkcollege!!
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Notice that we can define and cosmological constant energy density of L as:

Dividing by the critical density we obtain eL in units of ec, as WL = L/3H2 in this case we can 

also write Friedmann's equation as  W+Wk=Wr+Wm+WL+Wk=1.

Another interesting observation is that in Einstein static Universe both     and     are zero. 
Therefore, one can deduce the value of radius of curvature

The problem that the introduction of the cosmological constant is that if it is interpreted as 
the vacuum energy. In such case one can use quantum field theory to calculate its value but 
this is beyond the scope of this paper. As an alternative we deduce its value from the Planck 

scale and mass (which are the natural scale and mass that involve G, c, and ħ) and 

have the following values,                                              ,  and

This gives a value for the vacuum energy density of 3x10133 eVm-3 which about 124 orders 
of magnitude larger than we measure. 
A number of decades ago the main question with regard to the cosmological constant was 
why it is so large, especially since what is measured was (about) zero? However now the 
main question is why it is so small and yet not zero?
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Single and Multi-component Universe

In principle one would like to solve the following three equations:

Friedmann's equation,

The fluid equation,

The equation of state,

We then obtain the solution for the scale factor, a, the energy density, e, and the pressure, P.

Notice that the acceleration equation has been replaced with the fluid equation. 

Solution of these equations for all components (radiation, matter and dark energy) has to be 
done numerically therefore we first focus on several simple cases and then put everything 
together. 
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The energy density evolution

In the case of a number of components that contribute to the energy density of the 
Universe one has to make the following modifications to the previous equations:

⚫Friedmann's equation preserve its form except that the energy density is the some of    
the contribution of all components. Namely,

 

⚫The total pressure will also attain a similar form, namely,

 Where w is the equation of state constant for each component. This mean that, in 

principle, the equation of state and the fluid equation need to be modified.

Assuming that the various components do not interact with each other the equation of 
state and the fluid equation could be then written component by component. It is worth 
noting that with the exception of the interaction of radiation with the baryonic 
component of the matter (up to recombination or z ≈1100) the non-interaction 
assumption is a very good one. To recast what we said mathematically for each 
component:
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The energy density evolution

For a full solution of the last equation, we have to assume some boundary conditions. Here 
we assume that we know the energy density of the energy density component at z=0 and 
assume that the scale factor at z=0 is 1. These assumptions yield a very simple solution for 
the energy density evolution of each component,

As we mentioned earlier, we typically have three components: Radiation, Matter (dark & 
baryonic) and Cosmological constant (or dark energy). For each of these components the 
solution is given in the following table:

Obviously, once one knows the manner in which each of the energy density components 
evolves then one can solve Friedmann's equation. In the following few slides this is exactly 
what we will do for various assumptions about these components (which we can solve 
analytically). Generally, however, the solutions can be only obtained numerically. 
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Solutions of Friedmann's equation: 
Special cases

Here we will show solutions of Friedmann's equation for a number of special cases

Curvature only Universe: 

If the Universe has no matter nor radiation then the equations allow two types of solution a 

solution with k=0 and å=0, namely, an empty static Universe whose geometry is described 
by Minkowski metric.

The other type of Universe that is allowed is 

one with k=-1 (open Universe). In this case, 
å=±c/R0≡ ±1/t0, or a(t)=±t/t0. Notice, that 
with the lack of gravity the expansion rate is 
constant. Solve for the proper distance!

We will also show the scale factor of the 
Universe for the case of radiation 
dominated, matter dominated, and 
Cosmological constant dominated 
Universes. This figure show the evolution of 
the scale factor for each case.
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Spatially Flat Universe

The case of a flat Universe with a single component has the following solutions:
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The Energy density of our Universe

Radiation dominated Matter dominated Vacuum 
dominated
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Multiple-Component Universe

Since we know the various components of the Universe we can write Friedmann's 
equation in generic terms, where we absorb the dark energy term in the first term of the 
RHS of the equation.

As an aside remember that this equation could be written as:

and W is the total energy density in units of the critical energy density at any given time
We should distinguish between three cases here:

1.If the Universe is flat at any given time, then it always remains so.

2.If the Universe is closed (k =+1)  then there are two cases to consider.    
i.  Matter or radiation dominated Universe. The Universe's W increases with time.
ii. Cosmological constant dominated Universe where W asymptotically reaches unity. 

1.If the Universe is open (k =-1)  then there are two cases to consider.
i.Matter or radiation dominated Universe. The Universe's W decreases with time.
ii.Cosmological constant dominated Universe. The Universe W asymptotically reach 1.
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Multiple-Component Universe

Given that in the past the Universe was radiation and matter dominated it means that 
the Universe was incredibly close to flat at the early Universe (remember we measure 
the Universe as flat down to a certain accuracy but whatever our accuracy is in the 
past the Universe flatness was even greater).

So, the big question is why out of all the values that energy density of the Universe 
could have it has the critical value?

1
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Multiple-Component Universe 

Now we remember that the second term of the RHS of this equation could be actually written as

Where we used the relation:

Dividing by H0
2, Friedmann's equation obtain the following form: 

where, W
0
 = W

r,0
+W

m,0
+W

L,0

This equation leads to the integral:
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Multiple-Component Universe

This integral could not be performed analytically. However, an analytical solution could be 
obtained in certain cases which we will discuss briefly here.
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Matter and Curvature

Friedmann's equation in this case is given as,

It is easy to see that in case of a closed Universe  (W0 > 1) there is a max scale factor 
after which the Universe will recollapse in a so called big-crunch.  This max scale factor 
is simply

In such case we could obtain the scale factor evolution with the integral

Which could solved parametrically with q (which runs over 0-2p with a=0 at the two 
borders),  
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Curvature and matter

We obtain a big bang at t=0 and a big crunch at, 

For an open Universe then there is also a parametric solution for the integral and it has 
the form:

With h running from 0 to infinity.
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Matter and Radiation

As we mentioned earlier at the early Universe radiation was the dominant energy density 
component. However, as the Universe expands the contribution to the energy density 
gradually changes from radiation dominated to matter dominated. Such transition occurs 
at the scale factor,

which corresponds to zrm ~ 3600. Therefore, a flat cosmology with radiation and matter 
components alone is worth exploring. In such a Universe Friedmann's equation takes the 
form,

This equation yields the analytical solution,

We could easily verify the two limits of this equation, namely, a<<arm and a>>arm.

Find the time of matter density equality.
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Matter and Lambda

The other case that is worth exploring is that of a flat cosmology with matter and 
cosmological constant. This is obviously the second mixture that is important for our 
Universe. Friedmann's equation in this case is simply given by,

In the book they explore the case of negative cosmological constant which provides 
an attractive force instead of a repulsive force. In such case the Universe will 
recollapse in a big crunch exactly like a Universe without cosmological constant but 
with matter density parameter > 1. We will not explore this option here if you are 
interested, please look it up in the book.

Here we will focus on the case with a positive cosmological constant (like the one we 
measure). In such a case one can define a matter-L equality scale factor, amL~0.72 
which corresponds to zmL~0.4. In this case also an analytical solution of Friedmann's 
equation exists,

Verify limits and find the equality time (about 10 Gyrs).   
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The current standard model
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Current Best Parameters
From Planck Surveyor + …



The deceleration parameter

Measuring the scale factor of the Universe as a function of time allows us to determine a 
number of cosmological parameters. The simplest parameter that it allows to measure is 
the Hubble constant. A simple Taylor expansion of the scale factor around t0 to second 
order give,

This could be written as 

where the parameter q0 is the so-called deceleration parameter, defined as,

Now we use the acceleration equation to obtain this relation between q0 the Universe's 
energy density components:

Hence measuring the evolution of the scale factor with time gives us important constraints 
on these components.
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The proper distance to a certain galaxy is, 

For light,                                            , hence

If the galaxy is not far away then one can use Taylor expansion to obtain,

Hence the proper distance close to us to second order is,

We can connect this to redshift by remembering the z-a relation which gives

Hence the proper distance to a galaxy at redshift z in such case is, 

The deceleration parameter
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Distances in the Universe

As mentioned earlier in the course within the frame of work of Robertson-Walker 
metric one can define a number of distances. This is due to the fact that distances 
are measured between objects  that have different cosmic times, different 
expansion rates (along or across the line of sight) etc. It is this mixing of time and 
proper coordinates in the metric that gives rise to very different possibilities of 
defining distances in the Universe.

In this lecture I will define the various distances  normally invoked in Cosmology. I 
will also show how different observations are sensitive to different types of 
distances. Furthermore, I will discuss how these measurement provide information 
on the basic cosmological parameters.
 
But first I'll start by reminding you with the so-called proper distance that we have 
defined in one of the previous lectures. This distance is defined as the distance 
between the observer and a certain point in space, say a galaxy, at a fixed time, t:

Since for a given galaxy both q and f are constants, the equation becomes simply

Integrating this equations gives:
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Event Horizon distance

We want to calculate the horizon size of the Universe at time t (not necessarily t0). In order 
to calculate the horizon distance, we integrate over cdt but we recall that the Universe 
expands as the light passes through it hence the integration should take into account by 
simply taking the ratio between the scale factor at the time we calculate the distance and 
the time cdt is calculated giving the following horizon distance: 

the generic distance c dt travelled by a light ray between t and t'=t+dt' has been multiplied 
by a factor a(t)/a(t'). 

The horizon of a particle at any time t divides the set of all points into two classes: those 
which can, in principle, have been observed by an observer at time t (inside the horizon), 
and those which cannot (outside the horizon). Notice however, that in case a(t) converges 
to zero quickly enough then a particle could have seen the whole Universe at early times.

One can show that this is not the case in general, though with inflationary theories which 
we will discuss later, the comoving size of the horizon at very early time is much larger 
than the current horizon scale, namely, at some stage in the Universe's history the scale 
factor increased faster than the speed of light and regions that were causally connected 
(within the horizon of each other) grow apart so fast that they are currently outside each 
other horizon!

68



Event Horizon distance

Wm=1 Wm= 0.2
Wm= 0.2
WL= 0.8

Here we used Friedmann's equation to 
get the horizon distance as a function 
of a. Once that is done one can use 
the scale factor-redshift relation to 
explore how this distance evolves with 
redshift.

On the right, we see a solution for the 
horizon scale as a function of redshift 
for various cosmological models.
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Luminosity distance

The Luminosity distance is defined in such a way as to preserve the Euclidean inverse-
square law for the dimming of light with distance from a point source. Let L denote the power 
emitted by a certain source which observed by us to have a flux  f, then the luminosity 
distance is given by,

Now we remember that the FLRW metric which gives,

 The surface area of a sphere now is simply 4pSk(r)
2 which means that the luminosity drops 

as inverse of this expression due to geometry. Furthermore, the energy per photon also 
drops by 1+z. Another 1+z comes from the fact the time between two successive photons 
emitted in our direction will be observed with (1+z) factor between their arrival time. 
Therefore, the combination of all of these factors gives,

Hence, 
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Luminosity distance

Notice that even is a flat Universe the distance to a standard candle will be overestimated 
by a factor of 1+z if one take the naive inverse square distance for dimming of light.

The luminosity distance for small z and flat Universe can be approximated by dL ~ dp (1+z) 
recalling the discussion about proper distance at low redshifts one obtains,

Which for standard candles allows the measurement of both Hubble constant and q0. 

The figure here shows an 
accurate solution of  dL as a 
function of z for three models.
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Measuring W
m

 and WL

Measuring supernovae type Ia, which is a thermonuclear explosion supernovae (and not 
core collapse supernovae) gives a light curve that can be standardized.

This allows the use of this type of SNe  as standard candles which could then be used to 
measure the luminosity distance and the cosmological constants.
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Measuring W
m

 and WL

73



Angular diameter distance

Suppose we have a set of standard rulers, objects that we know are all the same size 
l, then the question is the angular size, dq(z) of these rulers as a function of redshift. In 
Euclidean geometry the answer to this is simply dq=l/d where d is the distance to the 
object. In FLRW geometry, however, the distance that is defined through this equation is 
called the Angular Diameter Distance and is normally marked as dA (≡l/dq). In order to 
calculate this distance, we go back again to FLRW metric and obtain,

For a standard yardstick with a given length, this gives:

Hence, we define the angular diameter distance as,

Which means 
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Angular diameter distance

If you have an object that is a standard candle and at the same time a standard yardstick 
then the angular distance is measured to be much smaller than its luminosity distance.
This gives rise to an unusual effect in the measurement of dA as we see in the figure 
shown here, at high redshift the distance to objects in certain models actually 
decreases?  
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Measuring W
m

 and WL

76



The thermal history of the Universe
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Decoupling of particles

In a strict mathematical sense the Universe could not ever be in thermal equilibrium because 
of its expansion (FLRW metric). In practical terms however the Universe has been in most of 
its history very near thermal equilibrium. As we mentioned earlier, it is clear also that 
departure from such equilibrium is essential to explain many features of what we observe 
around us. Departure from equilibrium often (not always) results in a decoupling of a certain 
species from some others.

The key to understanding the thermal history of the Universe lies in the relation between the 
expansion rate of the Universe (which translates to the rate of change in the Universe's 
temperature) and the interaction rate between the particle in question and the other particles 
in the Universe. The expansion rate of the Universe at any redshift is given by the Hubble 
function and  the interaction rate is given by G = ns|v|. 

 If G > H then the interaction rate is faster that of the expansion rate particle stays in thermal 
equilibrium, whereas if G < H then the species gets out of thermal equilibrium with the rest.

Notice, that even if  G < H and the particle is no longer with thermal equilibrium with the other 
species it does NOT mean that its distribution in not thermal anymore. The departure from  
thermal distribution requires an interaction that gets it out of such equilibrium.

Example of the last two points are: 1- the CMB, which has decoupled from everything else 
but maintained thermal distribution and 2- Gas at low redshifts – which gets heated 
inhomogeneously  by astrophysical processes.
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Interaction rate

A

Area covered by particles in this 
volume is given by: 

There will be an interaction if the area 
covered by these particles is of order
A. Namely,

Which gives an interaction rate:



The thermal history of the Universe

80

The isotropy and the perfect black body spectrum of the CMB show that matter was in 
thermal equilibrium in the early Universe (at least until the CMB photon were released). 
Also, it is clear that prior to decoupling the Universe was not transparent. Therefore, we 
can use the laws of thermodynamics to obtain the thermal history of the early Universe. As 
we shall see, including both the thermodynamics and the properties of the fundamental 
particles in the Universe several predictions can be made about the Universe (e.g., the 
big-bang nucleosynthesis – BBN, recombination and decoupling).

Let's start with a reminder of the number of photon per baryon, the so-called h. Using the 
current radiation energy density (from the CMB) one can easily conclude that there is 411 
CMB photons per cm3. Similarly, using the baryonic mass energy density (assuming the 
baryonic matter mass is dominated by protons and neutrons) one can calculate the 
number of baryons per cm3 to be, ~0.22x10-6. Hence h~5x10-10. The small value of this 
number has implications to all kinds of issues that will be discussed in this and the coming 
few lectures.

The small value of     is a strong indicator for the baryon antibaryon asymmetry in the 
Universe. (we might discuss this issue later). 

Calculate how the baryonic mass (gas) temperature varies with redshift in the case in 
which baryons and photons are decoupled.



Thermodynamics

In order to follow the thermodynamic evolution of the Universe we remember that 
elementary particles can be divided into two categories, Bosons and Fermions and we 
would like to obtain their evolution with time in the case of thermal equilibrium.

An example that we have seen before is that of photons where the distribution is given 
by the Planck function:

Which yields the following number of photons per cubic cm,

 

Here the z is the so-called Riemann zeta function z(3)@ 1.202 obviously the number of 
photons per unit comoving volume does not change with redshift, which is a result we 
noted earlier.
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Thermodynamics

More generally we should discuss massive particles and here the general distribution 
that such particles will follow for a given momentum, p, is the Bose-Einstein or Fermi-
Dirac distributions:

where the plus sign is for fermions and the minus sign is for bosons. The energy ϵ is 
related to the momentum through the relativistic form ϵ2 = m2c4+p2c2 and m is the 
chemical potential. 
For  photons to convert this relation to Planck distribution (for Bosons) we remember 

that =hn=pc and that g=2, where g is the quantum weight of each state is 2 for 

polarization (helicity). 

Now in the relativistic limit these particles behave like photons. That is to say, the mass 
contribution to the energy is negligible, and one can calculate the total number of 
particles through simple integration. Here we also assume that the chemical potential is 
negligible for such temperatures (m << ϵ). In such case we find, 
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Thermodynamics

The average energy per particle is then given by:

One can also show that in this case p=e/3.

The total energy density requires summing  for e over all relativistic particle species i, 

which may each have a different temperature Ti, giving

Where we define the effective degrees of freedom as, 
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Thermodynamics
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Thermodynamics

The evolution of the effective g with as a function of temperature (time)  for the 
standard model for particle physics. Notice that at low temperature the only 
relativistic species are the photons and 3 neutrino families. Since the neutrino 
temperature is different from the photon temperature (Tn=(4/11)1/3 Tg one obtains a 
value of 3.36 for g* at the low temperature end. For T>100 MeV the electron and 
proton become relativistic, and they should be taken into account giving rise to next 
plateau in this figure (g* ~ 10). And finally at T> 300 MeV all fundamental particles 
become relativistic and g* rises to about a 107. 
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Thermodynamics

Once the temperature in the Universe drops 
much below the particle mass (kT<< mc2), 
then we get to the other limits in which gives:

In this case the number density of particles 
drops exponentially to very small numbers (try 
to substitute the mass of hydrogen atoms at 
z=0 you will get around 10-10

12
). This sudden 

drop to unrealistic numbers is obviously not 
correct and the reason for it is that we 
assume thermodynamic equilibrium even 
when we shouldn't. Actually, this turns to be 
the most important aspect of the 
determination of the number density of 
various particles as a function of redshift. We 
will see later how to deal with the non-
equilibrium case which is essential to obtain 
elements abundance, deal with 
recombination, etc.

90



Chemical potentials

In rough terms, it is the rate of change of the internal energy of the system with the 
change of the number of particles, provided everything else is the same. Formally 
speaking it is the partial derivative of the internal energy with respect to the change of the 
number of particles of a certain species, where the entropy, density and number of all 
other species remain constant. Similar definitions could be achieved for the other 
thermodynamical energy functions (enthalpy, Gibbs and Helmholtz energies).

In some of our discussion we will assume that m=0 which reflects the conservation of the 
charge, baryon and lepton numbers after the GUT era.  This obviously is a wrong 
assumption in many cases, say, if you have annihilating particles out of equilibrium, etc.

In particular, this assumption will not be correct in the case of species are changing say for 
example in the case formation of neutral hydrogen out of electrons and proton where the 
number of particles clearly changes during the interaction. In such cases however, it is 
possible to calculate the chemical potential explicitly or show that it does not change due 
to equilibrium.

For photons the chemical potential is always zero.
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Neutrino decoupling

Before the annihilation of +  pairs at T ~1012 K, the Universe is composed mainly of 

The neutrinos are still in thermal equilibrium through scattering reactions of the form

For the weak interaction processes relevant for neutrinos, the cross section is given by,

where gwk~ 1.4x10-49 erg cm3. From this we obtain that G=n swk v ~ GF
2 T 5 where GF is the so-

called Fermi constant,

=4.54376 x 1014 J-2

when the ratio between the interaction rate and expansion rate reaches unity, the neutrinos 
decouple from the other particles. This happens when G/H ~(kBT/ MeV)3~1. Hence the 
neutrino decoupling occurs at a temperature of ~ 3x1010 K.
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Neutrino Temperature

s

3 3

When neutrinos decouple from the plasma their temperature changes (notice, after they 
decouple formally, we can't talk about their temp.). To describe their behavior, it is 
appropriate to approximate the expansion of the Universe as adiabatic namely, d(sa3)=0.

Now, we also need to define:

As the Universe cools and the number of degrees of freedom reduce the energy density 
and entropy are transformed (through electron positron annihilations process) from 
electrons, proton and neutrons to photons and not to neutrinos which means that 
radiation is heated up relative to neutrinos. It is also worth noting that the neutrinos 
temperature will evolve after they decouple  as inverse the scale factor (like photons). 

Now connecting the entropy before and after electron-positron annihilation  gives:

Where the indices 1 and 2 refer to the situation before and after the annihilation. 
Remember, before e+-e- annihilation g*s = 2 (g's) + 3.5 (e

+
& e

-
) + 5.25 (n's)  = 10.75 

whereas after it is  2 for g's and  5.25 for n's. Since the neutrinos are not heated during 
annihilation and they were in equilibrium before this the following equation holds 
a1

3T1
3=a1

3Tn1
3 = a2

3 Tn2

3
.

Putting all of this together will then gives that after e
+
-e

-
 annihilation,   Tn = (4/11)1/3 T.
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CMB observations
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Recombination and Decoupling
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Here we will discuss how the Universe transformed from being ionized plasma to neutral gas 
(mostly Hydrogen). In this discussion we'll ignore Helium and other atoms that the Universe 
might have; these components will complicate the calculation but will not alter the basic 
physical picture that we will obtain. The main interaction that we will be concerned about is 
the following:   p + e H + g , where the binding energy of hydrogen Q=13.6 eV (1 Ry).

Naively, one should expect that the recombination would freeze out when the Universe's 
temperature is of the order of the hydrogen binding energy. This would translate to a redshift 
of the Universe of the order of z~60000 and not 1100 (3000 K) as we observe today.
The reason for this is that the photon spectrum is a black body one and a certain fraction of 
its photons will have energy equal or larger than the hydrogen atom binding energy even at 
lower temperature. This fact coupled with very large number of photons-per-baryon result in 
a significant delay of the freeze out process until the Universe reaches 3000 K.

The other important interaction that one should consider is Thomson scattering which will  
change significantly as a result of hydrogen recombination due to the fact that this process is 
not efficient with neutral hydrogen. Thomson scattering interaction is:  e + g  e + g which 
has a cross section of: 

  



The Saha eq., which is derived from the Maxwell-Boltzmann distribution, quantifies the 
atoms in different ionization states. Here we will derive it for hydrogen ionization.

Recall that the Maxwell-Boltzmann distribution is given by: 

 We now take the ratio between the number of atoms in the ground state nH and the number 
of atoms in the ionized state np. Since the the ionized state involves electrons we define 
dnp(v) which is the number of protons with electrons in the velocity range v – v+dv. This ratio 
is given by:

The factor of me
3
/(neh

3
) comes from the phase space volume occupied by free electrons. 

Now we integrate over the velocities to obtain the following relation (Saha equation):  

The Saha Equation
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The Saha eq., which is derived from the Maxwell-Boltzmann distribution, quantifies the 
atoms in different ionization states. Here we will derive it for hydrogen ionization.

Recall that the Maxwell-Boltzmann distribution is given by: 

 We now take the ratio between the number of atoms in the ground state nH and the number 
of atoms in the ionized state np. Since the the ionized state involves electrons we define 
dnp(v) which is the number of protons with electrons in the velocity range v – v+dv. This ratio 
is given by:

The factor of me
3
/(neh

3
) comes from the phase space volume occupied by free electrons. 

Now we integrate over the velocities to obtain the following relation (Saha equation):  

The Saha Equation
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In order to account for the number of possible 

electronic states one need to look at the phase 

space density:

ge/h3 dx1dx2dx3dp1dp2dp3=geme
3/h3 dVdv1dv2dv3

 

This finally gives the statistical weight:

ge me
3/(h3ne) dv1dv2dv3



Recombination and Decoupling
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Now we will consider equilibrium between ionized and neutral hydrogen. Here we will have a 
number of assumptions that we'll mention at the stage we use each. The first assumption is 
that each of the component of the interaction (except the photons) follows a Maxwell-
Boltzmann's distribution:

If we ignore Helium then the equilibrium is given by

The statistical weights of protons, electrons and hydrogen atoms are 2, 2 and 4 respectively.
We then can define the fraction of free protons relative to total baryon number as      



Substituting hng for the baryon number density one gets,

Remember that the photon number density is,

Now defining the epoch of recombination as that when Xe is half we get z~1300

Recombination and Decoupling
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A more accurate calculation that 
includes the other species as well 
as uses not equilibrium calculations 
(Boltzmann's equation) one get 
z~1200.



Recombination and Decoupling
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Now we will calculate the freeze out time for  Thomson scattering, namely, the interaction:

For that we should compare the scattering rate with the expansion rate, H.
The only thing to calculate then is the electron number density which  we could calculate 
from Xe as,

Going through the numbers give that the two rates become equal roughly at zdec~1100. Then 
the ionized fraction, Xe  is of the order of 10-4, namely, the freeze out happens when the 
Universe is largely neutral. The following picture hence emerges:   

decoupling
z~1100

recombination
z~1300

Ionized Neutral



Big Bang Nucleosynthesis 
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Predicting the abundance of primordial elements is one of the great successes of the Big 
Bang theory. Other alternative theories would struggle to recover the observed abundances 
whereas within the Big-Bang model they are a natural predictions of the theory. For 
example, in the Steady State theory all elements heavier than hydrogen will have to be 
produced by stars which in light of the ~25% helium abundance (in mass) creates a huge 
problem for this theory – this fact was recognized by one of the fathers of the Steady State 
theory, Fred Hoyle.

Here we'll discuss how the Universe synthesized the light elements from the primordial mix 
of protons and neutrons. This is called the Big Bang Nucleosynthesis (BBN). In a broad 
sense, the discussion in this section is similar to that of the recombination and decoupling. 
Very early on the light elements (deuterium, tritium, helium, lithium, etc.) are in statistical 
equilibrium with each other. However, as the Universe expands and cools down, they 
freeze out at a certain redshift keeping a fixed abundance of these elements relative to 
hydrogen that we see around us today (in the intergalactic medium).  There are some 
complications, relative to the CMB discussion, that have to be considered here due to the 
nature of the nuclear interactions involved in the process.

The most stable light element is Helium (with a binding energy of 28.5 MeV) which means 
in equilibrium we expect that most nuclei will end up in Helium. However, the calculation of 
this process involves taking into account all light elements coupled together which leads to 
a very complicated set of coupled equations. Here we'll simplify the process and try to 
account for the main results that are observed.



Big Bang Nucleosynthesis 
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Big Bang Nucleosynthesis
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Neutron-proton freeze out:

The first step in the process of forming light elements is the formation of neutron. We first 
calculate the freeze-out temperature for this interaction. The formation of neutrons 
depends on a number of interactions the most important of which are:

These interaction's freeze-out time could be calculated using the same formula used in 
the neutrino freeze-out discussion (these are all weak interactions). Here however one 
needs to be more accurate which gives 0.8 MeV as the freeze-out temperature.

Neutron-proton ratio at freeze-out:

Here we will again use Saha's equation. In all of these interactions n and p are non-
relativistic and the ratio between them is,

Where 1.29MeV is the difference between the neutron and proton masses. This small 
number of neutrons is the main reason that BBN is an incomplete process, simply, there 
is not enough neutrons to push the process further and most protons remain free. The 
actual ratio here turns out to be ~0.17.  



Big Bang Nucleosynthesis

From this number we can already guess what would be the ratio between helium and 
hydrogen. Assuming that all of these neutrons will end up in helium. For each 10 protons 
we'll have roughly 2 neutrons. Now for helium we need 2 of the protons and the rest stay 
free. Hence in maximum possible ratio of helium is 4/12~1/3. The actual number comes out 
to be smaller because during the formation of helium some of the neutrons decays (free 
neutron mean lifetime is 885.7 s). A proper calculation will give a fraction of Yp = 0.245.

Deuterium formation:  

The main channel for forming deuterium is:
This channel dominates over the p+p and n+n channels because both will involve weak 
interactions (to turn p to n) and the former should overcome Coulomb barrier whereas the 
later has a small rate because of the small neutron fraction of baryons. This interaction 
should happen around 2MeV however, like recombination, the large number of photons-
per-baryon the interaction freezes out only around 0.05MeV (about 3 minutes after the Big-
Bang). Even at this point the number of deuterium nuclei per unit volume will be very small. 
As a result, there is a very low number of interactions of dd to form helium. This is known in 
the literature as the deuterium bottleneck lasting until a temperature of 0.05 MeV. 
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Big Bang Nucleosynthesis

Next in the process is one of the two following interaction chains:

Or

Calculating the proper numbers here yields a fraction of helium in mass Y~0.24.

In a real calculation of the BBN process, one must consider the following interactions: 
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Big Bang Nucleosynthesis 

From Fields et a. 2023

The mass fraction of various species 
as a function of the baryon density. 
Bands show the 95% confidence 
range. Boxes indicate observed light 
element abundances (smaller boxes: 

±2σ statistical errors; larger boxes: 

±2σ statistical and systematic 
errors). The narrow vertical band 
indicates the CMB measure of the 
cosmic baryon density, while the wider 
band indicates the concordance range 
of direct measurements of the light 
element abundances.

107



Problems with the Big Bang: 
1-The Horizon problem 
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A number of fundamental problems arise in the context of the standard big bang theory. 
The first is the so-called  Horizon problems, which comes from the question: why causally 
disconnected regions on the sky have the same temperature (down to 10-5 accuracy)? 

The horizon distance at the redshift of recombination is roughly 0.44 Mpc which 
corresponds to angular diameter distance as observed at z=0 of about 1.1  degrees.

z=0

z=1100

1.1 deg

How does the two red spots 
know how about each other and 
even be in thermal equilibrium 
even though they have never 
been in causal contact?



Problems with the Big Bang: 
2- The Flatness problem 
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The Universe is currently flat with a few percent accuracy (the measurement error). We 
recall (from slide 42) that the curvature “density” parameter evolves like 1/(a2H2)  . Since 
currently this number is of the order of 10-2 at z=1100 it was <10-6; at BBN of the order of  
10-18. 

(This is a universe dominated by radiation and matter). One can see that the Planck time 
this was 

This mean that the Universe started as either flat or very close to flat. The question then is 
why among the infinite number of possibilities for the Universe's geometry it has this very 
special and unique value? 

To remind you this value is unique because if the spatial curvature is positive, the it will 
quickly dominate over the matter, and the expansion will stop and turn around, and the 
universe will collapse. On the other hand, if the spatial curvature is negative, the universe 
quickly becomes empty and cold. 



Problems with the Big Bang: 
3- The monopole (relics) problem
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According to the grand unification theories the Universe is expected togo through a 
number of phase transitions as the different facets of its ingredient decouple from the 
others (GUT to electroweak and strong forces, ...). Such phase transitions produce so 
called topological defects such as magnetic monopoles, cosmic strings and domain walls 
(corresponding to zero, one an two dimensional defects). 

One can in principle estimate the 
contribution of such defects to the 
energy density of the Universe and it 
come much more than the observed 
value. Hence the question is where are 
the monopoles and the other defects 
that where created after the GUT era 
and why we don't observe their effect of 
the Universe or measure them in the 
lab?  



Problems with the Big Bang: 
4- Primordial fluctuation

We have so far focused on the mean properties of the Universe. However, there is 
another very big puzzle that has to do with the creation of the primordial density field. 
This puzzle has a number of elements, the first is what creates such fluctuations? 

The second aspect of this puzzle is why the properties of such fluctuations are as we 
observe them? These fluctuations appear to be drawn from a multi-variate Gaussian field 
(or very close to it). Gaussian fields are characterized by their power spectrum. The 
second puzzle in this regards is why the primordial power spectrum seems to follow a 
scale independent power law behavior, i.e., P(k) ~ k?



Inflation

A solution to all of these problem was proposed independently by Alan Guth and Andre 
Linde called inflation. This solution considers a phase transition in which the Universe 
undergoes a period of accelerated expansion that takes a very small volume of the early 
Universe and blows it up so much and so quickly that any inhomogeneities or curvature 
in this volume are smoothed out, and the density of nonrelativistic particles is diluted. At 
the same time, any quantum fluctuations are blown up to macroscopic size, providing the 
seeds for large-scale structure.

Such a solution solves all these problems in one stroke. The question hence is what can 
create such a behavior in the early Universe? We have already seen such a behavior 
when we considered a dark energy dominated Universe. In such case the expansion of 
the Universe is exponential and is related to the energy density if the vacuum.  

Now imagine that the field that drives inflation is not the vacuum energy field but 
something with a much larger energy scale that occurs around (probably a little bit after) 
the GUT era. This would be caused by a field that describes an internal degree of 
freedom of the system that sets initially in a false vacuum that, as the Universe expands 
and cools, moves towards its real vacuum hence releasing energy that causes the 
Universe to expand exponentially and reheats it. 



Inflation

Since the curvature density parameter scales with (aH)-2 and the expansion of the 
Universe is exponential during inflation one can ask, how many e-folds inflation should 
give us in order to solve the flatness problem (as an example) and generically one obtains 
that Universe should have expanded during this phase by 60 e-folds.   

This comes form the fact that the energy density around tPlanck:
 



Inflation

Now one can write the scale factor before, during and after inflation as:  

                                      and 

This gives the following relation between the initial and final scale factors:

Now we recall: 

Now, the main idea behind inflation is to have a phase very early in the Universe (around 
the GUT era) in which the dominant term in the Friedmann equation behaves like the 
cosmological constant (Vacuum energy). This means that Hubble parameter is this 
phase is roughly constant and the Universe expands exponentially. Therefore,

 
Starting from                              today, then using the equation on page 105, we get:

This gives                                          . From comparing  this  and the a(tf)/a(ti) one can 
calculate that the number of e folds from inflation is about 60.



Inflation

The Lagrangian of a scalar field is 

Its energy and pressure are                                             and 

If the kinetic term is small, then
 

We now use the fluid equation to obtain

Now

Therefore,   

Finally, we can use Friedman equation for a flat universe to substitute for H and write:

    



Inflation



Inflation

This is a first order phase transition such as melting of ice to liquid water which absorbs 
latent heat as well as changes the phase of the water from icy to liquid.
We'll not go too much in detail into the various inflationary scenario but will rather focus on 
one example, the so-called old-inflation scenario which is driven by a scalar field. Since we 
can not go into details, we'll mention that the equation that describes this scalar field is:

For a nice introduction about
Inflation see the article by A. Liddle: 
“An introduction to cosmological 
inflation”. It could be obtained from:
http://arxiv.org/abs/astro-ph/9901124



Inflation

The slow roll regime:
In this regime the     term is negligible, and the equation of motion is reduced to,

That is the “friction” due to the expansion is balanced by the acceleration due to the slope 
of the potential. Clearly, here the lower the slope is the slower the change in field is hence 
the more H is closer to being constant. Hence in this phase the Universe will expand 
exponentially. It is this phase that is responsible for the inflationary expansion of the 
Universe.

The Coherent Oscillations regime:

During this regime one can neglect the friction term (the terms involving Hubble 
parameter) and the field will stat oscillating around its real minimum (vacuum state). 
Actually, what happens here is that the field start decaying by pair-creating and hence 
dumping its energy in the form of heat and real particles. The oscillatory phase hence ends 
in what is normally called the reheating phase which marks the end of inflation. 



Inflation solves the various problems!

Flatness

`

Horizon

The enormous expansion also solves the relics problem since their density becomes so 
small to render their effect virtually undetectable.

The quantum nature of the inflations field (also called inflaton) creates quantum 
fluctuations that explain the density fluctuations we observe. It can be shown that such 
fluctuations are almost scale independent, exactly like it is observed.



Baryogenesis

One can show that if there is no assymetry of baryons that we should expect,

However, as we know this number is 

This discrepancy forces us to consider that baryon assymetry  is a fundamnetal feature of nature.
Currently, there is agrrement on the nature of the process nor even when it occurs, through it is 
generally assumed to happen around temperature of 1-100 GeV. 

During the 1960s the Andrei Sakharov articulated three conditions that need to happen for 
Baryogenesis to occur:

1. Nature violates Baryon number conservation

2. Baryogenesis requires C and CP violation 

3. The interactions that lead to baryogenesis are out of equilibrium



Baryogenesis

The first condition is quite obvious as without it there will be no baryon antibaryon assymmetry. 
Remember, baryons are compose of three quarks, whereas antibaryons are made of three aniquarks. 
Each quark and antiquark have baryon number of 1/3 and -1/3, respectively.  Therefore, baryon and 
antibaryons have baryon number of 1 and -1, respectively. One the other hand, Mesons, which are 
made of quark and antiquark, have baryon number of 0. This condition has not been observed in 
particle physics experiments and is not part of the standrd model of elementary particles. 

The second condition needs some explanation. Consider thefollowing three operators.

The charge conjugation operator, C, operates on particles to change them to their antiparticles.
The parity reversal operator, P, reverses the sign of the coordinates.
The time reversal operator, T, reverse the direction of time.

The baryon number violation (Sakharov first condition) is not enough to guarantee baryon 
asymmetry, since if there is a charge conjugation symmetry, and simultaneous C and P symmetry, 
then these symmetries will enforce baryon antibaryon symmetry.

C and CP violations have been observed in nature back in the 1950s and 1960s and are allowed in 
the standard model of particle physics.



Baryogenesis

The condition number 3 regarding the out-of-equilibrium interactions is obvious considering what 
we mentioned regarding the expected number of baryons in the case of no baryonic asymmetry. 

This condition is naturally satisfied because particle interactions freezeout when 

As I have mentioned, this issue is still open and currently there is consesus on which models will 
satisfy the three Sakharov conditions. Such models go beyond the standard model of elementary 
particles.

Example:

Assume a particle    decays into two particles                   with a branching ratio r, namely a fraction 
r decays to p1 and (1-r) decays to p2. Similarly the antiparicle,    , barnches into       and      with 
branching ratios                       . Therefore, the change in the total baryonic number for this reaction 
is:

Here the the left hand side is not zero only of bryon numer violation occure (B1 and B2 are 
different), and if C and CP symmetries are violated (            ).



Dark matter

Dark matter in Galaxies:
Dark matter halo

r       m

Dark matter in clusters: x-ray images, lensing, virial theorem (motions of galaxies) 



Dark matter in Clusters
The Virial theorem:

In a system with many particles the acceleration of a particle i is:

The potential and kinetic energy are

It is useful to consider the moment of inertia: 

Taking the second derivative one can show that: 

Which gives for a system with constant moment of inertia:  

Coma cluster:
       this gives a mass 400 times the mass implied by the cluster light

 



Dark Matter at various scales



Structure formation



Hydrodynamics and Gravitational 
Instability

127

⚫Basic equation in hydrodynamics: Continuity, Euler

⚫ Jeans (Gravitational) Instability

⚫ Fluid equations in an expanding Universe

⚫ Linear Regime of Gravitational Instability

⚫ Spherical Collapse model
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I.1 The Fluid approximation:

The fluid is an idealized concept in which the matter is described as a 

continuous medium with certain macroscopic properties that vary as 

continuous function of position (e.g., density, pressure, velocity, 

entropy). That is, one assumes that the scales over which these 

quantities  are defined is much larger than the mean free path of the 

individual particles that constitute the fluid.

Where n is the number density of particles in the fluid and s is a 

typical interaction cross section. 

Furthermore, for gases the kinetic energy of particles satisfies  

Ek>>DE, where DE is the energy required to unbind a pair of particles 

in the medium.

The basic ideal fluid equations

lmfp ~
1

sn
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Solid vs. Fluid

A B

C D

A B

C D

Solid

Fluid

Before application
of the shear

A B

C D

A B

C D

Shear force

A B

C D

A B

C D

After the shear 
force is  removed
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Mathematical Reminder

Gauss's Law Stoke's Theorem
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Convective (Material, Lagrangian) 

Derivative

Consider the change in a given field, say the density     
within a volume element moving with the fluid. After time t the 
density within the volume element is    .              
Therefore, the change that the density experience is:

This derivative is normally called the convictive (Material or 
Lagrangian) derivative.
Notice that if you fix the volume element in space then the equation 
becomes the normal partial derivative:

t

Lagrangian vs. Eulerian Description of Fluids: The first 

involves a coordinate system that moves with the Fluid while 

the latter involves a coordinate system fixed in space.

dr

dt
=

r(r + vdt;t +dt)- r(r;t)

dt

=
¶r

¶t
+ v ×Ñr

r(r;t +dt)- r(r;t)

dt
=

¶r

¶t



Consider a volume V which is fixed in space 
and enclose by a surface     where    
is the outward pointing normal vector. The 
total mass of the fluid in V is 
where (r,t) is the density of the fluid. 
The rate of change in the mass within V is 
equal to the mass flux into V across it 
surface   . 

Using the divergence theorem (Green's 
formula) one obtains 

Since this holds for every volume, this 
relation is equivalent to
  

132

The Continuity equation (mass conservation)

nn

V

S

One can also define the mass flux density 

as which shows that the last 
equation is actually a continuity 
equation: 

r dV
V

ò
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The Euler (momentum) equation is obtained exactly in the same way the continuity equation is 
obtained with the following exceptions:
1- The volume we consider is moving with the fluid, i.e., the rate of change is determined by 
the convictive derivative.
2- The total change in the momentum of volume V is given by the total force working on the 
particles. This force has many component. The first is the integral of the pressure (force per 
unit area) over the surface S (at this stage we'll ignore other stress tensor terms that can either 
be caused by viscosity, electromagnetic stress tensor, etc.):
 

Furthermore, an external force will have to be added as                    , Where is the force per 
unit mass, also know as body force.

Therefore, the momentum change rate within a volume V satisfies the following integral 
equation:

The left-hand term of equation (I.3) is:

Euler's equation (momentum conservation):
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Euler's equation (momentum conservation)

Applying the divergence theorem to the first right hand term of equation (I.3) yields,

Since this is valid for any arbitrary volume, the following differential equation always holds 
for an inviscid medium.  

In this discussion we ignored energy dissipation processes which may occur as a result of 
internal friction within the medium and heat exchange between its parts (conduction). This 
type of fluids are called ideal fluids.

Gravity:

For gravity, the force per unit mass is given by          ,   where 
  

-Ñf Ñ2f = 4pGr
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Hydrodynamical Instabilities

A useful way to view the reaction of a system to perturbations is 

to write the perturbation fields (normally possible to do) in the 

following form:

Obviously, the type of reaction the system has to these 

perturbations. i.e., stable, oscillating or unstable,  depends on 

whether  g  is negative, zero or positive. respectively.

Here we'll deal with several instabilities that are common in 

astrophysical systems.
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Rayleigh-Taylor and Kelvin-Helmholtz 

Instabilities

Rayleigh Taylor Instability

The Crab nebula
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Rayleigh-Taylor and Kelvin-Helmholtz 

Instabilities (cont.)

Kelvin Helmholtz Instability
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Jeans (Gravitational) Instability

In hydrodynamics, small perturbations that grow exponentially 

rendering the system unstable are called hydrodynamical 

instabilities. Here we'll examine the so called Jeans instability, 

which is the main “force” behind structure formation in th 

Universe. A useful way to view the reaction of a system to 

perturbations is to write the perturbation fields (normally 

possible to do) in the following form:

Obviously, the type of reaction the system has to these 

perturbations. i.e., stable, oscillating or unstable,  depends on 

whether  g  is negative, zero or positive. Respectively.

We'll first show this instability in a normal system and then 

derive it and discuss its behavior in an expanding Universe



139

Jeans Instability

Assume an infinite homogeneous and self gravitating gas cloud with unperturbed   
                          which are position independent.  A side comment, such a setup is 
unphysical in Newtonian mechanics, still, Jeans ignored this and went ahead with 
his perturbative approach, this is known as the Jeans swindle. 
The first order Euler equation gives:

Taking the divergence of both sides yields:

Suppose now that the gas is ideal and isothermal then the last equation could be 
written as:

where we used the continuity equation as well. cT is the isothermal sound speed.
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Jeans Instability

Trying a solution of the form  to obtain

The system is clearly unstable if the dynamical time scale is smaller 

than the hydrodynamical time scale. Put differently, the instability 

criterion is:

where lJ is called the Jeans wavelength.

Now if the cloud is roughly spherical one can define Jeans radius (RJ= 

lJ/2).  From this one can define a Jean mass                                       , 

which gives the problem a simple interpretation. If the mass associated 

with the perturbation exceeds Jeans mass then the system can't react 

to it in time and the it becomes unstable.



Structure Formation:
Linear regime

This equation must be supplemented by Poisson’s equation to relate 
the gravitational field to the density of the fluid, and by an equation of 
state to specify the pressure p.

It is easier to change the coordinates to comoving positions  to take the 
mean behavior of the Universe out, through the transformation                
and to peculiar velocity      

Consider the standard Newtonian equations for the evolution of the density, ρ, 
and
velocity, u, of a fluid under the influence of gravitational field with potential F:



It is also easier to express the density in terms of the dimensionless over-density.

One then obtains the following set of equations:  

Structure Formation:
Linear regime

Linearizing the fluid equation and substituting both the continuity and 
Poisson’s equations into the divergence of Euler’s equation one obtains,



Structure Formation:
Linear regime

The last equation could be recast in the following way:

Which has the general solution:

This generic solution has two modes, a growing mode and a decaying mode. 
The decaying mode gets suppressed very quickly and, except in certain cases,
could be ignored. The growing on the other hand is the one that has the seeds 
of the nonlinear structures that inevitably evolve to form galaxies and galaxy 
clusters. The main feature that one should notice is the self similar manner in
which the linear growing mode evolves with time.



Growning and decaying components

The last equation can not be solved without specifying values of the matter 

density and other cosmological paramters.

Radiation dominated Universe:

For example in case of highly radiation case (e.g., during the early Universe), 
one can ignore the        contribution to obtain the equation:

This equation can be easily solved

Lambda dominateds:

 in the case of a Lambda dominated universe the equation becomes:

With the solution 

In a flat and matter dominated case, the solution is:



Given the statistical nature of the fluctuation is makes sense to analyze them in term of 

Fourier transforms. Since the evolution of the over-density is linear,

then the Fourier transform density follows the same equation and hence has the same 
time dependent structure:

Frourier transform of the over-density is defined as:

and its inverse as: 

Remember, the overdensity in Fourier space is complex,

The power spectrum is defined as

We will consider the case of a power law power spectrum:

Remember the convolution theory  

The Power spectrum



We now calculate the mass at a given radius:

where the mean mass  at r=R  is,

The variance of the mass at that radius is

with                                                is a FT of the top hat 3d funtion at radius R

Therefore, the mas variance for a power law power spectrum at radius R is, 

We now wris the variance as

Therefore,

For n=0 the variance fits a Poisson distribution of particles (or white noise).

One can show that the peculiar potential is 

For n=1, the peculiar potential is scale invariant, which is called Harrison-Zeldovich spectrum 

 

The Power spectrum



Non-linear Regime: Spherical Collapse

We now move to consider the simplest possible model describing 
the formation of an object, the so call, spherical-collapse model. 
Assume a spherical region with a uniform overdensity <δ> and a 
physical radius R in an otherwise uniform Universe. Birkhoff’s 
Theorem (from GR) states that the contribution of the exterior 
material to spherically symmetric solution must be given by the 
Schwarzschild metric, in other words within the sphere the only 
thing that matters is the material inside the sphere. Hence one 
can write

The first integral of this equation gives

Which can be solved:  



Non-linear regime: Spherical collapse

The collapse of the sphere to R = 0 occurs at t = 2tm, and at 
this time the extrapolated linear overdensity is
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