Photometry exercises

1. Formulate a formula which expresses which fraction of photons emitted by a star are registered on the detector. Assume that the photons have wavelength lambda and travel through ISM, atmosphere, two mirrors, a filter and then hit the detector.

Photons_det/photons_emi=f_ism*f_atm*f_mir^2*f_fil*f_det
2. Compute an actual fraction for a chosen wavelength and some typical numbers for the other components.

Taking ~5500Ang (V-band) for lambda.
Typical ISM: A_V=0.1: f_ism=10^(-0.1/2.5)
Atmosphere: LaPalma: dmag=0.13*airmass=0.13: f_atm=10^(-0.13/2.5)
Mirrors: f_mir=0.9 (see lecture slides)
Typical filter: f_filter=0.88 (e.g.,
http://catserver.ing.iac.es/filter/list.php?instrument=WFC\&sort=passb and)
F_det=0.8 (see lecture slides)
Ph _det/Ph_emi $=0.46$
3. What is the general formula to convert between $A B$ and Vega magnitudes using Jansky as flux units (see lecture sheet below)?

```
m_ab - m_vega= m(Vega)_ab
```

4. Find on the web conversion values between $A B$ and Vega for SDSS observations.

See e.g., http://www.sdss.org/dr6/algorithms/sdssUBVRITransform.html
Assuming $\mathrm{V}=+0.03$ and $\mathrm{U}-\mathrm{B}=\mathrm{B}-\mathrm{V}=\mathrm{V}-\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{\mathrm{c}}-\mathrm{I}_{\mathrm{c}}=0.00$, we find for the A 0 V star Vega the following:

```
g = -0.08 (+/-0.03)
u-g = +1.02 (+/-0.08)
g-r = -0.25 (+/-0.03)
r-i = -0.23 (+/-0.02)
i-z = -0.17 (+/-0.02)
```


