A Simulated Census of the First Galaxies

John Wise

Vasiliy Demchenko, Martin Halicek, Chao Shi (GT), Pengfei Chen (UCSD), Tom Abel (Stanford), Michael Norman (UCSD), Brian O'Shea (MSU), Britton Smith (Edinburgh), Matthew Turk (NCSA), Hao Xu (UCSD)
Outline

- Radiation hydrodynamics simulations of the First Stars and Galaxies ($z \geq 7$)
 - "Birth of a Galaxy" simulation (30 galaxies; boxsize = 1 Mpc)
 - Star formation histories, galaxy properties, reionization, and luminosity functions
 - Wise et al. (2012ab, 2014)
 - "Renaissance" simulation (3000 galaxies; boxsize = 40 Mpc)
 - Remnants from the first stars, galaxy properties, luminosity functions – investigated in three zoom-in different environments
 - Xu et al. (2013, 2014); Chen et al. (2014); Ahn et al. (2015); O'Shea et al. (2015)
Observations in Local Dwarfs
Z-L Relation & Metallicity Distribution Functions

- In the least luminous galaxies, there exists some enrichment.
 - Where do these metals originate?
 - Were the protogalactic clouds pre-enriched by Population III stars?
 - What fraction of metals originate from internal star formation?
- Can we use these observations to constrain theories and simulations of dwarf galaxy formation at high-z?

Kirby+ (2011)
Observations in Local Dwarfs
Z-L Relation & Metallicity Distribution Functions

- In the least luminous galaxies, there exists some enrichment.

 - Where do these metals originate?

 - Were the protogalactic clouds pre-enriched by Population III stars?

 - What fraction of metals originate from internal star formation?

- Can we use these observations to constrain theories and simulations of dwarf galaxy formation at high-z?

Kirby+ (2011)
Observations in Local Dwarfs
Z-L Relation & Metallicity Distribution Functions

• In the least luminous galaxies, there exists some enrichment.

 • Where do these metals originate?

 • Were the protogalactic clouds pre-enriched by Population III stars?

 • What fraction of metals originate from internal star formation?

• Can we use these observations to constrain theories and simulations of dwarf galaxy formation at high-z?

Aoki+ (2014)
THE BIRTH OF A GALAXY
Numerical Approach
Cosmological Simulations – Enzo

- Requirements:
 - Follows the high-z formation of a galaxy in a $\sim 10^9 \, M_\odot$ halo ($M_★ \sim 10^6-7 \, M_\odot$)
 - Resolves the smallest (Pop III) star-forming mini-haloes ($M \sim 10^5 \, M_\odot$)
 - Accurate model of star formation and feedback – smaller halos are more susceptible to feedback effects.

- Approaches:
 - Small-scale box (1 comoving Mpc3); 2000 M_\odot DM resolution
 - Adaptive mesh refinement (AMR) – 1 comoving pc maximal resolution
 - Distinct modes of Population II and III star formation and feedback
 - Radiative and supernovae feedback from both populations

Wise et al. (2012ab, 2014)
Pre-reionization dwarf galaxy properties
Radiative cooling agents

Wise et al. (2014)
FoV = 150 comoving kpc
$M_{\text{tot}}(z=7) = 10^9 \, M_\odot$
- Most massive halo \((10^9 M_\odot)\) at \(z = 7\)
- Undergoing a major merger
- Bi-modal metallicity distribution function
- 2\% of stars with \([Z/H] < -3\)
- Induced SF makes less metal-poor stars formed near SN blastwaves
First galaxy properties

- H2-cooling (inefficient SF)
- Lyα-cooling (efficient SF)

Wise et al. (2014)
UV escape fractions

- Red: non-weighted mean
- Blue: luminosity-weighted mean
- Halos with $M \leq 10^8 \, M_\odot$ contribute the most to the ionizing photon budget at $z > 12$.
 - High escape fractions
 - Able to form stars even without atomic cooling, i.e. $T < 10^4 \, K$.
- Escape fractions are highly variable.
“Renaissance” simulations
The First Galaxies
Renaissance Simulations

• Follow three regions (“rare peak”, mean, void) until $z \sim 10$.
 • 40 comoving Mpc box, 5 comoving Mpc zoom-in region
• At $z = 15$ in the rare peak region, there are
 • Three $>10^9 \, M_\odot$ DM halos; $>13,000$ Pop III stars
 • $\sim 3 \times 10^8 \, M_\odot$ of Pop II stars in $\sim 1,000$ dwarf galaxies

Xu, JW, Norman (2013)
Xu et al. (2014)
Chen, JW, et al. (2014)
Ahn et al. (2015)
$z = 15$

- **Normal**
- **Rare peak**
- **Void**

Density ($\frac{\rho}{\rho_c}$)
The First Galaxies
Overdense “Rare Peak” Region

Projected Density
(scale: $3 \times 10^{-28} - 3 \times 10^{-24} \text{ g/cm}^3$)

Projected Temperature
(scale: $10^3 - 3 \times 10^4 \text{ K}$)

Xu, Wise, Norman (2013)
Xu et al. (2014)
Chen et al. (2014)
Ahn et al. (2015)
O’Shea et al. (2015)
The First Galaxies
High-z Galaxy Luminosity Functions

- Flattening at \(M_{UV} \approx -14 \)
- **Magenta** line: Can be matched with a “galaxy occupation fraction”
- FF = Unlensed Frontier Fields
- H = Hubble XDF
- J = JWST 10^5 s ultra-deep field
- Jx10 = 10x magnification

Observed at \(z=8 \) (e.g. Bouwens+ 2015; Finkelstein+ 2014)
The First Galaxies
High-z Galaxy Environments

Detection by
Red: HUDF
Blue: JWST Ultra-deep
Green: JWST + 10x mag.

Summary

- Halos below the atomic cooling limit ($T_{\text{vir}} = 10^4$ K) can cool through metal-line transitions and form stars inefficiently.

- These low-mass halos can have high UV escape fractions up to 50%.

- Escape fractions are highly variable in time and angle and are correlated with SFR with some delay.

- UV Galaxy luminosity functions flatten at $M_{1600} \gtrapprox -14$ because not all low-mass halos host new star formation.

- Its normalization can vary up to an order of magnitude from cosmic variance.