The Milky Way

Soon we will have vast amounts of data on the motions and chemical properties of millions to billions of stars in the Milky Way.

What can we learn in this new era about the formation and dynamics of our Galaxy

Lecturer: Amina Helmi; Kapteyn Instituut, Room 190; ahelmi@astro.rug.nl
Bibliography:


• Binney & Tremaine, Galactic dynamics


• Papers to be selected
What does our Galaxy look like?

Near infrared image from COBE/DIRBE - dust is transparent in near-IR.

NGC 891: our Galaxy probably looks much like this in visible light.

The Milky Way is a disk galaxy with a small bulge.
How did the Galaxy come to be like this?

To study the formation of galaxies observationally, we have a choice...

we can observe distant galaxies at high redshift - we see the galaxies directly as they were long ago, at various stages of their formation and evolution

but not much detail can be measured about their chemical properties and motions of their stars
or we can recognise that
the main structures of the Galaxy formed long ago
at high redshift.

the halo formed at $z > 4$
the disk formed at $z \sim 2$

We can study the motions and chemical properties of stars in our Galaxy
at a level of detail that is impossible for other galaxies,
and probe into the formation epoch of the Galaxy.

This is near-field cosmology.
The ages of the oldest stars in the Galaxy are similar to the lookback time for the most distant galaxies observed in the HDF.

Both give clues to the sequence of events that led to the formation of galaxies like the Milky Way.
Overview of our Galaxy

dark halo

stellar halo

thick disk

thin disk

bulge
**Total mass** \( \sim 10^{12} \, \text{M}_\text{sun} \):  
(5 \times 10^{11} \, \text{M}_\text{sun} \text{ out to 50 kpc})  

Stellar mass in bulge \( \sim 1 \times 10^{10} \, \text{M}_\text{sun} \)  
  disk \( 6 \times 10^{10} \, \text{M}_\text{sun} \)  
  halo \( 1 \times 10^9 \, \text{M}_\text{sun} \)

**Ages of components:**  
globular clusters \( \sim 12 \, \text{Gyr} \); some outer clusters 1-2 Gyr younger  
thick disk : \( > 10 \, \text{Gyr} \)  
thin disk : star formation started about  
  10 Gyr ago from white dwarfs (eg Legget et al 1998)  
  8 Gyr ago from old subgiants (Sandage et al 2003)

star formation in the disk has continued at a more or less constant rate to the present time
The thin disk is the most massive stellar component of the Milky Way

- Most of the gas is found here
- Dust hides stellar light in optical wavelengths
- Sun is near the outer edge, at $d \sim 7.6 \pm 0.3$ kpc
Structure of the thin disk

exponential in R and z : scaleheight \( \sim 300 \) pc, scalelength 2-4 kpc (!)
velocity dispersion decreases from \( \sim 100 \) km/s near the center
(similar to bulge) to \( \sim 15 \) km/s at 18 kpc

Lewis & Freeman 1989
Solar neighborhood kinematics:

- Stars move on nearly circular orbits
- Distributions are approximately Gaussian (in U and W)
- V-velocity is skew (more stars with $V < 0$; moving slower than the LSR)
- Velocity dispersion depends on colour (as a tracer of the age)

Nordstrom et al. 2005
Velocity dispersions of nearby F stars

Disk heating appears to saturate at 2-3 Gyr; jump at 10 Gyr?

Freeman 1991; Edvardsson et al 1993; Quillen & Garnett 2000
Solar neighborhood kinematics:

Several mechanisms for heating disk stars:
• stochastic in the disk:
  • transient spiral arms
  • Giant Molecular Clouds scattering (e.g., Fuchs et al. 2001),
• stochastic because of external agents
  • accretion events

Internal heating mechanisms should saturate after a few Gyr: since the heated stars spend less time near galactic plane (and so are less subject to these mechanisms)
Velocity distributions near the Sun

- Not completely smooth
- Substructures are evident

- “Moving groups”
  - Clusters, associations or dissolved clusters
  - Associated to dynamical perturbations
  - Accreted stars

Breddels et al. 2009
Some moving groups are probably associated with local resonant kinematic disturbances by the inner bar: OLR is near solar radius (Hipparcos data): Dehnen (1999), Fux (2001), Feast (2002)

Dehnen 1999
Most spirals (including our Galaxy) have a second thicker disk component. In some galaxies, it is easily seen.

NGC 4762 - a disk galaxy with a bright thick disk (Tsikoudi 1980)
Our Galaxy has a significant **thick disk**

- its **surface brightness** is about 10% of the thin disk’s.
- it **rotates** almost as rapidly as the thin disk
- its stars are **older than 12 Gyr**, and are
  - significantly more metal poor than the thin disk
    (-0.5 > [Fe/H] > -2.2) and
  - **alpha-enriched**
The galactic thick disk: $\alpha$-enriched

$\alpha$-elements: produced by SNII (massive stars; short timescales)

Fe produced by SNIa (binary stars with WD; longer timescales)

higher $[\alpha/\text{Fe}] \Rightarrow$ more rapid formation
Because of its rapid rotation, the Galactic thick disk may have formed from heating of the early stellar disk by accretion events or minor mergers.

- In some models, the thick disk may have come from an early rapid phase of gas accretion or from merger debris (Abadi et al 2003; Brook et al 2004, Yoachim & Dalcanton 2004).

- No agreement yet on the origin of the Galactic thick disk.

- Debate as to whether it is really independent of the thin disk (Ivezic et al 2008).
Thick disks

Possible formation scenario is heating by minor merger of pre-existent disk (e.g. Quinn et al 1986)

How can we tell observationally the “red” and “white” stars from each other?
Age and metallicity of the bulge

Zoccali et al 2003: stellar photometry at $(l, b) = (0.3^\circ, -6.2^\circ)$: old population $> 10$ Gyr. No trace of younger population.

Extended metallicity distribution, from $[\text{Fe/H}] = -1.8$ to $+0.2$
The galactic bulge is rotating, like most other bulges:
(Kuijken & Rich (2002) HST proper motions)

Rotation (Beaulieu et al 2000)
K giants from several sources and planetary nebulae (+)

Velocity dispersion of inner disk and bulge are fairly similar
- not easy to separate inner disk and bulge kinematically

Bulge ends at $|l| \sim 12^\circ$
Later type galaxies like the Milky Way mostly have small near-exponential boxy bulges, rather than $r^{1/4}$ bulges. (eg Courteau et al 1996)

These small bulges are probably not merger products: more likely generated by disk instability

Boxy bulges, as in our Galaxy, are associated with bars, believed to come from bar-buckling instability of disk. theory: eg Combes & Sanders 1981 ... observations: eg Bureau & Freeman 1999 ...
The Galactic Bulge - summary

The bulge is not a dominant feature of our Galaxy - only about 25% of the light.

The bulge is probably an evolutionary structure of the disk, rather than a feature of galaxy formation in the early universe. Structure and kinematics (so far) are well represented by product of disk instability.

The $\alpha$-enhancement indicates that star formation in this inner disk/bulge region proceeded rapidly. The bulge structure may be younger than its stars.
The stellar halo

• Most metal-poor and ancient stars in the MW
  • window into the early Universe

• Very steep and centrally concentrated density profile:
  - $\rho \sim \rho_0 (r_0/r)^n$, with $n \sim 2.5, 3$
  - half-light radius $\sim 3.5$ kpc (indicative of an early formation epoch)

• Shape:
  • oblate, $c/a \sim 0.6 - 0.7$ near the Sun
  • rounder in the outskirts

• Kinematically hot (large velocity dispersions)
  • Some fraction of the stars orbit outskirts of the Galaxy: good mass probes
Substructure in the halo

SDSS, 2MASS, ... yielding spectacular results:
- Substructure appears to be common
- Expected if halo built up from accretion of satellites

Belokurov et al. 2007

Ferguson et al
Substructures in the (outer) halo

Shortly after infall ($t/t_{\text{dyn}} \sim 1$)

Outer Galaxy always in this regime

Accreted stars are visible as tidal tails

Tidal tails can be easily found by mapping the positions of halo stars in the sky.
Substructure in the halo

Bell et al (2007) quantify the amount of substructure using RMS measure
\[ \sigma \sim (\text{Data} - \text{Smooth halo})^2 \]

Level of RMS \( \sim 30-40\% \)

Compared to SA models MW stellar halo MW halo is typical
Stellar halos from SA models by Bullock & Johnston (2005)

Overall good agreement, but some detailed differences
The thin disk is metal-rich and covers a wide age range. The other stellar components are all relatively old. (note similarity of [Fe/H] range for thick disk and globular clusters)
- The thin and thick disks have similar angular momentum distributions.

- The stellar halo and the bulge as well.

- Spheroidal components are quite distinct from disky components in their angular momentum content.

\[ h = r V \]

Wyse, Gilmore & Franx 1997
Simulations of the formation of a disk galaxy

Jesper Sommer-Larsen
The formation of a disk galaxy

- Gas cools in halos / filamentary structure is visible also in gas.
- At high-z: strong starbursts drive gas out of proto-galactic mini-haloes.
- $z \sim 3$: Initial disk starts to form, mainly grows by cool-out of hot halo gas.
- The disk is harassed by discrete accretion events,
  - cold gas from accreted systems is mixed into disk gas
  - accreted stars generally end up in the halo.
- Two fairly large sub-systems are responsible for the formation of the thick disk at $z \sim 1$
  - puffing up the already present thin disk.
- At $z \sim 0.1$ the spinning disk is at the center of a slowly rotating cooling flow, feeding the disk with mass and angular momentum.
The formation of a disk galaxy

Distribution of metals:

• At the center of the galaxy \(<[O/Fe]>\sim0\),
  • most of the star-formation has taken place already, so that there has been time for the SNIa's to recycle the Iron.

• In the outer disk \(<[O/Fe]\) is larger than zero.
  • the star-formation history is much more flat: star-formation is ongoing and not all the Iron from to come SNIa's has been recycled
The formation of a disk galaxy

Formation epoch of the various galactic components

• Halo stars are either very old (first generations) or typically originate from tidally stripped/disrupted satellites.

• Bulge stars have $z_{\text{form}} \sim 2-3$

• Disk stars have $z_{\text{form}} \lessapprox 2-3$, the disk forming inside-out in this case.

Is this model consistent with the properties of the Galaxy?