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Chapter 1

Introduction

Data obtained through measurement always contain random error. Random
error is readily observed by sampling—making repeated measurements while
all experimental conditions remain the same. For various reasons, the mea-
sured values will vary and a histogram like that in Fig. 1.1 might be used
to display a sample frequency distribution. Each histogram bin represents
a possible value or a range of possible values as indicated by its placement
along the horizontal axis. The height of each bar gives the frequency, or
number of times a measurement value falls in that bin.

The measurements are referred to as a sample or as a sample set and
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Figure 1.1: A sample frequency distribution for 100 measurements of the length
of a rod.
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6 CHAPTER 1. INTRODUCTION

the number of measurements N is called the sample size. Dividing the fre-
quencies by the sample size yields the bin fractions or the sample probability
distribution. Were new sample sets taken, the randomness of the measure-
ment process would cause each new sample distribution to vary. However,
as the sample sizes grow larger, variations in the distributions grow smaller
and as N → ∞, the law of large numbers says that the sample distribu-
tion converges to the parent distribution—a distribution containing complete
statistical information about the particular measurement.

Thus, a single measurement should be regarded as one sample from a par-
ent distribution—the sum of a non-random signal component and a random
noise component. The signal component would be the center value or mean
of the measurement’s parent distribution, and the noise component would be
a random error that scatters individual measurement values above or below
the mean.

Briefly stated, measurement uncertainty refers to the distribution of ran-
dom errors. The range of likely values is commonly quantified by the distri-
bution’s standard deviation. Typically, about 2/3 of the measurements will
be within one standard deviation of the mean.

With an understanding of the measuring instrument and its application
to a particular apparatus, the experimenter gives physical meaning to the
signal component. For example, a thermometer’s signal component might
be interpreted to be the temperature of the system to which it’s attached.
Obviously, the interpretation is subject to possible errors that are distinct
from and in addition to the random error in the measurement. For example,
the thermometer may be out of calibration or it may not be in perfect thermal
contact with the system. Such problems give rise to systematic errors—non-
random deviations between the measurement mean and the physical variable.

Theoretical models provide relationships for physical variables. For ex-
ample, the temperature, pressure, and volume of a quantity of gas might be
measured to test various equations predicting specific relationships among
those variables. Devising and testing theoretical models are typical experi-
mental objectives.

Broadly summarized, the analysis of many experiments amounts to a
compatibility test for the following two hypotheses.

Experimental: For each measurement the uncertainty is understood and any
systematic error is sufficiently small.

Theoretical: The physical quantities follow the predicted relationships.
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Experiment and theory are compatible if the deviations between the mea-
surements and predictions can be accounted for by reasonable measurement
errors.

If compatibility can not be achieved, at least one of the hypotheses must
be rejected. The experimental hypothesis is always first on the chopping
block because compatibility depends on how the random measurement errors
are modeled and it relies on keeping systematic errors small. Only after
careful assessment of both sources of error can one conclude that predictions
are the problem.

Even when experiment and theory appear compatible, there is still reason
to be cautious—one or both hypotheses can still be false. In particular,
systematic errors are often difficult to disentangle from the theoretical model.
Sorting out the behavior of measuring instruments from the behavior of the
system under investigation and designing experimental procedures to verify
all aspects of both hypotheses are basic goals of the experimental process.

In Chapter 2 the basics of random variables and probability distribu-
tions are presented and the Law of Large Numbers is used to highlight the
differences between expectation values and sample averages.

Four of the most common probability distributions are introduce in Chap-
ter 3 and in Chapter 4 the central limit theorem and systematic errors are
discussed so that the discussions to follow can be restricted without losing too
much generality. Chapter 5 introduces the idea of correlation in the random
errors associated with pairs of random variables.

Chapter 6 provides Propagation of Error formulas for determining the un-
certainty in variables defined from other variables. Chapter 7 discusses the
Principal of Maximum Likelihood and its implications regarding the sample
mean and sample variance. Chapter 8 covers Regression Analysis for compar-
ing measurements with independent theoretical predictions and determining
fitting parameters and their uncertainties.

Chapter 9 discusses evaluation of regression results and the chi-square
random variable. Typically used to evaluate the “goodness of fit,” chi-square
is a measure of the difference between experiment and theoretical predictions.
The chi-square test and other methods are presented for checking if those
differences are reasonable in relation to the uncertainties involved.

Chapter 10 provides a guide to using Excel for linear and nonlinear re-
gression.
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Chapter 2

Random Variables

The experimental model treats each measurement as a random variable—a
numerical quantity having a value which varies randomly as the procedure
used to obtain it is repeated. Each possible value for a random variable
occurs with a fixed probability as described next.

When the possible outcomes are discrete, their probabilities are governed
by a discrete probability function or dpf. For example, the number of clicks
from a Geiger counter over some time interval is limited to the discrete set
of nonnegative integers. Under unchanging conditions, each possible value
occurs with a probability given by the Poisson dpf, which is discussed in more
detail shortly. A dpf is the complete set of values of P (yi) for all possible yi,
where each P (yi) gives the probability for that yi to occur.

When the possible outcomes cover a continuous interval, their probabil-
ities are governed by a probability density function or pdf as follows. With
the pdf p(y) specified for all values y in the range of possible outcomes, the
differential probability dP (y) of an outcome between y and y + dy is given
by

dP (y) = p(y)dy (2.1)

Probabilities for outcomes in any finite range are obtained by integration.
The probability of an outcome between y1 and y2 is given by

P (y1 < y < y2) =

∫ y2

y1

p(y) dy (2.2)

Both discrete probability functions and probability density functions are
referred to as probability distributions.

9



10 CHAPTER 2. RANDOM VARIABLES

Continuous probability distributions become effectively discrete when the
variable is recorded with a chosen number of significant digits. The proba-
bility of the measurement is then the integral of the pdf over a range ±1/2
of the size of the least significant digit.

P (y) =

∫ y+∆y/2

y−∆y/2

p(y′) dy′ (2.3)

For example, a current I recorded to the nearest hundredth of an ampere, say
1.21 A, has ∆I = 0.01 A and its probability of occurrence is the integral of
its (as yet unspecified) pdf p(I) over the interval from I = 1.205 to 1.215 A.
Note how the values of P (y) for a complete set of non-overlapping intervals
covering the entire range of y-values would map the pdf into an associated
dpf.

Many statistical analysis procedures will be based on the assumption
that P (y) is proportional to p(y). For this to be the case, ∆y must be small
compared to the range of the distribution. More specifically, p(y) must have
little curvature over the integration limits so that the integral becomes

P (y) = p(y) ∆y (2.4)

Law of Large Numbers

P (y) for an unknown distribution can be determined to any degree of accu-
racy by histogramming a sample of sufficient size.

For a discrete probability distribution, the histogram bins should be la-
beled by the allowed values yj. For a continuous probability distribution,
the bins should be labeled by their midpoints yj and constructed as adja-
cent, non-overlapping intervals spaced ∆y apart and covering the complete
range of possible outcomes. The sample, of size N , is then sorted to find the
frequencies f(yj) for each bin

The law of large numbers states that the sample probability f(yj)/N
for any bin will approach the predicted P (yj) more and more closely as the
sample size increases. The limit satisfies

P (yj) = lim
N→∞

1

N
f(yj) (2.5)
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Sample averages and expectation values

Let yi, i = 1..N represent sample values for a random variable y having
probabilities of occurrence governed by a pdf p(y) or a dpf P (y). The sample
average of any function g(y) will be denoted with an overline so that g(y) is
defined as the value of g(y) averaged over all y-values in the sample set.

g(y) =
1

N

N∑
i=1

g(yi) (2.6)

For the function g(y) = y, application of Eq. 2.6 represents simple averaging
of the y-values

ȳ =
1

N

N∑
i=1

yi (2.7)

ȳ is called the sample mean.
Note that ȳ, or the sample average of any function, is a random variable;

taking a new sample set would produce a different value. However, in the
limit of infinite sample size, the law of large numbers asserts that the average
defined by Eq. 2.6 converges to a well defined constant depending only on
the probability distribution and the function g(y). This constant is called
the expectation value of g(y) and will be denoted by putting angle brackets
around the function

〈g(y)〉 = lim
N→∞

1

N

N∑
i=1

g(yi) (2.8)

Equation 2.8 emphasizes the role of expectation values as “expected aver-
ages,” or “true means” or simply “means” of g(y). However, as this equation
requires an infinite sample size, it is not directly useful for calculating expec-
tation values.

Equation 2.8 can be cast into a form suitable for use with a known prob-
ability distribution as follows. Assume a large sample of size N has been
properly histogrammed. If the variable is discrete, each possible value yj
gets its own bin. If the variable is continuous, the bins are labeled by their
midpoints yj and their size ∆y has been chosen small enough to ensure that
(1) the probability for a y-value to occur in any particular bin will be accu-
rately given by P (yj) = p(yj)∆y and (2) all yi sorted into a bin at yj can be
considered as contributing g(yj)— rather than g(yi)—to the sum in Eq. 2.8.
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After sorting the sample yi-values into the bins, thereby finding the fre-
quencies of occurrence f(yj) for each bin, the sum in Eq. 2.8 can be grouped
by bins and becomes

〈g(y)〉 = lim
N→∞

1

N

∑
all yj

g(yj)f(yj) (2.9)

Note the change from a sum over all samples in Eq. 2.8 to a sum over all
histogram bins in Eq. 2.9.

Moving the limit and factor of 1/N inside the sum, Eq. 2.5 can be used
in Eq. 2.9 giving:

〈g(y)〉 =
∑
all yj

g(yj)P (yj) (2.10)

Eq. 2.10 is a weighted average; each value of g(yj) in the sum is weighted by
the probability of its occurrence P (yj).

Eq. 2.10 is directly applicable to discrete probability functions. For a
continuous probability density function, P (yj) = p(yj)∆y. Making this sub-
stitution in Eq. 2.10 and then taking the limit as ∆y → 0 converts the sum
to an integral and gives

〈g(y)〉 =

∫ ∞
−∞

g(y)p(y) dy (2.11)

Eq. 2.11 is a weighted integral with each g(y) weighted by its occurrence
probability p(y) dy.

Properties of expectation values

Some frequently used properties of expectation values are given below. They
all follow from simple substitutions for g(y) in Eqs. 2.10 or 2.11 or from the
operational definition of an expectation value as an average for an effectively
infinite data set (Eq. 2.8).

1. The expectation value of a constant is that constant: 〈c〉 = c. Sub-
stitute g(y) = c and use normalization condition. Guaranteed because
the value c is averaged for every sampled yi.

2. Constants can be factored out of expectation value brackets: 〈cu(y)〉 =
c 〈u(y)〉. Substitute g(y) = cu(y), where c is a constant. Guaranteed by
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the distributive property of multiplication over addition for the terms
involved in the averaging.

3. The expectation value of a sum of terms is the sum of the expectation
value of each term: 〈u(y) + v(y)〉 = 〈u(y)〉+ 〈v(y)〉. Substitute g(y) =
u(y)+v(y). Guaranteed by the associative property of addition for the
terms involved in the averaging.

But also keep in mind the non-rule: The expectation value of a prod-
uct is not necessarily the product of the expectation values: 〈u(y)v(y)〉 6=
〈u(y)〉 〈v(y)〉. Substituting g(y) = u(y)v(y) does not, in general, lead to
〈u(y)v(y)〉 = 〈u(y)〉 〈v(y)〉.

These properties will be put to use repeatedly. In the next section, they
are used to get basic relationships involving parameters of any probability
distribution.

Normalization, mean and variance

Probability distributions are defined so that their sum or integral over any
range of possible values gives the probability for an outcome in that range.
Consequently, if the range includes all possible values, the probability of an
outcome in that range is 100% and the sum or integral must be equal to one.
For a discrete probability distribution this normalization condition reads:∑

all yj

P (yj) = 1 (2.12)

and for a continuous probability distribution it becomes∫ ∞
−∞

p(y) dy = 1 (2.13)

The normalization sum or integral is also called the zeroth moment of the
probability distribution—as it is the expectation value of y0. The other two
most important expectation values of a distribution are also moments of the
distribution.

The mean µy of a probability distribution is defined as the expectation
value of y itself, that is, of y1. It is the first moment of the distribution.

µy = 〈y〉 (2.14)
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The mean is a measure of the central value of the distribution.
The sample mean—ȳ of Eq. 2.7—is an estimate of the true mean. It

becomes a better estimate as N increases and the two become equal as N →
∞. How closely ȳ and µy should agree with one another for finite N is
discussed in Chapter 7. Here we would like to point out a related feature.
Taking the expectation value of both sides of Eq. 2.7 and noting 〈yi〉 = µy
for all N samples gives

〈ȳ〉 = µy (2.15)

thereby demonstrating that the expectation value of the sample mean is equal
to the true mean.

Any parameter estimate having an expectation value equal to the
parameter it is estimating is said to be an unbiased estimate; it
will give the true parameter value “on average.”

Thus, the sample mean is an unbiased estimate of the true mean.
Defining y − µy as the deviation in a random variable’s value from its

mean, Eq. 2.14 can be rewritten

〈y − µy〉 = 0 (2.16)

showing that for any distribution, by definition, the mean deviation is zero.
The sample y-value can be above or below the mean and so deviations can
be positive or negative and have a mean of zero. If one is trying to describe
the size of typical deviations, the mean deviation is unsuitable as it is always
zero.

The mean absolute deviation would be one possible choice. Defined as
the expectation value 〈|y − µy|〉, the mean absolute deviation for a random
variable y would be nonzero and a reasonable measure of the expected de-
viations. However, the mean absolute deviation does not arise naturally
when formulating the basic statistical procedures considered here, whereas
the mean squared deviation plays a central role. Consequently, the standard
measure of a deviation, i.e., the standard deviation σy, is taken as the square
root of the mean squared deviation.

The mean squared deviation is also called the variance and written σ2
y for

a random variable y. It is the second moment about the mean and defined
as the following expectation value

σ2
y =

〈
(y − µy)2

〉
(2.17)
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The variance has units of y2. Its square root, the standard deviation σy has
the same units as y and is a measure of the width of the distribution.

Expanding the right side of Eq. 2.17 gives σ2
y =

〈
y2 − 2yµy + µ2

y

〉
and

then taking expectation values term by term, noting µy is a constant and
〈y〉 = µy, gives:

σ2
y =

〈
y2
〉
− µ2

y (2.18)

This equation is useful for evaluating the variance of a given probability
distribution and in the form 〈

y2
〉

= µ2
y + σ2

y (2.19)

shows that the expectation value of y2 (the second moment about the origin)
exceeds the square of the mean by the variance.

The sample variance would then be given by Eq. 2.6 with g(y) = (y−µy)2.
It will be denoted s2

y and thus defined by

s2
y =

1

N

N∑
i=1

(yi − µy)2 (2.20)

Taking the expectation value of this equation shows the sample variance is
an unbiased estimate of the true variance.〈

s2
y

〉
= σ2

y (2.21)

The proof this time requiring an application of Eq. 2.17 to each term in the
sum.

Typically, µy is not known and Eq. 2.20 can not be used to get an estimate
of an unknown variance. Can the sample mean ȳ be used in its place? Yes,
but making this substitution requires the following minor modification to
Eq. 2.20.

s2
y =

1

N − 1

N∑
i=1

(yi − ȳ)2 (2.22)

As will be proven later, the denominator must be reduced by one so that this
sample variance will also be unbiased.

The sample mean and sample variance are random variables and each
follows its own probability distribution. The fact that they are unbiased
means that the means of their distributions will be the true mean and true
variance, respectively. Other details of these two distributions, such as their
widths will be discussed later.
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Chapter 3

Probability Distributions

In this section, definitions and properties of a few fundamental probability
distributions will be discussed.

The Gaussian distribution

The Gaussian or normal probability density function has the form

p(y) =
1√

2πσ2
y

exp

[
−(y − µy)2

2σ2
y

]
(3.1)

and is parameterized by two quantities: the mean µy and the standard devi-
ation σy.

Figure 3.1 shows the Gaussian pdf and gives various integral probabilities.
Because of its form, probabilities can always be described relative to the mean
and standard deviation. There is a 68% probability that a Gaussian random
variable will be within one standard deviation of the mean, 95% probability
it will be within two, and a 99.7% probability it will be within three. These
“1-sigma,” “2-sigma,” and “3-sigma” probabilities should be committed to
memory. A more complete listing can be found in Table 10.2.

The binomial distribution

The binomial distribution arises when a random event, called a Bernoulli
trial, can be considered to have only two outcomes. One outcome is termed

17
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y

p(y)

0.340.34

0.140.14
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Figure 3.1: The Gaussian distribution labeled with the mean µy, the standard
deviation σy and some areas, i.e., probabilities.

a success and occurs with a probability p. The other, termed a failure,
occurs with a probability 1−p. Then, with N Bernoulli trials, the number of
successes n can be any integer from zero (none of the N trials were a success)
to N (all trials were successes).

The probability of n successes (and thus N − n failures) is given by the
binomial distribution

P (n) =
N !

n!(N − n)!
pn(1− p)N−n (3.2)

The probability pn(1− p)N−n would be the probability that the first n trials
were successes and the last N − n were not. Since the n successes and
N −n failures can occur in any order and each distinct ordering would occur
with this probability, the extra multiplicative factor, called the binomial
coefficient, is needed to count the number of distinct orderings.

The most common application of the binomial distribution is associated
with the construction of sample frequency distributions. The frequency in
each histogram bin is governed by the binomial probability distribution. A
particular bin at yj represents a particular outcome or range of outcomes
and has an associated probability P (yj). Each Bernoulli trial consists of
taking one new sample and either sorting it into that bin (a success with a
probability P (yj)) or not (a failure with a probability 1 − P (yj)). After N
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samples, the number of successes (the bin frequency) should follow a binomial
distribution for that N and p = P (yj).

The Poisson distribution

Poisson-distributed variables arise in particle and photon counting experi-
ments. For example, under unchanging conditions and averaged over long
times, the number of clicks y from a Geiger counter due to natural back-
ground radiation might consistently give an average of, say, one tick per
second. However, over any 10-second interval while an average of 10 ticks is
expected, more or less ticks are also possible.

More specifically, if µy is the average number expected in an interval,
then values of y around µy will be the most likely, but all integers zero or
larger are theoretically possible. Values of y can be shown to occur with
probabilities governed by the Poisson distribution.

P (y) = e−µ
µy

y!
(3.3)

For the Poisson distribution, one can show that the parent variance sat-
isfies

σ2
y = µy (3.4)

For large values of µy, the Poisson probability for a given y is very nearly
Gaussian—given by Eq. 2.1 with ∆y = 1 and p(y) given by Eq. 3.1 (with
σ2
y = µy). That is,

P (y) ≈ 1√
2πµy

exp

[
−(y − µy)2

2µy

]
(3.5)

Eqs. 3.4 and 3.5 are the origin of the commonly accepted practice of applying
“square root statistics” or “counting statistics,” whereby Poisson-distributed
variables are treated as Gaussian-distributed variables with a variance chosen
to be µy or some estimate of µy.

One common application of counting statistics arises when a single count
is measured from a Poisson distribution of unknown mean and observed to
take on a particular value y. With no additional information, that measured
y-value becomes an estimate of µy and thus it also becomes an estimate of the
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binomial Poisson uniform Gaussian

P (n) = P (n) = p(y) = p(y) =

form
N !

n!(N − n)!
pn(1− p)N−n e−µ

µn

n!

1

|b− a|
1√

2πσ2
exp

[
− (y − µ)2

2σ2

]
mean Np µ (a+ b)/2 µ

variance Np(1− p) µ (b− a)2/12 σ2

Table 3.1: Common probability distributions with their means and variances.

variance of its own parent distribution. That is, y is assumed to be governed
by a Gaussian distribution with a standard deviation given by

σy =
√
y (3.6)

Counting statistics is a good approximation for large values of y—greater
than about 30. Using it for values of y below 10 or so can lead to significant
errors in analysis.

The uniform distribution

The uniform probability distribution arises, for example, when using digital
metering. One might assume a reading of 3.72 V on a 3-digit, digital volt-
meter implies the underlying variable is equally likely to be any value in the
range 3.715 to 3.725 V. A variable with a constant probability in the range
from a to b has a pdf given by

p(y) =
1

|b− a|
(3.7)

Exercise 1 (a) Use a software package to generate random samples from
a Gaussian distribution with a mean µy = 0.5 and a standard deviation
σy = 0.05. Use a large sample size N and well-chosen bins (make sure
one bin is exactly centered at 0.5) to create a reasonably smooth, bell-shaped
histogram of the sample frequencies vs. the bin centers.
(b) Consider the histogramming process with respect to the single bin at the
center of the distribution—at µy. Explain why the probability for a sample to
fall in that bin is approximately ∆y/

√
2πσ2

y, where ∆y is the bin size, and
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use it with your sample size to predict the mean and standard deviation for
that bin’s frequency. Compare your actual sample frequency at µy with this
prediction. Is the difference between them reasonable?

Exercise 2 Eqs. 2.14 and 2.17 provide the definitions of the mean µ and
variance σ2 with Eqs. 2.10 or 2.11 used for their evaluation. Show that the
means and variances of the various probability distributions are as given in
Table 3.1. Also show that they satisfy the normalization condition.

Do not use integral tables. Do the normalization sum or integral first,
then the mean, then the variance. The earlier results can often be used in the
later calculations.

For the Poisson distribution, evaluation of the mean should thereby demon-
strate that the parameter µ appearing in the distribution is, in fact, the mean.
For the Gaussian, evaluation of the mean and variance should thereby demon-
strate that the parameters µ and σ2 appearing in the distribution are, in fact,
the mean and variance.

Hints: For the binomial distribution you may need the expansion

(a+ b)N =
N∑
n=0

N !

n!(N − n)!
anbN−n (3.8)

For the Poisson distribution you may need the power series expansion

ea =
∞∑
n=0

an

n!
(3.9)

For the Gaussian distribution be sure to always start by eliminating the
mean (with the substitution y′ = y−µy). The evaluation of the normalization
integral I =

∫∞
−∞ p(y) dy is most readily done by first evaluating the square

of the integral with one of the integrals using the dummy variable x and the
other using y. (Both pdfs would use the same µ and σ.) That is, evaluate

I2 =

∫ ∞
−∞

∫ ∞
−∞

p(x)p(y) dx dy

and then take its square root. To evaluate the double integral, first eliminate
the mean and then convert from cartesian coordinates x′ and y′ to cylindrical
coordinates r and θ satisfying x′ = r cos θ, y′ = r sin θ. Convert the area
element dx′ dy′ = r dr dθ, and set the limits of integration for r from 0 to ∞
and for θ from 0 to 2π.
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Chapter 4

Measurement Model

This section presents an idealized model for measurements, defining in more
detail the ideas behind random and systematic errors.

Central limit theorem

While it would be useful to know the shape of the probability distributions for
all random variables occurring in an analysis, taking large enough samples to
get such information is not often feasible. The central limit theorem asserts
that with sufficiently large data sets, detailed information about the shape
of the distributions is overkill; the mean and variance are often the only
parameters that will survive the analysis.

Specifically, the central limit theorem says that the sum of a sufficiently
large number of random variables will follow a Gaussian distribution having
a mean equal to the sum of the means of each variable in the sum and
having a variance equal to the sum of the variances of each variable in the
sum. Moreover, the individual variables can follow just about any probability
distribution. They do not have to be Gaussian distributed.

The central limit theorem can be taken a step further. Formulas such as
those associated with regression analysis will soon be derived based on the
assumption that the input variables are governed by Gaussian distributions.
A loose interpretation of the central limit theorem suggests that for data
sets that are large enough, these formulas will be valid even if the data
are governed by non-Gaussian distributions. The trick is to simply use the
standard deviation of the particular non-Gaussian distribution involved for
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the corresponding standard deviation in the assumed Gaussian distribution.

Exercise 3 (a) Predict the mean and standard deviation of the sum of 12
uniformly distributed random numbers on the interval (0, 1).
(b) Create 1000 samples of such 12-number sums and submit a histogram of
the frequency distribution. Overlay the histogram with a smooth curve giving
the predicted frequencies based on the central limit theorem and comment on
the comparison.
(c) Evaluate the sample mean (Eq. 2.7) and the sample variance (Eq. 2.22)
and comment on their agreement with predictions. The sample mean and
the sample variance are random variables. Determining how closely they
should match the predictions of the central limit theorem, which only refers
to parent distributions and expectation values, requires the probability distri-
butions associated with these random variables. These distributions depend
on the sample size and will be discussed shortly. For N = 1000, about 95%
of the time, the sample mean should be within ±0.06 of the true mean and
the sample variance should be within ±0.09 of the true variance.

Random errors

A measurement y can be expressed as the sum of the mean of its probability
distribution µy and a random error δy that scatters individual measurements
both above and below the mean.

y = µy + δy (4.1)

The quantity δy = y − µy is also called the deviation.
Whenever possible, the experimentalist should supply an estimate of the

standard deviation. A ± notation is often used. A rod length recorded as
2.64±0.02 cm indicates a sample value y = 2.64 cm and a standard deviation
σy = 0.02 cm.

One method for estimating standard deviations is to take a large sample
for one particular measured variable while experimental conditions remain
constant. The resulting sample standard deviation might then be assumed
to be the σy for all future measurements of the same kind. Or, an estimate
of σy might be based on instrument scales or other information about the
measurement. The experimenter’s confidence in the values assigned for σy
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will determine the confidence that should be placed on later comparisons of
that data with theoretical predictions.

Although they are often only approximately known, the σy entering into
an analysis will be assumed exactly known. Issues associated with uncer-
tainty in σy will only be considered after first exploring the results that can
be expected when this quantity is completely certain.

Systematic Errors

In contrast to random errors which cause measurement values to differ ran-
domly from the mean of the measurement’s parent distribution, systematic
errors cause the mean of the parent distribution to differ systematically (non-
randomly) from the true physical quantity the mean is interpreted to repre-
sent. With yt representing this true value and δsys the systematic error, this
can be expressed

µy = yt + δsys (4.2)

Sometimes δsys is constant as yt varies. In such cases, it is called an offset
or zeroing error and µy will always be above or below the true value by the
same amount. Sometimes δsys is proportional to yt and it is then referred
to as a scaling or gain error. For scaling errors, µy will always be above
or below the true value by the same fractional amount, e.g., always 10%
high. In some cases, δsys is a combination of an offset and a scaling error.
Or, δsys might vary in some arbitrary manner. The procedures to minimize
systematic errors are called calibrations, and their design requires careful
consideration of the particular instrument and its application.

Combining Eqs. 4.1 and 4.2

y = yt + δy + δsys (4.3)

demonstrates that both random and systematic errors contribute to every
measurement. Both can be made smaller but neither can ever be entirely
eliminated. Accuracy refers to the size of possible systematic errors while
precision refers to the size of possible random errors.

Statistical analysis procedures deal with the effects of random errors only.
Thus, systematic errors are often neglected in the first round of data analy-
sis in which results and their uncertainties are obtained taking into account
random error only. Then, one examines how the measurement means might
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deviate non-randomly from the true physical quantities and one determines
how such deviations would change those results. If the changes are found to
be small compared to the uncertainties determined in the first round, system-
atic errors have been demonstrated to be inconsequential. If systematic errors
could change results at a level comparable to or larger than the uncertainties
determined in the first round, those changes should be reported separately
or additional measurements (calibrations) should be made to reduce them.



Chapter 5

Independence and Correlation

Statistical procedures typically involve multiple random variables as input
and produce multiple random variables as output. Probabilities associated
with multiple random variables depend on whether the variables are sta-
tistically independent or not. Correlation describes a situation in which the
deviations for two random variables are related. For statistically independent
variables there is no expected correlation. The consequences of independence
and correlation affect all manner of statistical analysis.

Independence

Two events are statistically independent if knowing the outcome of one has
no effect on the outcomes of the other. For example, if you flip two coins, one
in each hand, each hand is equally likely to hold a heads or a tails. Knowing
that the right hand holds a heads, say, does not change the equal probability
for heads or tails in the left hand. The two coin flips are independent.

Two events are statistically dependent if knowing the results of one affects
the probabilities for the other. Consider a drawer containing two white socks
and two black socks. You reach in without looking and pull out one sock in
each hand. Each hand is equally likely to hold a black sock or a white sock.
However, if the right hand is known to hold a black sock, say, the left hand
is now twice as likely to hold a white sock as it is to hold a black sock. The
two sock pulls are dependent.

The unconditional probability of event A, expressed by Pr(A), represents
the probability of event A occurring without regard to any other events.

27
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The conditional probability of “A given B,” expressed Pr(A|B) represents
the probability of event A occurring given that event B has occurred. Two
events are statistically independent if and only if

Pr(A|B) = Pr(A) (5.1)

The multiplication rule for joint probabilities follows from Eq. 5.1 and is
more useful. The joint probability is the probability for both of two events
to occur. The multiplication rule is that the joint probability for two inde-
pendent events to occur is the product of the unconditional probability for
each to occur.

Whether events are independent or not, the joint probability of “A and
B,” expressed Pr(A ∩ B), is logically the equivalent of Pr(B), the uncon-
ditional probability of B occurring without regard to A, multiplied by the
conditional probability of A given B.

Pr(A ∩B) = Pr(B) Pr(A|B) (5.2)

Then, substituting Eq. 5.1 gives the multiplication rule valid for independent
events.

Pr(A ∩B) = Pr(A) Pr(B) (5.3)

And, of course, the roles of A and B can be interchanged in the logic or
equations above.

Equation 5.3 states the commonly accepted principle that the probabil-
ity for multiple independent events to occur is simply the product of the
probability for each to occur.

For a random variable, an event can be defined as getting one particular
value or getting within some range of values. Consistency with the multipli-
cation rule for independent events then requires a product rule for the pdfs
or dpfs governing the probabilities of independent random variables.

The joint probability distribution for two variables gives the probabili-
ties for both variables to take on specific values. For independent, discrete
random variables x and y governed by the dpfs Px(x) and Py(y), the joint
probability P (x, y) for values of x and y to occur is given by the product of
each variable’s probability

P (x, y) = Px(x)Py(y) (5.4)
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And for independent, continuous random variables x and y governed by the
pdfs px(x) and py(y), the differential joint probability dP (x, y) for x and y to
be in the intervals from x to x+ dx and y to y + dy is given by the product
of each variable’s probability

dP (x, y) = px(x)py(y)dx dy (5.5)

The product rule for independent variables leads to the following impor-
tant corollary. The expectation value of any function that can be expressed
in the form f1(y1)f2(y2) will satisfy

〈f1(y1)f2(y2)〉 = 〈f1(y1)〉 〈f2(y2)〉 (5.6)

if y1 and y2 are independent.
For discrete random variables the proof proceeds from Eq. 5.4 as follows:

〈f1(y1)f2(y2)〉
=

∑
all y1,y2

f1(y1)f2(y2)P (y1, y2)

=
∑
all y1

∑
all y2

f1(y1)f2(y2)P1(y1)P2(y2)

=
∑
all y1

f1(y1)P1(y1)
∑
all y2

f2(y2)P2(y2)

= 〈f1(y1)〉 〈f2(y2)〉 (5.7)

And for continuous random variables it follows from Eq. 5.5:

〈f1(y1)f2(y2)〉

=

∫
f1(y1)f2(y2) dP (y1, y2)

=

∫ ∫
f1(y1)f2(y2)p1(y1)p2(y2) dy1 dy2

=

∫
f1(y1)p1(y1) dy1

∫
f2(y2)p2(y2) dy2

= 〈f1(y1)〉 〈f2(y2)〉 (5.8)

A simple example of Eq. 5.6 is for the expectation value of the product
of two independent variables, y1 and y2; 〈y1y2〉 = 〈y1〉 〈y2〉 = µ1µ2. For
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independent samples yi and yj both from the same distribution (having a
mean µy and standard deviation σy) this becomes 〈yiyj〉 = µ2

y for i 6= j.
Coupling this result with Eq. 2.19 for the expectation value of the square of
any y-value: 〈y2

i 〉 = µ2
y + σ2

y, gives the following relationship for independent
variables from the same distribution

〈yiyj〉 = µ2
y + σ2

yδij (5.9)

where δij is the Kronecker delta function: equal to 1 if i = j and zero if i 6= j.
A related corollary arises from Eq. 5.6 with the substitutions: f1(y1) =

y1−µ1 and f2(y2) = y2−µ2 where y1 and y2 are independent random variables

〈(y1 − µ1)(y2 − µ2)〉 = 〈y1 − µ1〉 〈y2 − µ2〉 (5.10)

Here µ1 and µ2 are the means of y1 and y2, and satisfy 〈yi − µi〉 = 0. Thus
the right-hand side of Eq. 5.10 is the product of two zeros and demonstrates
that

〈(y1 − µ1)(y2 − µ2)〉 = 0 (5.11)

for independent variables.
Note that both y1−µ1 and y2−µ2 always have an expectation value of zero

whether or not y1 and y2 are independent. However, the expectation value
of their product is guaranteed to be zero only if y1 and y2 are independent.

The product rule can be extended—by repeated multiplication—to any
number of independent random variables. The explicit form for the joint
probability for a data set yi, i = 1...N will be useful for our later treatment
of regression analysis. This form will depend on the particular probability
distributions for the yi. Most lab data can be modeled on either the Pois-
son or Gaussian probability distributions and lead to the relatively simple
expressions considered next.

For N independent Gaussian random variables, with each yi having its
own mean µi and standard deviation σi, the joint probability distribution
becomes the following product of terms each having the form of Eq. 2.1 with
p(yi) having the Gaussian form of Eq. 3.1.

P ({y}) =
N∏
i=1

∆yi√
2πσ2

i

exp

[
−(yi − µi)2

2σ2
i

]
(5.12)

where {y} represents the complete set of yi, i = 1...N and ∆yi represents the
size of the least significant digit in yi, which are assumed small compared to
σi.
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For N independent random variables, each governed by its own Poisson
distribution (with mean µi), the joint probability distribution becomes the
following product of terms each having the form of Eq. 3.3.

P ({y}) =
N∏
i=1

e−µiµyii
yi!

(5.13)

The joint probability distributions of Eqs. 5.12 and 5.13 are the basis for
regression analysis and produce amazingly similar expressions when applied
to that problem.

Correlation

Correlation describes relationships between pairs of random variables that are
not statistically independent. Statistically independent random variables are
always uncorrelated.

The generic data set under consideration now consists of two random vari-
ables, x and y, say—always measured or otherwise determined in unison—so
that a single sample consists of an x, y pair. They are sampled repeatedly to
make an ordered set xi, yi, i = 1..N taken under unchanging experimental
conditions so that only random, but perhaps not independent, variations are
expected.

Considered as separate sample sets: xi, i = 1..N and yi, i = 1..N , two
sample probability distributions could be created—one for each set. The
sample means x̄ and ȳ and the sample variances s2

x and s2
y could be calculated

and would be best estimates for the means µx and µy and variances σ2
x and

σ2
y for each variable’s parent distribution px(x) and py(y). These sample and

parent distributions would be considered unconditional because they provide
probabilities without regard to the other variable’s values.

The first look at the variables as pairs is typically with a scatter plot,
in which the N values of (xi, yi) are represented as points on a graph. Fig-
ure 5.1 shows five different 1000- point samples of pairs of random variables.
The set on the left is uncorrelated and the other four are correlated. The
unconditional parent pdfs, px(x) and py(y), are the same for all five, namely
Gaussian distributions having the parameters: µx = 4, σx = 0.1 and µy = 14,
σy = 1. Even though the unconditional pdfs are the same, the scatter plots
clearly show that the joint probability distributions are different and depend
on the degree and sign of the correlation.
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Figure 5.1: The behavior of uncorrelated and correlated Gaussian random vari-
ables. The leftmost figure shows uncorrelated variables, the middle two show
partial correlation and the two on the right show total correlation. The upper two
show positive correlations while the lower two show negative correlations. The Ex-
cel spreadsheet Correlated RV.xls on the lab website shows how these correlated
random variables were generated.

The leftmost plot shows the case where the variables are independent and
thus uncorrelated. The probability for a given x is then independent of the
value of y. For example, if only those points within some narrow slice in y,
say around y = 15, are analyzed—thereby making them conditional on that
value of y, the values of x for that slice are, as in the unconditional case, just
as likely to be above µx as below it.

For the four correlated cases, selecting different slices in one variable will
give different conditional probabilities for the other variable. In particular,
the conditional mean goes up or down as the slice moves up or down in the
other variable. The top two plots show positively correlated variables, the
bottom two show negatively correlated variables. For positive correlation,
the variables are more likely to be on the same side of their means; when one
variable is above (or below) its mean, the other is more likely to be above (or
below) its mean. The conditional mean of one variable increases for slices
at increasing values for the other variable. For negative correlation, these

http://www.phys.ufl.edu/courses/phy4803L/statistics/Correlated RV.xls
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dependencies reverse. The variables are more likely to be on opposite sides
of their means.

The degree of correlation determines the strictness of the dependence
between the two variable’s random deviations. For no correlation, knowing
the value of x gives no information about the value of y. At the other extreme,
the variables lie on a perfect line and the value of x completely determines
the value of y. In between, the conditional mean of the y-variable is linearly
related to the value of the x-variable, but y-values still have random variations
of their own—although with a standard deviation that is smaller than for the
unconditional case.

The standard measure of correlation between two variables x and y is the
sample covariance sxy, defined

sxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (5.14)

The true covariance σxy is defined as the sample covariance in the limit of
infinite sample size

σxy = lim
N→∞

1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ) (5.15)

or equivalently as the expectation value

σxy = 〈(x− µx)(y − µy)〉 (5.16)

With positive, negative, or no correlation, σxy will be positive, negative or
zero. To see how the sign of the correlation predicts the sign of the covariance,
consider the relative number of xi, yi data points that will produce positive
vs. negative values for the product (xi−µx)(yi−µy). This product is positive
when both xi − µx and yi − µy have the same sign and it is negative when
they have opposite signs. With positive correlation, there are more points
with a positive product and thus the covariance is positive. With negative
correlation, there are more points with a negative product and the covariance
is negative. And with no correlation, there should be equal numbers with
either sign and the covariance is zero.

The covariance σxy is limited by the size of σx and σy. The Cauchy-
Schwarz inequality says it can vary between

− σxσy ≤ σxy ≤ σxσy (5.17)
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Thus, σxy is also often written

σxy = ρσxσy (5.18)

where ρ, called the correlation coefficient, is between -1 and 1. Correlation
coefficients at the two extremes represent perfect correlation where x and y
follow a linear relation exactly. The correlation coefficients used to generate
Fig. 5.1 were 0, ±0.7 and ±1.

The inequality expressed by Eq. 5.17 is also true for the sample standard
deviations and the sample covariance with the substitution of sx, sy and
sxy for σx, σy and σxy. The sample correlation coefficient r is then defined
sxy = rsxsy and also varies between -1 and 1.

Of course, a sample correlation coefficient from a particular data set is a
random variable. Its probability distribution depends on the true correlation
coefficient and the sample size and is of interest, for example, when looking
for evidence of any correlation, even a weak one, between two variables. A
sample covariance near zero may be consistent with the assumption that the
variables are uncorrelated. A value too far from zero, however, might be
too improbable under this assumption thereby implying a correlation exists.
These kinds of probabilities are not commonly needed in physics experiments
and will not be discussed.

The covariance matrix

The covariance matrix denoted [σ] describes all the variances and covariances
possible between two or more variables. For a set of 3 variables {y} =
y1, y2, y3, it would be

[σy] =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (5.19)

with the extension to more variables obvious. Note that σ11 = σ2
1 is the

variance of y1 with similar relations for σ22 and σ33.
Thus the covariance matrix for a set of variables is a shorthand way of

describing all of the variables’ standard deviations (or uncertainties) and the
covariances (or correlations) between them.
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If all variables are independent, the covariances are zero and the covari-
ance matrix is diagonal and given by

[σy] =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 (5.20)

When variables are independent, their joint probability distribution fol-
lows the product rule, which leads to Eq. 5.12 when they are all Gaus-
sian. What replaces the product rule for variables that are known to be
dependent—that have a covariance matrix with off-diagonal elements? No
simple expression exists when the variables follow arbitrary unconditional
distributions. However, for the important case where they are all Gaussian,
the expression is quite elegant. Eq. 5.12 must be replaced by

P ({y}) =

∏N
i=1 ∆yi√

(2π)N |[σy]|
exp

[
−1

2

(
yT − µT

) [
σ−1
y

]
(y − µ)

]
(5.21)

where [σy] is the covariance matrix for the N variables, |[σy]| is its determi-
nant, and

[
σ−1
y

]
is its inverse. A vector/matrix notation has been used where

y and µ are column vectors of length N with elements given by yi and µi,
respectively, and yT and µT are transposes of these vectors, i.e., row vectors
with the same elements. Normal vector-matrix multiplication rules apply so
that the argument of the exponential is a scalar.

Note that, as it must, Eq. 5.21 reduces to Eq. 5.12 if the covariance matrix
is diagonal.
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Chapter 6

Propagation of Errors

Propagation of errors comes into play when calculating one or more quantities
ak, k = 1..M based on one or more random variables yi, i = 1..N . The ak
are to be determined according to M given functions of the yi

ak = fk(y1, y2, ...., yN) (6.1)

For example, the random variables might be a measured voltage V across a
circuit element and a measured current I passing through it. The calculated
quantities might be the element’s resistance R = V/I and/or the power
dissipated P = IV .

In the general case, the joint probability distribution for the input vari-
ables transforms to a joint probability distribution for the output variables.
In the Box-Müller transformation, for example, y1 and y2 are uncorrelated
and uniformly distributed on the interval [0, 1]. The two calculated quantities

a1 =
√
−2 ln y1 sin 2πy2 (6.2)

a2 =
√
−2 ln y1 cos 2πy2

will then be uncorrelated Gaussian random variables, each with a mean of
zero and a variance of one.

Propagation of errors refers to a very restricted case of transformations
where the ranges for the input variables are small—small enough that Eq. 6.1
for each ak would be well represented by a first-order Taylor series expan-
sion about the means of the yi. This is not the case for the Box-Müller
transformation and these more general cases will not be considered further.

37
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Figure 6.1: Single variable propagation of errors. Only the behavior of f(y) over
the region µy ± 3σy affects the distribution in a.

To see how small errors lead to simplifications via a Taylor expansion,
consider the case where there is only one calculated variable, a, derived from
one random variable, y, according to a given function, a = f(y). Figure 6.1
shows the situation where the standard deviation σy is small enough that for
y-values in the range µy ± 3σy, a = f(y) is well approximated by a straight
line—the first order Taylor expansion of f(y) about µy.

a = f(µy) +
df

dy
(y − µy) (6.3)

where the derivative is evaluated at µy. With a linear relation between a
and y, a Gaussian distribution in y will lead to a Gaussian distribution in a
with µa = f(µy) and σa = σy|df/dy|. Any second order term in the Taylor
expansion—proportional to (y − µy)2—would lead to an asymmetry in the
a-distribution and a bias in its mean. In Fig. 6.1, for example, a = f(y) is
always below the tangent line and thus the mean of the a-distribution will
be slightly less than f(µy).

In treating the general case where there are several yi involved in calcu-
lating several ak, the yi will be assumed to follow a Gaussian joint probability
distribution—with or without correlation.

The sample set of yi values together with their covariance matrix [σy] are
assumed given and will be used to determine the values for the ak and their
covariance matrix. The number of input and output variables is arbitrary.
They need not be equal nor does one have to be more or less than the other.

The M sample ak are easy to determine. They are evaluated according
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to the M functions expressed by Eq. 6.1 using the sample yi values. Deter-
mining the covariance matrix for the ak is not so simple. Before presenting
the general case it is worth mentioning some special cases that are commonly
encountered. Often all input variables are independent and thus terms in-
volving their covariances can be dropped. Often only a single formula is to
be evaluated and so there are no output covariances—only the single output
variable’s variance or standard deviation is sought. Often both conditions
hold. These special cases will be considered after the general treatment is
presented.

Just as the M functions fk of Eq. 6.1 are used to provide sample ak values
from a given sample set of yi, they should also be considered as giving the
true values of the calculated quantities, denoted αk, based on the true means
µi of the yi.

αk = fk(µ1, µ2, ..., µN) (6.4)

Consider next the distribution of values obtained by repeatedly evaluat-
ing the ak, each time from a newly sampled set of yi. As additional sample
sets are taken, the yi would vary according to their joint probability distri-
bution causing the values for the ak to vary as well—according to their joint
probability distribution. It is this distribution we seek.

Each yi is in the range µi ± 3σi better than 99% of the time. For the
propagation of error formulas to be valid for all such yi will then require that
over such ranges, the functions ak are accurately represented by a first-order
Taylor expansions of fk about the values µ1, µ2, ..., µN .

ak = fk(y1, y2, ..., yN)

= fk(µ1, µ2, ..., µN) +

∂fk
∂y1

(y1 − µ1) +
∂fk
∂y2

(y2 − µ2) + ...+
∂fk
∂yN

(yN − µN)

= αk +
N∑
i=1

∂fk
∂yi

(yi − µi) (6.5)

where Eq. 6.4 has been used in the final step.
The partial derivatives are simply constants that should be evaluated at

the expansion point, µ1, µ2, ...µN . However, as these means are typically
unknown, the derivatives will have to be evaluated at the measured point
y1, y2, ...yN instead. This is not really an issue as all fk are assumed linear
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over a range of several σi about each µi and thus the derivatives must be
nearly constant for any yi in that range.

Within the linear approximation, the means, variances, and covariances
for the joint probability distribution for the ak can easily be determined. The
mean for the variable ak is defined as 〈ak〉 and this expectation value is easily
evaluated from Eq. 6.5.

〈ak〉 =

〈
αk +

N∑
i=1

∂fk
∂yi

(yi − µi)

〉

= αk +
N∑
i=1

∂fk
∂yi
〈(yi − µi)〉

= αk (6.6)

where the expectation values 〈yi − µi〉 = 0 has been used to eliminate all
terms in the sum. This demonstrates the important result that the quantity
ak = fk(y1, y2, ..., yM) will be unbiased estimates of the true αk.

For notational convenience and to distinguish them from the standard
deviations σi and covariances σij for the input yi, the standard deviations
of the ak will be denoted ζk and their covariances will be denoted ζkl. The
variances defined by Eq. 2.17 and the covariances defined by Eq. 5.16 can be
expressed by the single definition:

ζkl = 〈(ak − αk)(al − αl)〉 (6.7)

with the understanding that ζkk = ζ2
k =

〈
(ak − αk)2〉 is the variance of ak.

Using Eq. 6.5 for ak and al (with different dummy indexes) gives

ζkl =

〈
N∑
i=1

∂fk
∂yi

(yi − µi)
N∑
j=1

∂fl
∂yj

(yj − µj)

〉
(6.8)

Rearranging the sums, distributing the expectation value over the terms in
the sum and factoring constants from each term gives

ζkl =
N∑
i=1

N∑
j=1

∂fk
∂yi

∂fl
∂yj
〈(yi − µi)(yj − µj)〉 (6.9)
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Now the simultaneous definitions for the input variances and covariances
σij = 〈(yi − µi)(yj − µj)〉 can be used to express ζkl as

ζkl =
N∑
i=1

N∑
j=1

∂fk
∂yi

∂fl
∂yj

σij (6.10)

This equation gives the elements of the covariance matrix [ζa] associated
with the full set of ak. It can be seen to be just one element of the equation
for the entire matrix, with the entire matrix elegantly given by:

[ζa] = [JT ][σy][J ] (6.11)

where standard matrix multiplication rules apply and [J ] is the N × M
Jacobian matrix with elements given by

[J ]ik =
∂fk
∂yi

(6.12)

Here, i = 1...N and k = 1...M label the rows and columns, respectively, and
[JT ] is the transpose of [J ]—an M × N matrix with the roles of rows and
columns interchanged.

[JT ]ki = [J ]ik (6.13)

Now a few special cases are considered.
The first is not really a special case. It is simply a rewrite for a diagonal

element of the covariance matrix. The quantity ζkk, i.e., the variance ζ2
k

is especially important because its square root is the standard deviation or
uncertainty of ak. The rewrite will separate the terms involving the variances
of the yi (terms in the double sum where i = j) from those involving the
covariances (cross terms where i 6= j).

ζ2
k =

N∑
i=1

(
∂fk
∂yi

)2

σ2
i + 2

N∑
j>i=1

∂fk
∂yi

∂fk
∂yj

σij (6.14)

where the second sum is meant to represent a sum over all pairs i, j where
j > i. The factor of 2 arises because Eq. 6.10 would produce two equivalent
cross terms while the sum above is meant to include each cross term only
once. Note that whenever correlated variables are used together as input to
a calculation, the uncertainty in the calculated quantity will have to take
into account the input covariances via this equation.
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Now consider the case for the variance ζ2
k when all yi are independent, i.e.,

their covariances σij, i 6= j are all zero. In this case, the formula simplifies
to

ζ2
k =

N∑
i=1

(
∂fk
∂yi

)2

σ2
i (6.15)

This is the typical propagation of error formula given in most references, but
it should be understood to apply only to uncorrelated yi.

Special conditions can lead to uncorrelated output variables. However,
in general, the ζkl, k 6= l will be non-zero (and thus the ak will be correlated)
for both dependent or independent input yi. For the special case where all
yi are independent, Eq. 6.10 simplifies to

ζkl =
N∑
i=1

∂fk
∂yi

∂fl
∂yi

σ2
i (6.16)

Exercise 4 Simulate 1000 pairs of simultaneous measurements of a current
I through a circuit element and the voltage V across it. Assume that the
current and voltage measurements are independent. Take I-values from a
Gaussian with a mean of 76 mA and a standard deviation of 3 mA, and take
V -values from a Gaussian with a mean of 12.2 V and a standard deviation
of 0.2 V.

Calculate sample values for the element’s resistance R = V/I and power
dissipated P = IV for each pair of I and V and submit a scatter plot for the
1000 R,P sample values. Calculate the predicted means (Eq. 6.4) and vari-
ances (Eq. 6.15) for the R and P distributions and calculate their predicted
covariance (Eq. 6.16). Evaluate the sample means (Eq. 2.7) for the 1000 R
and P values, their sample variances (Eq. 2.22), and the sample covariance
between R and P (Eq. 5.14).

To compare the predictions and the sample values determined above re-
quires the probability distributions for sample means, sample variances, and
sample covariances. These distributions will be discussed shortly but their
standard deviations will be given here as an aid to the comparison. The
standard deviation of the mean of the sample resistances is predicted to be
σR̄ = σR/

√
N . Similarly for the power. Check if your two sample means

agree with predictions at the 95% or two-sigma level. The fractional stan-
dard deviation—the standard deviation of a quantity divided by the mean
of that quantity—for the two variances and the covariance are predicted to
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be
√

2/(N − 1). For N = 1000, this is about 4.5% so check if your sample
variances and covariance agree with predictions at the 9% or two-sigma level.
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Chapter 7

Principle of Maximum
Likelihood

Theoretical models often include parameters that are not known in advance
and must be estimated based on the measured data. A common example is
a straight-line fit to a set of measured (xi, yi) data points predicted to obey
a linear relationship: y = mx + b. Regression analysis then gives the best
estimate of the slope m and the intercept b based on the data.

The principle of maximum likelihood says to choose parameter estimates
so that they maximize the probability of the data set from which they are
derived. Using the principle guarantees that if the experiment and theory
are then deemed incompatible, they will be incompatible regardless of the
parameter values. Any other values will only make the data less likely. Pa-
rameters determined by this principle will be called best estimates.

How is the principle of maximum likelihood implemented? The first step
is to get an expression for the probability of the whole data set. For now,
we assume that all random variables involved can be expressed by the set
yi, i = 1...N and we assume they are all statistically independent so that
the product rule applies. Independence is commonly the case and it greatly
simplifies the math.

With all the µi and σi given, the joint probability distributions of Eq. 5.12
(for Gaussian variables) or Eq. 5.13 (for Poisson variables) can be considered
as providing the probabilities for any set of yi—larger for sets that are more
likely and smaller for sets that are less likely.

For the purposes of estimating theoretical parameters, the joint proba-
bility takes on a second purpose. Theoretical models typically make some

45
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prediction about the means µi and/or the standard deviations σi appearing
in the joint probability. The principle of maximum likelihood simply states
that any adjustable theory parameters involved in those predictions should
be chosen to maximize the joint probability.

Any function f(a, b, ...) has an extremum with respect to variable a where
its derivative with respect to a is zero: ∂f/∂a = 0. For the purpose of finding
the maximum probability, it is common to first take the natural logarithm of
f(a, b, ...) and maximize that. This works because ∂(ln f)/∂a = (1/f)∂f/∂a
and thus where one derivative is zero, so is the other.

The natural logarithm of the probability is called the log likelihood and
simplifies the math because it transforms the products into sums which are
easier to differentiate.

For a Gaussian data set (Eq. 5.12) it is

ln(P ) = −N
2

ln 2π +
N∑
i=1

ln

(
∆yi
σi

)
− 1

2

N∑
i=1

(yi − µi)2

σ2
i

(7.1)

And for a Poisson data set (Eq. 5.13) this log likelihood becomes:

ln(P ) =
N∑
i=1

−µi + yi lnµi − ln yi! (7.2)

Keep in mind that each increase (or decrease) of one in the log likelihood
increases (or decreases) the data set probability by a factor of e.

Sample mean and variance

As a first application, the principal of maximum likelihood will be used to
obtain the best estimate of µy from N samples: yi, i = 1...N , all from the
same Poisson parent distribution. For this case, all µi in Eq. 7.2 are the same
(µi = µy) and the log likelihood function simplifies to

ln(P ) = −Nµy + lnµy

N∑
i=1

yi −
N∑
i=1

ln yi! (7.3)

The value of µy that maximizes ln(P ) for any particular data set is not
expected to be the true mean. It will be a estimate of that quantity and
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will be given a different name. The value of µy where ∂ ln(P )/∂µy = 0 will
be designated ȳ for reasons that will become clear shortly. This equation is
written

0 =
∂ ln(P )

∂µy

∣∣∣∣
µy=ȳ

(7.4)

And its solution proceeds from Eq. 7.3 as follows:

0 = −N +
1

µy

N∑
i=1

yi

∣∣∣∣∣
µy=ȳ

= −N +
1

ȳ

N∑
i=1

yi

(7.5)

Solving for ȳ gives Eq. 2.7—the standard equation for the sample mean.
As a second application, best estimates of both µy and σy will be obtained

from N samples—all from the same Gaussian parent. That is, all samples
have ∆yi = ∆y, µi = µy and σi = σy and the log likelihood function simplifies
to

ln(P ) = −N
2

ln 2π +N ln

(
∆y

σy

)
− 1

2σ2
y

N∑
i=1

(yi − µy)2 (7.6)

Again, ȳ will be used to represent that value of µy where this log likelihood
function maximizes giving

0 =
∂ ln(P )

∂µy

∣∣∣∣
µy=ȳ

= − 1

2σ2
y

N∑
i=1

2(yi − µy)(−1)

∣∣∣∣∣
µy=ȳ

=
N∑
i=1

(yi − ȳ)

= −Nȳ +
N∑
i=1

yi (7.7)

And, again, solving for ȳ gives Eq. 2.7.
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Thus, the sample mean of Eq. 2.7 has now been proven to be a best
estimate of the distribution mean for variables governed by either a Poisson
or a Gaussian distribution. The sample mean ȳ has also been proven to be
an unbiased estimate of µy. Thus, for these two cases, the best estimate is
an unbiased estimate. Using the principle of maximum likelihood does not
guarantee that a parameter obtained from it will be unbiased. Checking that
estimates are unbiased is an important part of statistical analysis procedures.

Exercise 5 The variance of ȳ is most easily determined from Eq. 2.18—as
the difference between the second moment and the square of the first—in this
case: σ2

ȳ = 〈ȳ2〉 − µ2
y. Evaluate the right side of this equation to show that

σ2
ȳ =

σ2
y

N
(7.8)

Hint 1: Re-express ȳ2 using

ȳ2 =

(
1

N

N∑
i=1

yi

)(
1

N

N∑
j=1

yj

)

=
1

N2

N∑
i=1

N∑
j=1

yiyj (7.9)

before taking the expectation value. Note how each ȳ must use its own private
dummy index to clearly enumerate terms with i = j and i 6= j for use with
Eq. 5.9.

Eq. 7.8 indicates that the standard deviation of the mean of N samples
is
√
N times smaller than the standard deviation of a single sample, i.e., the

average of 100 samples is 10 times more precise an estimate of the true mean
than is a single sample. This is an important fact, but it does not provide
an estimate of σy from the sample set.

To get this estimate, first assume that µy is known.

Exercise 6 Show that the best estimate of σ2
y is the sample variance s2

y as
given by Eq. 2.20. Hint: Let sy be that value of σy where the derivative of
Eq. 7.6 with respect to σy is equal to zero.
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The fact that ȳ satisfies the principle of maximum likelihood helps explain
why the divisor N in Eq. 2.20 was changed to N−1 in Eq. 2.22. By choosing
ȳ such that it maximizes the log-likelihood of Eq. 7.6, the sum in Eq. 2.22
(using ȳ) is guaranteed to be a minimum and is thus always smaller than the
sum in Eq. 2.20 (using µy). As you will prove in the next exercise, changing
N to N − 1 corrects for the average reduction so that the s2

y of Eq. 2.22 is
still unbiased.

Exercise 7 Show that Eq. 2.22 also satisfies Eq. 2.21. Hint 1: Explain why
each of the N terms in Eq. 2.22 has the same expectation value and use this
fact to get rid of the sum over i—replacing it with a factor of N times the
expectation value of one term (say i = 1). Hint 2: Expand (y1 − ȳ)2 before
taking the expectation value term by term. Then use Eqs. 2.7 and 5.9 and/or
results from Exercise 5 as needed for the individual terms.

Using the best estimate sy in place of σy in Eq. 7.8 then gives the sample
standard deviation of the mean

sȳ =
sy√
N

(7.10)

which is a best estimate of σȳ.
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Chapter 8

Regression Analysis

Regression analysis refers to techniques involving data sets with one or more
dependent variables measured as a function of one or more independent vari-
ables with the goal to compare that data with a theoretical model and extract
model parameters and their uncertainties.

Here, the terms dependent and independent variable refer to experimen-
tal relationships unrelated to statistical dependence or independence. For
example, the dependent variables are often statistically independent from
one another. The naming largely arises because the dependent variables
can be considered a function of (depend on) the values of the independent
variables.

The dependent variables will be denoted yi, i = 1...N and each yi will
be modeled as an independent sample from either a Gaussian or Poisson
probability distribution. For each yi, the theoretical model predicts the value
of the distribution mean µi via a fitting function Fi that depends on (1) the
values of the independent variables associated with that point and (2) a set
of M fitting parameters αk, k = 1...M

µi = Fi(α1, α2, ..., αM) (8.1)

where the subscript i in Fi({α}) denotes the independent variables. The lack
of any explicit independent variables in Eq. 8.1 is intentional. In a regression
analysis they merely serve to distinguish the point by point dependences of
the predicted µi on the fitting parameters.

Independent variables can be random variables, but accounting for their
random error can be difficult and will only be addressed after an initial
treatment assuming they are known exactly.

51
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All input random variables in a regression analysis are typically assumed
to be statistically independent. If correlations exist, this assumption would
have to be abandoned and covariances between variables would have to be
taken into account. The required modifications depend on the details of the
correlations, but when the only correlations are between dependent variables,
they are relatively simple and are addressed later in this chapter. Until then,
all input variables will be considered statistically independent.

Adjustable parameters in a regression analysis are used only in predicting
the set of µi appearing in the joint probability distribution for the entire data
set. These parameters will be chosen to maximize the data set probability by
maximizing the log likelihood functions of either Eq. 7.1 or Eq. 7.2 depending,
respectively, on whether the yi follow Gaussian or Poisson distributions.

For Gaussian-distributed yi, only the last term in Eq. 7.1, the one with a
sum of squared deviations, has any dependence on the µi and thus the best-fit
solution must only maximize this quantity. As this last term has a negative
prefactor, it is traditional to consider the maximum likelihood process as a
minimization of the following sum of squares.

χ2 =
N∑
i=1

(yi − µi)2

σ2
i

(8.2)

That is why regression analysis is often referred to as a least-squares proce-
dure despite its correct origin as a maximum likelihood method.

The χ2 given by Eq. 8.2 has a form very similar to the chi-square random
variable used for determining “goodness of fit”—a topic for the next chapter.
At this point, χ2 should only be considered as providing a quantity to be
made as small as possible in order to make the probability of the data set
as big as possible. Its importance here is in how it depends on the data and
the true means.

For Poisson-distributed yi, only the first two terms in the log likelihood
function of Eq. 7.2 have any dependence on the µi. Consequently, the best-
fit solution must only maximize this part of the log likelihood function. As
we will see shortly, regression formulas for Poisson-distributed data are quite
similar to those for Gaussian- distributed data. In anticipation of this sim-
ilarity, we define a chi-square-like variable for fits to Poisson-distributed
data that is, as with the χ2 for Gaussian-distributed data, −2 times the
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µi-dependent terms in the log likelihood function.

χ2
P = 2

N∑
i=1

µi − yi lnµi (8.3)

Maximizing the data set probability will then require minimizing this quan-
tity.

Notice that both χ2 and χ2
P are unitless quantities and must decrease by

two to increase the log likelihood function by one and increase the data set
probability by a factor of e.

According to the principle of maximum likelihood, the best-fit param-
eters, which will be denoted ak, when used in place of the true αk must
maximize the probability, and thus minimize the chi-square, for that partic-
ular data set. Consequently, the ak are associated with one particular data
set and are random variables.

These ideas can be summarized in N + 1 + M equations. First, when
substituted for the αk in the fitting functions, the ak are said to give the
best-fit y-values, which will be denoted yfit

i , i = 1...N . These N equations
are

yfit
i = Fi({a}) (8.4)

where {a} is the set of ak, k = 1...M .
Second, using the yfit

i in place of the µi in Eq. 8.2 for Gaussian variables,
or in Eq. 8.3 for Poisson variables, gives the minimized chi-square. This
single equation is either

χ2 =
N∑
i=1

(
yi − yfit

i

)2

σ2
i

(8.5)

for Gaussian yi, or

χ2
P = 2

N∑
i=1

yfit
i − yi ln yfit

i (8.6)

for Poisson yi.
Third, the condition that the χ2 or χ2

P be a minimum with respect to all
best-fit parameters is that its partial derivatives with respect to each ak must
be zero. Keeping in mind that both χ2 and χ2

P depend on the ak only via
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the dependence of yfit
i on these quantities (Eq. 8.4), chain rule differentiation

gives for Gaussian-distributed variables:

0 =
∂χ2

∂ak

=
∂

∂ak

N∑
i=1

(yi − yfit
i )2

σ2
i

=
N∑
i=1

2(yi − yfit
i )(−1)

σ2
i

∂yfit
i

∂ak

=
N∑
i=1

(yi − yfit
i )

σ2
i

∂yfit
i

∂ak
(8.7)

and for Poisson-distributed variables it gives

0 =
∂χ2

P

∂ak

=
∂

∂ak

N∑
i=1

yfit
i − yi ln yfit

i

=
N∑
i=1

(
1− yi

yfit
i

)
∂yfit

i

∂ak

=
N∑
i=1

(yfit
i − yi)
yfit
i

∂yfit
i

∂ak

=
N∑
i=1

(yi − yfit
i )

yfit
i

∂yfit
i

∂ak
(8.8)

Equation 8.7 or 8.8 should be considered a set of M equations, one for each
k, which can then be solved for the M unknown ak.

Note how this development has generated another example of counting
statistics for Poisson-distributed variables. Equation 8.8 can be considered
a special case of Eq. 8.7—one with with σ2

i = yfit
i . However, using σ2

i =
yfit
i has a caveat and it presents a minor complication. The caveat is that

solutions will then be minimizing the χ2
P of Eq. 8.6 not the χ2 of Eq. 8.5.

The complication arises because the σi are inputs for finding the best-fit
parameters, and because the yfit

i are not known until the best-fit parameters
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are known, an iterative approach will be needed. One might start with a
guess for the fitting parameters to get an initial set of yfit

i , which would then
be used for the σ2

i . The results from this first fit can then be used to get a
better set of fitting parameters, a more accurate set of yfit

i , and thus more
accurate values of σ2

i to use in a second iteration. Additional iterations can
be performed until the ak and the yfit

i converge.
Thus, with the understanding that σ2

i = yfit
i for Poisson-distributed vari-

ables, Eqs. 8.7 and 8.8 can both be represented

N∑
i=1

yi
σ2
i

∂yfit
i

∂ak
=

N∑
i=1

yfit
i

σ2
i

∂yfit
i

∂ak
(8.9)

Don’t forget this equation should be considered a set of M simultaneous
equations, one for each ak.

Linear algebra is typically used to solve Eq. 8.9. With quantities repre-
sented by vectors or matrices, the resulting expressions simplify. Sets of equa-
tions become vector equations and summation symbols disappear—replaced
by summations implied by standard vector/matrix multiplication rules. All
regression formulas using linear algebra techniques are derived in the Regres-
sion Analysis Addendum and demonstrated for a quadratic fit using array
formulas in Excel in Linear Regression.xls available on the lab web site.

The parameters αk and their best estimates ak are represented by column
vectors of length M .

α =


α1

α2
...
αM

 (8.10)

a =


a1

a2
...
aM

 (8.11)

The data yi and the best fit yfit
i are represented by column vectors of length

N .

y =


y1

y2
...
yN

 (8.12)

http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
http://www.phys.ufl.edu/courses/phy4803L/statistics/Linear Regression.xls
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and

yfit =


yfit

1

yfit
2
...
yfit
N

 (8.13)

The standard deviations of the yi are represented by their N × N diagonal
covariance matrix

[σy] =


σ2

1 0 0 · · ·
0 σ2

2 0 · · ·
...

...
...

0 0 · · · σ2
N

 (8.14)

or by its inverse, called the weighting matrix

[
σ−1
y

]
=


1/σ2

1 0 0 · · ·
0 1/σ2

2 0 · · ·
...

...
...

0 0 · · · 1/σ2
N

 (8.15)

Finally, defining the N ×M Jacobian matrix with elements

[J ]ik =
∂yfit

i

∂ak
(8.16)

the M equations of Eq. 8.9 become the M components of the following vector
equation [

JT
] [
σ−1
y

]
y =

[
JT
] [
σ−1
y

]
yfit (8.17)

where
[
JT
]

is the transpose of [J ], i.e., is an M × N matrix with the rows
and columns of [J ] interchanged. The elements of the transpose satisfy[

JT
]
ki

= [J ]ik (8.18)

It is recommended that the reader check Eq. 8.17 and verify that it is, in-
deed, a vector equation having M elements with the kth element reproducing
Eq. 8.9 including the proper summation over the i index.
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Linear Regression

Linear regression is used when the fitting function is linear in the fitting
parameters. For a fitting function with a single independent variable xi,
each yfit

i would be of the form

yfit
i = a1f1(xi) + a2f2(xi) + ...+ aMfM(xi)

=
M∑
k=1

akfk(xi) (8.19)

where the fk(x) are linearly independent basis functions of x with no un-
known parameters. For example, a data set for the position yi vs. time ti
of a cart rolling on an inclined track might be checked against a predicted
quadratic based on motion at constant acceleration:

yfit
i = a1 + a2ti + a3t

2
i (8.20)

This is linear in the three parameters with basis functions: f1(ti) = 1, f2(ti) =
ti, and f3(ti) = t2i .

Equation 8.16 for the Jacobian is then the N ×M matrix given by

[J ] =


f1(x1) f2(x1) · · · fM(x1)
f1(x2) f2(x2) · · · fM(x2)

...
...

...
f1(xN) f2(xN) · · · fM(xN)

 (8.21)

The set of N equations for the yfit
i (Eq. 8.19) can then be expressed by

the single vector equation (with N elements)

yfit = [J ]a (8.22)

and Eq. 8.17 becomes [
JT
] [
σ−1
y

]
y =

[
JT
] [
σ−1
y

]
[J ]a (8.23)

The combination
[
JT
] [
σ−1
y

]
[J ] is an M ×M matrix that will become

prominent in the discussion of the parameter covariance matrix. It will be
given its own symbol [X]

[X] =
[
JT
] [
σ−1
y

]
[J ] (8.24)
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so that Eq. 8.23 becomes [
JT
] [
σ−1
y

]
y = [X]a (8.25)

[X] is called the curvature matrix because it determines the parabolic shape
of chi-square values as a function of the M parameter values. This issue is
discussed in the section on nonlinear regression.

Equation 8.25 is solved for the best-fit parameter vector a by determining
the inverse [X−1] of the curvature matrix and multiplying by it on the left
of both sides of Eq. 8.25

a = [X−1]
[
JT
] [
σ−1
y

]
y (8.26)

or
a =

[
J†
]
y (8.27)

where [
J†
]

= [X−1]
[
JT
] [
σ−1
y

]
(8.28)[

J†
]

is an M×N matrix called the (weighted) Moore-Penrose pseudo-inverse
of [J ].

The ak are random variables. If new sets of yi were taken repeatedly, the
ak calculated for each set would vary. If the yi are Gaussian distributed, or
even if they are not and the data set N is large enough, the ak will follow
Gaussian or near-Gaussian distributions and their variations with each new
data set will be correlated. What can be expected for the means, variances
and covariances for the ak?

The ak will be unbiased. That is, the distribution for ak will have a mean
of αk. The vector equation

〈a〉 = α (8.29)

is provably true. The proof can be found in the Regression Analysis Adden-
dum. This addendum also shows that the parameter covariance matrix is
given by

[σa] = [X−1] (8.30)

In other words, each diagonal element of [X−1] gives the variance and thus
its square root gives the standard deviation for the corresponding parameter.
Furthermore, fitting parameters are usually correlated and the off-diagonal
elements give their covariances. The Slope-Intercept Correlation Excel work-
book shows an example of predicted and sample values for the variances

http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
http://www.phys.ufl.edu/courses/phy4803L/statistics/Slope-Intercept Correlation.xls
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and covariance of the slope and intercept for simulated data sets following a
straight-line relationship.

It is important to point out that the parameter covariance matrix is not
a random variable. It does not depend on the yi, which are the only random
variables in the analysis. To the extent that the σi and the Jacobian [J ] can
be predetermined, Eqs. 8.30 and 8.24 show that the parameter covariance
matrix can be predetermined as well.

Weighted mean

The simplest linear regression problem is a fit to a constant. It arises when
averaging sample values of the same physical quantity obtained from a variety
of sources so that each sample value has a different uncertainty. A straight
mean (Eq. 2.7) would be correct if all the uncertainties were the same. In the
more general case, however, precise sample values with small uncertainties
must be weighted more heavily than less precise values with larger uncer-
tainties. The correct result will be a weighted mean that properly takes into
account the uncertainty of each value.

The data set consists of yi, i = 1...N with varying standard deviations
σi. The yi are assumed independent so the N ×N covariance and weighting
matrix are as given in Eqs. 8.14 and 8.15.

The prediction is that the mean of the distribution associated with each
yi is the same, µi = µy, where µy is the (unknown) true value of the physical
quantity. The best estimate of that quantity, let’s call it my, is sought. This
is a one-parameter, linear fit to a constant. In the notation of the linear
regression formulas, M = 1, a1 = my and f1 = 1 for all i.

The parameter vector a is of single-element form.

a = (my) (8.31)

and the Jacobian matrix is an N × 1 matrix given by

[J ] =


1
1
...
1

 (8.32)

The curvature matrix [X] =
[
JT
] [
σ−1
y

]
[J ] is then easily shown to be the
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1× 1 matrix given by

[X] =

[
N∑
i=1

1

σ2
i

]
(8.33)

and the covariance matrix for a—the inverse of [X]—is simply the 1 × 1
matrix given by

[X−1] =

( N∑
i=1

1

σ2
i

)−1
 (8.34)

Using a = [X−1]
[
JT
] [
σ−1
y

]
y to solve for the best-fit a gives, after a bit of

simple vector-matrix manipulations, its only element

my =

N∑
i=1

yi
σ2
i

N∑
i=1

1

σ2
i

(8.35)

Eq. 8.35 is called a weighted average:

my =
w1y1 + w2y2 + ...+ wNyN

w1 + w2 + ...+ wN
(8.36)

where each weight is the inverse of the variance:

wi =
1

σ2
i

(8.37)

Note that larger standard deviations indicate less precisely known mea-
surements and, appropriately, smaller weights in the average.

The weighting effect of data point uncertainties is most obvious for a fit
to a constant, but persists in all regression problems. The larger the σi, the
smaller the weighting of that point in its effect on the fitting parameters.

The diagonal (and only) element of the covariance matrix [X−1] is the
variance of the only element my of the parameter vector a. That is,

σ2
my =

(
N∑
i=1

1

σ2
i

)−1

(8.38)
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which is often expressed in a form somewhat easier to remember

1

σ2
my

=
N∑
i=1

1

σ2
i

(8.39)

Effectively, Eqs. 8.35 and 8.39 are a prescription for turning a group of inde-
pendent samples (with known standard deviations) into a single sample my

with a reduced standard deviation σmy .

Equally-weighted linear regression

Occasionally, all yi are obtained using the same technique and have the same
uncertainty. Or, the uncertainties are not known very well and assuming
they are equal is an appropriate starting point. This case is fairly common
and will be the second linear regression example to consider. For a data set
where the standard deviations are the same for all yi, σi = σy, the regression
equations and results are then called equally-weighted.

The equations simplify because the covariance and weighting matrix are
proportional to the identity matrix. [σy] = σ2

y [I] and
[
σ−1
y

]
= (1/σ2

y)[I].
With this substitution, Eq. 8.24 becomes

[X] =
1

σ2
y

[Xu] (8.40)

where now [Xu] is the [X] matrix without the weighting matrix

[Xu] =
[
JT
]

[J ] (8.41)

and is thus independent of σy. The inverse of Eq. 8.40 is then [X−1] =
σ2
y[X

−1
u ] where [X−1

u ], the inverse of [Xu], is also independent of σy.
By Eq. 8.30, [X−1] is the parameter covariance matrix. That is,

[σa] = σ2
y[X

−1
u ] (8.42)

demonstrating that every element of the parameter covariance matrix is pro-
portional to σ2

y . Equation 8.42 thus further implies that the standard devia-
tion of every parameter (square root of the corresponding diagonal element)
is proportional to the standard deviation (σy) of the y-values for that data
set.



62 CHAPTER 8. REGRESSION ANALYSIS

Equation 8.26 for the parameter values becomes

a = [X−1
u ]
[
JT
]
y (8.43)

showing that the σ2
y has canceled and thus that the parameter values them-

selves do not depend on its value. Moreover, the chi-square of Eq. 8.5 becomes

χ2 =
1

σ2
y

N∑
i=1

(
yi − yfit

i

)2
(8.44)

The σy factors from the sum. The best-fit parameters minimize the χ2 and
for this case minimize the same sum of squared deviations for any σy.

Nonlinear Regression

Linear regression techniques can only be used when the Jacobian is indepen-
dent of the entire set of fitting parameters. Fitting functions that are non-
linear in the fitting parameters do not satisfy this requirement. For example,
consider a short-lived radioactive sample positioned in front of a Geiger-
Müller tube. The counts yi are measured over a ten-second interval as a
function of the time ti since starting the experiment. A nonlinear model
predicting exponential decay would be represented

yfit
i = a1e

−ti/a2 + a3 (8.45)

where a1 is proportional to the initial sample activity, a2 is the mean lifetime,
and a3 is a constant arising from natural background radiation.

Because the Jacobian depends on the parameters, solving for the best-fit
parameters of a nonlinear function will require techniques that differ from
those of linear regression while retaining significant similarities.

Unlike linear regression, which can find the best-fit parameters from a
single evaluation of the appropriate formulas, a nonlinear regression program
must find the solution iteratively. The user must provide initial guesses for
the fitting parameters that will be used as a starting point. From these initial
guesses, the program must test other nearby parameter sets—evaluating the
chi-square value each set produces. Each time the program finds that the
chi-square has decreased, it uses those improved parameter values as a new
starting point as it tries to find its way to the best-fit parameters which
produce the minimum chi-square and maximize the data set probability.
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The following discussion describes nonlinear regression for Gaussian-dis-
tributed yi. The two minor adjustments necessary for treating Poisson-dis-
tributed data will not always be mentioned but are always the same: (1) Use
the most current yfit

i for σ2
i in the input covariance or weighting matrix, and

(2) Use the χ2
P of Eq. 8.6 for the chi-square when checking for an improved

fit.
The foundation for nonlinear regression is the Gauss-Newton algorithm.

It is also the quickest way to find the best-fit parameters when the starting
parameters are already sufficiently close to the best-fit parameters. Its big
drawback is that it tends to fail if the starting point is not close enough. The
gradient-search algorithm is better at improving the fit parameters when
the starting parameters are farther from the best-fit parameters. Its big
drawback is that it tends to take a long time to find the best fit. The
Levenberg-Marquardt algorithm elegantly addresses the shortcomings of both
algorithms. In effect, it uses the gradient-search algorithm when the starting
points are far off and switches to the Gauss-Newton algorithm as the starting
points get closer to the best fit.

All algorithms start by evaluating the Jacobian (Eq. 8.16) at the start-
ing parameter values—either by numerical differentiation or from formulas
supplied by the user.

If the starting point is near the best-fit values, the chi-square will be near
its true minimum and will have a quadratic dependence on the M fitting
parameters—it will be an M -dimensional parabola. The Gauss-Newton al-
gorithm uses the Jacobian at the present starting point to determine this
M -dimensional parabola and having done so can jump directly to the min-
imum. For linear fitting functions, the parabolic shape is guaranteed to be
accurate—even when the starting parameters are far from the minimum. In
effect, this is why linear regression formulas can find the best fit parameters
in a single step. For nonlinear fitting functions, if the starting point is close
enough to the best fit parameters, the parabolic shape is again guaranteed
and the Gauss-Newton algorithm would jump directly to the correct best-fit
parameters in one try.

However, if the starting point is too far from the true minimum, the local
parabolic shape may not predict where the true χ2 minimum will be. When
the Gauss-Newton algorithm jumps to the predicted best-fit parameters, it
may find the χ2 has decreased, but not to its minimum. In this case, it can
simply start another iteration from there. All too often though, it finds that
the χ2 has actually increased and it would then have no recourse to improve
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the fit.
The gradient search algorithm always works and is the method of choice

from starting points where the Gauss-Newton algorithm fails. The gradient
search ignores the curvature of the chi-square parabola and uses the Jacobian
only to determine the gradient of chi-square at the starting point. It then
moves the parameters from the starting point (takes a step) in a direction
opposite the gradient—along the direction of steepest descent for the chi-
square. Because it ignores the curvature, however, this algorithm can’t be
sure how big a step to take. So it takes a step and if the chi-square does not
decrease at the new point, it goes back to the starting point, decreases the
step size by some factor, and tries again. Sooner or later the step size will be
small enough that the chi-square will decrease—leading to a new improved
starting point from which to continue the search.

The problem with the gradient algorithm is that near the chi-square min-
imum, the gradient is not steep at all, the steps become very small and the
algorithm proceeds only slowly toward the best-fit solution.

The elegance of the Levenberg-Marquardt algorithm is in how it monitors
the χ2 at each new trial point and uses a single scalar parameter to smoothly
adjust the step size and switch between the two algorithms.

The Gauss-Newton algorithm

The Gauss-Newton algorithm is presented in some detail because it illustrates
the similarities between the nonlinear regression formulas and their linear
regression counterparts, and it gives the parameter covariance matrix.

The treatment will require distinguishing between the best fit parameters
ak, k = 1...M and another set—nearby, but otherwise arbitrary. These
nearby fitting parameters will be labeled aini

k , k = 1...M , for which the fitting
function gives a set of fitted y-values which will be labeled yini

i , i = 1...N

yini
i = Fi({aini}) (8.46)

This nearby or almost-there solution must be close enough to the best fit
that for every point i in the data set, a first-order Taylor series expansion
about yini

i must accurately reproduce the best-fit yfit
i .

yfit
i = yini

i +
M∑
k=1

∂yini
i

∂aini
k

(ak − aini
k ) (8.47)
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Where this expansion is accurate, the χ2 surface is parabolic.
Differentiating this Taylor expansion gives the elements of the Jacobian,

Eq. 8.16, [J ]ik = ∂yfit
i /∂ak as

[J ]ik =
∂yini

i

∂aini
k

(8.48)

For any reasonable fitting function, the Taylor expansion is guaranteed
accurate for values of aini

k that are sufficiently close to the ak. If the Taylor ex-
pansion remains valid for a wider range of aini

k , so too will the Gauss-Newton
algorithm find the best-fit ak from those more distant starting aini

k . Moreover,
the Gauss-Newton treatment also provides the parameter covariance matrix
based on this expansion. Consequently, the range of validity for the Taylor
expansion will have important implications for parameter uncertainties.

To see how the Taylor series expansion will lead to linear-regression-like
formulas, several new, modified quantities are defined. First, a modified input
∆yi and a modified best-fit ∆yfit

i are defined as relative to the almost-there
fit values yini

i .

∆yi = yi − yini
i (8.49)

∆yfit
i = yfit

i − yini
i (8.50)

In vector notation these last two equations (for all i) can be written ∆y =
y − yini and ∆yfit = yfit − yini.

Subtracting
[
JT
] [
σ−1
y

]
yini from both sides of the defining equation for

the maximum likelihood solution, namely, Eq. 8.17, then gives[
JT
] [
σ−1
y

]
∆y =

[
JT
] [
σ−1
y

]
∆yfit (8.51)

Next, the modified best-fit parameters are defined as the difference be-
tween the actual best-fit parameters and the almost-there parameters.

∆ak = ak − aini
k (8.52)

With these definitions, Eq. 8.47 can be written

∆yfit
i =

M∑
k=1

[J ]ik ∆ak (8.53)

or in vector notation
∆yfit = [J ] ∆a (8.54)
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which is now linear in the modified fit parameters.
Using Eq. 8.54 in Eq. 8.51 gives the linear regression-like result[

JT
] [
σ−1
y

]
∆y =

[
JT
] [
σ−1
y

]
[J ] ∆a (8.55)

This equation is now in the linear regression form analogous to Eq. 8.23 and
the solution for the best fit ∆ak is analogous to Eq. 8.27.

∆a =
[
J†
]

∆y (8.56)

where
[
J†
]

= [X−1] [J ]
[
σ−1
y

]
(Eq. 8.28) with [X] =

[
JT
] [
σ−1
y

]
[J ] (Eq. 8.24),

but with the elements of [J ] now given by Eq. 8.48, i.e., the Jacobian deriva-
tives are evaluated using the starting parameters.

Note that there are no changes to the weighting matrix
[
σ−1
y

]
. For ex-

ample, for a fit to y-values governed by a Poisson distribution, σ2
i = yfit

i still
applies.

After Eq. 8.56 is applied to determine the best-fit ∆a, Eq. 8.52 must then
be applied to each element to find the best-fit ak

ak = aini
k + ∆ak (8.57)

The underlying linear regression formulation implies [X−1] is the covari-
ance matrix for the ∆ak. Because of the constant offset relation between
∆ak and ak expressed by Eq. 8.57, [X−1] would then also be the covariance
matrix for the parameters ak themselves.

The final values of ak from this analysis should then be used as a new
initial point aini

k for another iteration of the process. The Jacobian, and
perhaps the weighting matrix as well, should be reevaluated there and the
Gauss-Newton algorithm reiterated. Iterations should be continued until no
significant changes in the ak result, i.e., until Eq. 8.56 (with the Jacobian
evaluated at the best fit) gives ∆a = 0.

Determining when to stop the iteration process is not a simple matter.
There is often a termination parameter giving the smallest change or frac-
tional change in χ2 from one iteration to the next for which another iteration
will be performed. There will also be a maximum number of iterations to
ensure the program stops eventually—even if the χ2 termination condition
is never met. Always make sure a nonlinear regression program has not
encountered a problem and has found the true χ2 minimum.

The Gauss-Newton, gradient search, and Levenberg-Marquardt algorithms
are demonstrated for (simulated) exponential decay data in the two Excel
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spreadsheets Nonlinear Regression and Nonlinear Regression Poisson for a
Gaussian- and Poisson-distributed variable, respectively. Note, in particular,
how increasing or deceasing the Levenberg-Marquardt parameter (λ in the
spreadsheet) changes the weighting of the diagonal element of the (modified)
curvature matrix, thereby changing from a near-gradient-search algorithm
with small step size when λ � 1 to a near-Gauss-Newton algorithm when
λ� 1.

The parameter covariance matrix [σa] should always be obtained using an
unmodified curvature matrix (λ = 0). It should also be evaluated with the
Jacobian [J ] and the input covariance matrix [σy] evaluated at the best-fit.

The ∆χ2 = 1 rule

The use of Excel’s Solver program to perform nonlinear regression is de-
scribed in Chapter 10. Solver finds the best-fit solution by minimizing the
χ2 (or χ2

P for Poisson-distributed yi) but it does not provide the fitting pa-
rameter uncertainties. Nonetheless, the parameter covariance matrix [σa] can
be determined with the Solver, but it takes a few extra steps to do so. The
principle needed is called the ∆χ2 = 1 rule and is described next. As an
added benefit, the rule can also provide a check on the range of validity of
the first order Taylor expansion.

To use the ∆χ2 = 1 rule, the χ2 of Eq. 8.5 should be used even if the
χ2
P of Eq. 8.6 is minimized to find the best fit. The χ2 must be evaluated

at the best fit and then again using fitting parameters that are offset from
their best-fit values. This χ2 is a minimum when evaluated with the best-
fit parameters and increases when evaluated with any other parameter set.
Where the Taylor expansion (Eq. 8.47) is valid, the increase, ∆χ2, will be a
generalized quadratic function of the deviations of the parameters from their
best-fit values. This M -dimensional parabola can be expressed

∆χ2 = ∆aT
[
σ−1
a

]
∆a (8.58)

where ∆a = a′ − a gives the deviations from the best-fit values a and
[σ−1
a ] = [X] is the inverse of the parameter covariance matrix.

The ∆χ2 = 1 rule turns Eq. 8.58 inside out—finding and the parameter
uncertainties from variations in χ2 as follows.

If a fitting parameter is offset from its best-fit value by its stan-
dard deviation e.g., from ak to ak +σk and then fixed there while

http://www.phys.ufl.edu/courses/phy4803L/statistics/Nonlinear Regression.xls
http://www.phys.ufl.edu/courses/phy4803L/statistics/Nonlinear Regression Poisson.xls
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all other fitting parameters are readjusted to minimize the χ2,
the new χ2 will be one higher than its best-fit minimum.

Where the Taylor expansion is valid, so is Eq. 8.58 and so is the following
equation—a more general form of the ∆χ2 = 1 rule showing explicitly the
expected quadratic dependence of ∆χ2 on the change in ak.

σ2
k =

(a′k − ak)2

∆χ2
(8.59)

Here, a′k is the changed value of the parameter whose best-fit value is ak and
∆χ2 is the increase in χ2 after re-fitting the other parameters for a minimum
χ2 at the offset value a′k.

The covariances between ak and the other parameters can also be deter-
mined by keeping track of the parameter changes after the re-fit. If some
other parameter with a best-fit value of am goes to a′m after the re-fit, the
covariance between ak and am, including its sign, is given by

σkm =
(a′k − ak)(a′m − am)

∆χ2
(8.60)

To check the range of validity of the Taylor expansion, one can check
that the variances and covariances obtained with Eq. 8.59 and 8.60 give the
same result for any a′k in the range ak± 3σk. The check should be performed
for each parameter individually—varying a′k by small amounts both above
and below the best-fit value and sized so that ∆χ2 values are around 0.1
and around 10. This tests that the quadratic scaling behavior is valid for
variations from about a′k − ak ≈ ±σk/3 (∆χ2 ≈ 1/9) to a′k − ak ≈ ±3σk
(∆χ2 ≈ 9). If σk is roughly constant for all four cases (say within 10%),
one can be reasonably assured that confidence intervals ak± zσk should have
close to Gaussian probabilities up to z = 3.

Equation 8.58 is valid—even for Poisson-distributed variables—as long as
the σ2

i in the χ2 denominator are held fixed. Thus, for Poisson-distributed
yi, it is the change in the χ2 (not χ2

P ) that should be used in the ∆χ2 = 1
rule with the χ2 denominator be fixed at σ2

i = yfit
i . It should not be allowed

to vary during the re-fit.
The guidelines of the previous paragraph are important in theory. In

practice, allowing the σ2
i in the χ2 denominator to vary during the re-fit

is unlikely to significantly affect the resulting calculations of the parameter
variances or covariances. Indeed, the variations in χ2

P are normally similar
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enough to the variations in χ2, that a ∆χ2
P = 1 rule, with χ2

P replacing the
normal χ2, will generally give good results.

Uncertainties in independent variables

Up to now, only the dependent variable had uncertainty; only the yi were
random variables. What can be done when there are uncertainties in the
independent variable; when the xi are also random variables? There is no
rigorous treatment for the general case. However, if the xi are statistically
independent and have uncertainties that are small enough, a simple modifi-
cation to the data point weightings can accurately model this complexity.

Only a single independent variable x will be considered here, i.e., where

yfit
i = F ({a};xi) (8.61)

but the extension to additional independent variables should be obvious.
Letting σxi represent the standard deviation of xi and letting µxi represent
its mean, F ({a};xi) must be nearly linear throughout the range µxi ± 3σxi .
That is, each yfit

i should be well described by a first order Taylor expansion

yfit
i = F ({a};µxi) +

∂F ({a};xi)
∂xi

(xi − µxi) (8.62)

for any xi in this range.
Under these conditions, propagation of error implies that random varia-

tions in xi with a standard deviation of σxi would cause random variations
in yfit

i with a standard deviation

σ
yfit
i

= σxi
∂F ({a};xi)

∂xi
(8.63)

If xi is statistically independent from yi, the variations in yfit
i will be uncor-

related with the variations in yi and propagation of errors implies that the
quantity yi − yfit

i will have variations with a variance given by

σ2
i = σ2

yi
+

(
∂F ({a};xi)

∂xi

)2

σ2
xi

(8.64)

where now σyi is the standard deviation associated with yi.
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To account for uncertainty in an independent variable, simply replace the
σ2
i appearing in the regression formulas with the modified values of Eq. 8.64.

These values will give the proper weighting matrix with the correct depen-
dences on the σxi and σyi . Most importantly, the adjusted σ2

i will give the
correct covariance matrix for the fitting parameters, and when used in the
denominator of the chi-square sum of Eq. 8.5, will maintain its proper ex-
pectation value. This is a critical aspect of the chi-square test and will be
discussed shortly.

There is one minor problem to address with this technique. The fitting
parameters of F ({a};xi) would need to be known in order to evaluate the
partial derivative in Eq. 8.64. Thus an iterative approach would be necessary,
perhaps starting with an equally-weighted fit or a fit neglecting uncertainties
in the independent variables. After an initial parameter set is obtained,
σ2
i can then be calculated from Eq. 8.64 and the fit would be repeated. If

necessary, additional iterations could be performed to be sure the solution
has converged.

Data sets with a calibration

An instrument calibration typically involves making measurements on one or
more standards—samples or sources with known values for the quantity mea-
sured by the instrument. For example, our transmission grating spectrometer
is used to determine the wavelengths of light emitted from a source. Calibrat-
ing this spectrometer involves measuring the diffraction angles for spectral
lines from standard sources of known wavelengths and fitting them to a cal-
ibration equation involving the grating groove spacing and other apparatus
parameters.

A calibration fitting function (with one independent variable x) might be
expressed

yfit
i = F ({a};xi) (8.65)

where {a} represents its M fitting parameters.
The dependent yi for the fit are the known values for the standards and

together with their corresponding xi determine the best-fit ak using a stan-
dard regression analysis. The yi are normally of such high accuracy that
uncertainties in the xi play a dominant role in the regression analysis. Con-
sequently, the uncertainties in the xi must be small enough to perform a
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valid fit as described in the previous section. This regression analysis then
determines the calibration parameters ak and their covariance matrix [σa].

With the calibration results in hand, the instrument is then used again
on some new system of interest—one where the y-values are not known in
advance. To this end, a second set of x-measurements, x′i, are made and used
with the previously fitted calibration function to determine a set of y′i-values,
for the new system

y′i = F ({a};x′i) (8.66)

The y′i will now be considered “measured” y-values for the new system and
will be used in a separate analysis. For our spectrometer example, these
measured wavelengths are from a hydrogen source and are used in a fit to
the Balmer formula. The second fit will then need as input the covariance
matrix for the y′i. Assuming there are N data points in this second fit, this
N × N covariance matrix depends on the results of the calibration and the
uncertainties in the measured x′i.

If the x′i were known exactly, the covariance matrix [σ′y] for the y′i would
be given by the propagation of error formula (Eq. 6.11)

[σ′y] = [J ][σa][J
T ] (8.67)

where [σa] is the M ×M covariance matrix for the calibration parameters
determined in the calibration step and the N ×M Jacobian matrix [J ] has
elements

[J ]ik =
∂y′i
∂ak

(8.68)

If the x′i are statistically independent, their standard deviations, σx′i , would
add (∂y′i/∂x

′
i)

2σ2
x′i

to the diagonal elements of [σ′y]. The elements of [σ′y] then

become

[σ′y]ij =
M∑
k=1

M∑
l=1

[J ]ik[σa]kl[J
T ]lj + δij

(
∂y′i
∂x′i

)2

σ2
x′i

(8.69)

The first term is simply an explicit expression for the ijth element of Eq. 8.67
and the second term is the additional diagonal contribution from σx′i .

Now, when the y′i and their covariance matrix [σ′y] are used as input for
the second fit, there will be a new twist—[σ′y] is not diagonal and thus the yi
will not be independent. This issue is discussed next.
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Regression with correlated yi

Performing a fit to a set of yi having a non-diagonal covariance matrix [σy]
is relatively simple. Assuming the joint probability distribution for the yi
is reasonably well-described by the correlated Gaussian of Eq. 5.21, the re-
gression formulas already presented remain valid without modification. One
need only substitute the non-diagonal covariance matrix and its inverse for
the diagonal versions assumed up to now.

This simple substitution works because the log likelihood for the corre-
lated joint probability of Eq. 5.21 when multiplied by −2 still depends on
the µi only via a χ2 of the form

χ2 =
(
yT − µT

) [
σ−1
y

]
(y − µ) (8.70)

As with a diagonal [σy], when the best-fit parameters ak are found, they will
determine the best-fit yfit

i via the fitting function, which when used for the
µi in Eq. 8.70 produce a minimum χ2.

χ2 =
(
yT − yfitT

) [
σ−1
y

] (
y − yfit

)
(8.71)

That this χ2 is a minimum with respect to all fitting parameters, implies
that its derivative with respect to every ak is zero. Performing this chain-
rule differentiation then gives

0 =
∂

∂ak

(
yT − yfitT

) [
σ−1
y

] (
y − yfit

)
= −

(
yT − yfitT

) [
σ−1
y

] ∂yfit
i

∂ak
− ∂yfitT

∂ak

[
σ−1
y

]
(y − yfit) (8.72)

The two terms in this last equation are scalars. In fact, they are the exact
same scalar, just formed from expression that are transposes of one another.
Thus each must be zero at the best fit and choosing the second of these gives

∂yfitT

∂ak

[
σ−1
y

]
y =

∂yfitT

∂ak

[
σ−1
y

]
yfit (8.73)

This scalar equation must be true for each of the M fitting parameters ak
and with the definition of the Jacobian (Eq. 8.16), all M can be rewritten
in the vector form of Eq. 8.17. Because Eq. 8.17 was the starting point
for the derivation of the regression results already presented, and because
the derivation does not rely on the diagonality of [σy], the equations for the
best-fit parameters and their covariance matrix do not change when [σy] is
non-diagonal.



Chapter 9

Evaluating a Fit

Evaluating the agreement between a fitting function and a data set should
begin with a graph.

The main graph should show the fitting function as a smooth curve with-
out markers for a set of x-values (not necessarily only the xi of the data
points) that give a good representation of the best fit curve throughout the
fitting region. The xi, yi data points should not have connecting lines but
should include error bars—vertical line segments extending one standard de-
viation above and below each point. If there are x-uncertainties, horizontal
error bars should also be placed on each point.

Figure 9.1 shows a case where the error bars would be too small to show
clearly on the main graph, The fix is shown below the main graph—a plot
of residuals or raw deviations, yi − yfit

i , with error bars. If the σi vary too
widely to all show clearly on a residual plot, logarithmic or other nonlinear
y-axis scaling may fix the problem. Or, normalized deviations (yi − yfit

i )/σi
(without error bars) could be used.

The purpose of these graphs is to make it easy to see each data point’s
deviation relative to its standard deviation and to assess the entire set of de-
viations for their expected randomness. If the sample size is large enough, de-
viations or normalized deviations can be histogrammed and checked against
the expected distribution.

Specifically look for the following “bad fit” problems and possible causes.

• Deviations are non-random and show some kind of trend. For example,
data points are mostly above or mostly below the fit, or mostly above at
one end and mostly below at the other. Deviations should be random.
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Figure 9.1: Top: main graph for a fit to a calibration function for data from our
visible spectrometer. Bottom: corresponding residual plot.

In particular, positive and negative deviations are equally likely and
should be present in roughly equal numbers. Systematic deviations
may indicate a problem with the fitting program or a fitting model
that is incomplete or wrong.

• Too many error bars miss the fitted curve. Approximately two-thirds
of the error bars should cross the fit. If the deviations are random and
simply appear larger than predicted, the σi may be underestimated.

• Outliers—points missing the fit by three or more σi. These should be
very rare and may indicate data entry mistakes, incorrect assignment
of xi, or other problems.

• The fit goes through most data points near the middle of the error
bars. On average, the yi should miss the fit by one error bar and about
one-third of the error bars should miss the fit entirely. This should
probably be called a “good fit” problem. It is not all that unlikely if
there are only a few data points, but with a sufficient number of data
points, it indicates the σi have been overestimated—the measurements
are more precise than expected.
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The chi-square distribution

The χ2 value after the best-fit has been found can be used with the chi-
square test to quantitatively assess the size of the residuals in relation to the
assumed standard deviations. Keep in mind, however, that the chi-square
for a fit is an aggregate statistic and a statistical test of its value does not
replace the point-by-point assessment of a graphical analysis.

Whether χ2 or χ2
P was minimized in the fit, only the standard χ2 calcu-

lated with Eq. 8.5 (or Eq. 8.70 if the weighting matrix is not diagonal) has
the properties under consideration now. If the yi are Poisson-distributed, use
σ2
i = yfit for calculating this χ2. The χ2 is a random variable—were a new

set of yi acquired and analyzed, a different χ2 value should be expected. To
determine whether or not a particular χ2 value is reasonable, its probability
distribution must be known.

The χ2 probability distribution depends on the particular probability dis-
tributions governing the yi as well as the number of data points N and the
number of fitting parameters M . The quantity N − M is called the chi-
square’s degrees of freedom and plays a central role in describing the distri-
bution. Each data point adds one to the degrees of freedom and each fitted
parameter subtracts one. For example, there are no degrees of freedom for
a straight-line fit to two data points. The fit can always be made to pass
exactly through both points and the χ2 will always be zero.

The mean of the χ2 distribution is most important and its evaluation
begins with the definition, Eq. 2.17, for the variance of each yi—rewritten in
the form 〈

(yi − µi)2

σ2
i

〉
= 1 (9.1)

Summing over all N data points gives〈
N∑
i=1

(yi − µi)2

σ2
i

〉
= N (9.2)

The sum in this expression is the χ2 of Eq. 8.2. However, the true µi are
normally unknown and the χ2 must be evaluated with Eq. 8.5 using the yfit

i

instead. Is Eq. 9.2 valid if yfit
i is substituted for µi? It turns out that the

chi-square calculated with the yfit
i satisfies〈

N∑
i=1

(yi − yfit
i )2

σ2
i

〉
= N −M (9.3)
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The deviations from yfit
i are smaller than those from µi and the expected

average χ2 is reduced by the number of fitting parameters.
The expectation value of each of the N terms in Eq. 9.3 is the same; each

has an expectation value of (N −M)/N . Thus for each data point:〈(
yi − yfit

i

)2
〉

=

(
1− M

N

)
σ2
i (9.4)

Contrast this with Eq. 2.17, here〈
(yi − µi)2〉 = σ2

i (9.5)

which defines the mean squared deviation from the true mean as the true
variance σ2

i . Equation 9.4 then implies that the mean squared deviation
from the best fit is reduced somewhat from the true variance—by the factor
1−M/N .

The proof of Eq. 9.3 is given in the Regression Analysis Addendum. It is
still based on Eq. 9.1 and thus valid for any distribution for the yi. In effect,
it was demonstrated in Exercise 7 for the case of the constant fitting function
with equally weighted y-values.

It is easy to understand that some reduction in the χ2 should be expected
when yfit

i replaces µi. Simply consider an iterative fitting program with an
initial guess for the fitting parameters equal to the true parameters. The
fitting function then starts with the true means µi and the starting χ2 is as
calculated from Eq. 8.2. The expected average starting χ2 would then be
given by Eq. 9.2 and thus equal to N .

When the fitting program is then run from this initial guess, either no
further improvement in the fit will be achieved and the fitting parameters
and the χ2 will not change, or, as will usually be the case, some decrease in
the χ2 can be achieved by adjusting the parameters from the starting, true
values. As the χ2 after the best fit can only be equal to or less than the
starting χ2, the expected average χ2 using the best-fit yfit

i must be less than
N . Thus, the reduction is a non-negative random variable. For Gaussian-
distributed yi, the reduction is a chi-square random variable with M degrees
of freedom.

According to Eq. 9.3, the mean of the chi-square distribution is N −M .
How high above (or below) the expected mean does the χ2 value have to be
before one must conclude that it is too big (or too small) to be reasonable?
That question calls into play the width or variance of the χ2 distribution.

http://www.phys.ufl.edu/courses/phy4803L/statistics/matproof.pdf
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Unlike the mean of the χ2 distribution, its variance depends on the proba-
bility distribution for the yi. For the case where no fitting is involved and the
χ2 can be evaluated using Eq. 8.2, the variance is readily predicted starting
from Eq. 2.18.

σ2
χ2 =

〈(
χ2
)2
〉
−
(〈
χ2
〉)2

=

〈(
N∑
i=1

(yi − µi)2

σ2
i

)(
N∑
j=1

(yj − µj)2

σ2
j

)〉
−N2

=
N∑
i=1

N∑
j=1

〈(
(yi − µi)2

σ2
i

)(
(yj − µj)2

σ2
j

)〉
−N2 (9.6)

where Eq. 9.2 has been used for the expectation value of χ2.
In the double sum, there are N2−N terms where i 6= j and N terms where

i = j. Assuming all yi are statistically independent, Eq. 5.6 applies and thus
each of the terms with i 6= j has an expectation value of one—equal to the
product of the expectation value of its two factors (one by Eq. 9.1). The N
terms with i = j become a single sum of terms of the form: 〈(yi − µi)4/σ4

i 〉.
Making these substitutions in Eq. 9.6 gives

σ2
χ2 =

N∑
i=1

〈(
(yi − µi)4

σ4
i

)〉
−N (9.7)

For yi governed by a Gaussian distribution, 〈(yi − µi)4/σ4
i 〉 = 3, giving

σ2
χ2 = 2N (9.8)

For yi governed by a uniform distribution, 〈(yi − µi)4/σ4
i 〉 = 1.8 giving

σ2
χ2 = 0.8N (9.9)

For yi governed by a Poisson distribution (where σ2
i = µi), 〈(yi − µi)4/σ4

i 〉 =
3 + 1/µi giving

σ2
χ2 = 2N +

N∑
i=1

1

µi
(9.10)
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For yi governed by a binomial distribution, 〈(yi − µi)4/σ4
i 〉 = 3 + (1− 5pi +

p2
i /(1− pi))/µi giving

σ2
χ2 = 2N +

N∑
i=1

1− 5pi + p2
i /(1− pi)

µi

(9.11)

Of course, the mean and variance do not provide a complete description
of the chi-square distribution. The detailed shape can be found in refer-
ences and statistics software, but only for the standard chi-square distribu-
tion where the yi follow a Gaussian distribution. Chi-square distributions for
y-variables following non-Gaussian distributions are not usually discussed in
the literature.

Equations 9.8-9.11 assume the µi are known so that the χ2 could be cal-
culated with Eq. 8.2. How does the chi-square distribution change when
fitting is involved and the χ2 must be evaluated with Eq. 8.5 using the yfit

i

instead? For the case of Gaussian-distributed yi, the chi-square value follows
a standard chi-square distribution with N −M degrees of freedom; the mean
decreases to N −M and the variance decreases to 2(N −M). However, for
y-values governed by non-Gaussian distributions, exactly how the shape of
the distribution changes has not been studied in detail. Chi-Square distri-
butions.xls on the lab website has simulations for a fit to a mean (M = 1)
showing the chi-square variance decreased by 2 for Gaussian-distributed data,
increased slightly for uniformly-distributed data, and decreased by more than
2 for Poisson- and binomial-distributed data.

The standard chi-square distribution will be assumed appropriate in the
following discussions, but if evaluating χ2 probabilities is an important aspect
of the analysis, keep this assumption in mind. For example, it would directly
affect the chi-square test, discussed next.

The chi-square test

The chi-square test uses the χ2 distribution to decide whether a χ2 value
from a fit is too large or too small to be reasonably probable.

One first compares the χ2 from the fit to N −M ; the degrees of freedom
and the mean of its distribution. For an example, suppose N−M = 50. The
standard deviation of the χ2 distribution will be σχ2 =

√
2(N −M) = 10.

http://www.phys.ufl.edu/courses/phy4803L/statistics/Chi-Square distributions.xls
http://www.phys.ufl.edu/courses/phy4803L/statistics/Chi-Square distributions.xls
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While the χ2 distribution is not exactly Gaussian, χ2 values outside the two-
sigma range from 30-70 might be cause for concern.

So suppose the actual χ2 value from the fit is significantly above N −M
and the analysis must decide if it is too big. To decide the issue, the chi-
square distribution is used to determine the probability of getting a value as
large or larger than the actual χ2 value from the fit. If this probability is too
small to be accepted as a chance occurrence, one must conclude that the χ2

is unreasonably large.
In rare cases, the χ2 value from the fit may come out too small—well

under the expected value of N −M . To check if it is too low, the chi-square
distribution should be used to find the probability of getting a value that
small or smaller. If this probability is too low to be accepted as a chance
occurrence, one must conclude that the χ2 is unreasonably small. Keep in
mind, however, that there should be at least three degrees of freedom to test
for an undersized χ2. With only one or two degrees of freedom, the χ2 pdf
is non-zero at χ2 = 0 and decreases monotonically as χ2 increases. Thus, for
these two case, smaller values are always more likely than larger values.

If the χ2 is unacceptably large or small, the deviations are not in accord
with predictions and the experimental model and theoretical model are in-
compatible. The same problems mentioned earlier for a graphical assessment
may be applicable to an unacceptable χ2.

When the σi are unknown

It is not uncommon for an experimentalist to be unsure of the correct σi to
use in a regression analysis. If the σi are unknown, the chi-square variable can
not be calculated and the chi-square test can not be directly applied. Instead,
unknown σi can be estimated by choosing values that make the χ2 equal to
its expectation value of N −M . This can be a useful procedure because the
σi determine the weighting matrix

[
σ−1
y

]
(Eq. 8.15) and via Eq. 8.30 with

Eq. 8.24 they also determine the parameter covariance matrix [σa]. If the σi
are unreliable or wrong, the parameter uncertainties would be unreliable or
wrong as well. Forcing χ2 = N−M is a valid method for adjusting uncertain
σi to achieve a predictable level of confidence in the parameter uncertainties.

Basically, the technique will use the scatter of the data about the best
fit to set the scale of the σi. If the scatter is small the σi will be small, and
vice versa. The technique is particularly suited for large sample sizes where
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the actual scatter should accurately predict the true σi. However, for small
degrees of freedom, the situation is not so clear. When N − M is small,
significantly high or low sample deviations are more likely and would, by
chance, lead to significantly high or low parameter uncertainties. This issue
is addressed in the section on the Student-T probabilities.

For an equally-weighted data set, the technique is straight-forward. Find
that one value for σy that gives χ2 = N−M . Equation 8.44 shows this would
happen if the following sample variance were used for σ2

y:

s2
y =

1

N −M

N∑
i=1

(
yi − yfit

i

)2
(9.12)

Using s2
y for σ2

y in Eq. 8.42 for the parameter covariance matrix shows [σa]
would then be proportional to this sample variance.

Note how Eq. 9.12 is a generalized version of Eq. 2.22. (The latter gives
the sample variance for a sample set all from the same distribution.) For
example, Exercise 7 and Eq. 9.4 imply that both sample variances are unbi-
ased estimates of the true variance. Equation 9.12 is the general case where
the N means are individually estimated by the yfit

i , which are based on the
M best-fit parameters of the fitting function. Equation 2.22 is just a spe-
cific case where all means are the same and estimated by the single best-fit
parameter ȳ.

If the σi vary from point to point, their relative sizes must be known
in advance. Forcing χ2 = N − M would then determine a single overall
scale factor for all σi. Relatively-sized σi might occur when measuring wide-
ranging quantities with instruments having multiple scales or measurement
ranges. In such cases, the measurement uncertainty typically scales with the
instrument range used for the measurement.

Initial values for the σi would be set in accordance with the known ratios
and then a single multiplier would be determined to achieve a chi-square
value of N −M . Scaling all the σi by a common factor κ scales the χ2 by
a factor of 1/κ2. The data covariance matrix [σy] would scale by κ2 and
Eq. 8.30 with Eq. 8.24 implies that the parameter covariance matrix [σa]
would scale by κ2 as well. On the other hand, Eq. 8.27 with the equations
for
[
J†
]

show that the fit parameters are unaffected by the scale factor. This
is because scaling all σi together does not change the relative weighting of
the data points.
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When the σi are known, the normal randomness in the data set deviations
leads to a randomness in the s2

y or in the χ2 value for the fit. When the σi are
scaled to achieve χ2 = N −M that randomness is transferred to the param-
eter covariance matrix, which then becomes a random variable. It becomes
a sample covariance matrix. Parameter variances obtained from its diagonal
elements should then be considered sample variances and their square roots
should be considered sample standard deviations. As discussed next, confi-
dence intervals constructed with sample standard deviations have different
confidence levels than those constructed with true standard deviations.

Should the σi always be scaled to give χ2 = N − M? No. It is only
appropriate if the σi are experimentally uncertain. And even then, a coarse
estimate of the σi based on experimental considerations should still be made.
Scaling these σi by factor of two to achieve the expected chi-square value may
be deemed acceptable, but scaling them by a factor of ten might not.

The reduced chi-square distribution

Dividing a chi-square random variable by its degrees of freedom N−M gives
another random variable called the reduced chi-square random variable.

χ2
ν =

χ2

N −M
(9.13)

Reduced chi-square distributions for various degrees of freedom are shown
in Fig. 9.2. A table of reduced chi-square values/probabilities is given in
Table 10.3. The table can also be used for determining χ2 probabilities using
the scaling above. For example, with 100 degrees of freedom, the probability
a χ2 will exceed 120, is the same as the probability that a χ2

ν (with 100
degrees of freedom) will exceed 1.2, which is about 8 percent.

Dividing any random variable by a constant will divide its distribution
mean by that constant and its variance by the square of that constant. Thus,
the reduced chi-square distribution will have a mean of one for all degrees of
freedom and a variance equal to 2/(N −M).

Dividing both sides of Eq. 9.12 by σ2
y and eliminating the sum using

Eq. 8.44 gives

s2
y

σ2
y

=
χ2

N −M
(9.14)
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Figure 9.2: The reduced chi-square pdfs p(χ2
ν) for degrees of freedom (dof)

1, 2, 4, 10, 30, 100. The tall distribution peaking at χ2
ν = 1 is for dof = 100. The

curves get broader and lower as the dof decrease. For dof = 1, the distribution
(red) is singular at zero.

and shows that the ratio of the sample variance to the true variance is a
reduced chi-square variable with N −M degrees of freedom.

The fact that the variance of χ2
ν decreases as the sample size N increases,

implies that the reduced chi-square distribution becomes more sharply peaked
around its expectation value of one. This makes good sense as it predicts
values of sy are more likely to be near σy as N increases, i.e., the sy deter-
mined from the data becomes a more precise estimate of the true standard
deviation σy.

For large N −M , the chi-square and the reduced chi-square distributions
are approximately Gaussian—the former with a mean of N−M and standard
deviation of

√
2(N −M), the latter with a mean of one and a standard

deviation of
√

2/(N −M). This approximation is used in the next exercise.

Exercise 8 It is often stated that uncertainties should be expressed with only
one significant figure. Some say two figures should be kept if the first digit is
1. Roughly speaking, this suggests uncertainties are only good to about 10%.
Suppose you take a sample set of yi and evaluate the sample mean ȳ. For
the uncertainty, you use the sample standard deviation of the mean sȳ. Show
that it takes around 200 samples if one is to be about 95% confident that sȳ
is within 10% of σȳ. Hint: sy will also have to be within 10% of σy. Thus,
you want to find the value of N such that the probability P (0.9σy < sy <
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1.1σy) ≈ 0.95. Convert this to a probability on χ2
ν and use near-Gaussian

limiting behavior appropriate for large sample sizes. Then show you can use
Table 10.3 and check your results.

Student-T probabilities

Consider a fitting parameter value ak and its sample standard deviation sk
obtained by forcing χ2 = N −M . These quantities are best estimates of the
true mean αk and its true standard deviation σk. Now suppose one wishes
to find a 68% or 95% confidence interval for the unknown mean αk.

If a random variable y follows a Gaussian pdf, y-values in the range µy±σy
occurs 68% of the time and a y value in the range µy ± 2σy occurs 95% of
the time. This logic is invertible and one can construct confidence intervals
of the form

y ± zσy
for any value of z and the probability such an interval will include the true
mean µy will likewise follow from the Gaussian pdf; 68% for z = 1, 95% for
z = 2, etc. Such confidence intervals and associated probabilities are seldom
reported because they are well known and completely specified once y and
σy are given.

When using a fitting parameter and its sample standard deviation, the
situation changes. One can again express a confidence interval in the form

ak ± zsk

However, now that the interval is constructed with an estimate rather than
a true standard deviation, z = 1 (or z = 2) are not necessarily 68% (or 95%)
likely to include the true value. William Sealy Gosset, publishing around 1900
under the pseudonym “Student” was the first to determine these “Student-T”
probabilities.

A difference arises because sk might, by chance, come out larger or smaller
than σk. Recall its size will be related to the random scatter of the data about
the best fit. When the probabilities for all possible values of sk are properly
taken into account, the confidence level for any z is always smaller than would
be predicted based on the Gaussian pdf.

In effect, the uncertainty in how well sk estimates σk decreases the confi-
dence level for a given z. Because the uncertainty in sk depends on the degrees
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of freedom, the Student-T confidence intervals also depend on the degrees
of freedom. The larger the degrees of freedom, the better the estimate sȳ
becomes and the closer the Student-T intervals will be to the corresponding
Gaussian intervals.

Table 10.4 at the end of this paper gives some Student-T probabilities.
As an example of its use, consider five sample values from which are obtained
ȳ and sȳ. There are four degrees of freedom for an sȳ calculated from five
samples. Looking at the row for ν = 4, the entry in the second column
indicates a 95% probability that the interval ȳ± 2.78sȳ will include the true
mean µy. If one were ignorant of the Student-T probabilities one might have
assumed that a 95% confidence interval would be, as for a Gaussian, ȳ±2 sȳ.

Exercise 9 Three sample values from a Gaussian pdf are 1.20, 1.24, and
1.19. (a) Find the sample mean, sample standard deviation, and sample
standard deviation of the mean and give the 68% and 95% confidence intervals
for the true mean based on this data alone. (b) Now assume those three
sample values are known to come from a pdf with a standard deviation σy =
0.02. With this assumption, what are the 68% and 95% confidence intervals?
Determine the reduced chi-square and give the probability it would be this big
or bigger.



Chapter 10

Regression with Excel

Excel is more business software than scientific software. Nonetheless, to-
gether with Visual Basic for Applications, which is always available within
Excel, it is a reasonable platform for most statistical analysis tasks. Other
scientific/mathematical software can offer better tools for graphing and anal-
ysis, but often come with a steep learning curve. Excel has the advantage
that most students already know enough to get started immediately with
data entry, formula evaluations, and graphing and a familiarity with these
topics is assumed. The following sections provide guidance only on aspects
of using Excel for regression.

Excel has array formulas for working with vectors (one-dimensional ar-
rays) and matrices (two-dimensional arrays). To use an array formula, select
the appropriate rectangular block of cells (one- or two-dimensional, or even
a single cell), click in the edit box, enter the array formula and end the
process with the three-key combination Ctrl|Shift|Enter. The entire block of
cells is evaluated according to the formula and the results are placed in the
block. Various odd behaviors or errors result if the selected block is not of
the appropriate size.

The built-in array functions needed for linear regression formulas are:

TRANSPOSE(array): Returns the transpose of a vector or matrix.

MMULT(array1, array2): Returns the result of vector and matrix array
multiplication.

MINVERSE(array): Returns the inverse of a square matrix.

85
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The StatsMats.xla Excel add-in can be found on the lab web site and
adds the following array formulas specifically designed for regression:

CovarMat(array) Takes a one-dimensional input array (row or column
form) of σi values and returns the corresponding square diagonal co-
variance matrix for independent variables.

WeightMat(array) Like CovarMat, but returns the diagonal weighting ma-
trix.

SDFromCovar(array) Takes a two-dimensional covariance matrix and re-
turns a one-dimensional array of standard deviations from its diagonal
elements.

See the Linear Regression.xls spreadsheet on the lab web site for an applica-
tion of array functions to linear regression formulas.

Linear Regression with Excel

Excel’s linear regression program is only for equally-weighted fits. For non-
equally-weighted data sets, you can program the regression formulas yourself
or use nonlinear regression. Excel’s linear regression program does not allow
the user to provide σy and uses the sy of Eq. 9.12 for σy in determining the
parameter covariance matrix. That is, it forces χ2 = N −M .

The starting point is to set up columns for the yi and for the fk(xi). The
steps will be illustrated for a quadratic fit: yfit

i = a1 + a2xi + a3x
2
i . Thus,

f1(xi) = 1, f2(xi) = xi, and f3(xi) = x2
i . In turns out to be unnecessary to

have a column for the constant term; Excel can handle the constant function
without using a column. A column for yi and side-by-side columns xi and x2

i

must be constructed.
Excel’s linear regression program is found in the Tools|Data Analysis|Re-

gression menu. The dialog box for this procedure appears as in Fig. 10.1.
Select the column containing the yi-values for the Input Y-Range. Select

what must be a contiguous rectangular block containing all fk(xi) values (two
columns for the quadratic fit). Leave the Constant is Zero box unchecked.
(It would be checked if the fitting function did not include a constant term.)
Leave the Labels box unchecked unless your x- and y-ranges include labels at
the top of the columns. If you would like, check the Confidence Level box and
supply a probability for a Student-T interval next to it. (Intervals for the

http://www.phys.ufl.edu/courses/phy4803L/statistics/StatsMats.xla
http://www.phys.ufl.edu/courses/phy4803L/statistics/Linear Regression.xls
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Figure 10.1: Excel’s linear regression dialog box

95% confidence level are provided automatically.) Select the New Worksheet
Ply radio button or the Output Range. For the latter, also specify (in the edit
box to its right) the upper left corner of an empty spreadsheet area for the
results. Select any of the various options in the lower part of the dialog box
and then click OK.

The upper Regression Statistics area contains the sample standard devia-
tion sy (from Eq. 9.12 and referred to as the Standard Error). The lower area
contains information about the constant (labeled Intercept) and the fitting
parameters ak (labeled X Variable k). Next to the best fit values (labeled
Coefficients) are the parameter sample standard deviations sk (labeled Stan-
dard Error). Then there are columns for the t Stat and P-value for each
parameter. And lastly two double columns for the lower and upper limits of
intervals at confidence levels of 95% and the user specified percentage.

Exercise 10 Fit the data in Table 10.1 to a quadratic formula (yfit
i = a +

bxi + cx2
i ) using the Excel linear regression program and submit a printout

of the appropriate worksheets. Save this spreadsheet. It will be used again
for Exercises 11 and 12. (a) What does Excel use as a best estimate for the
value of σi appearing in the linear regression equations? Describe and give
the formula for this quantity. Circle and label its value on the worksheet.
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xi yi

2 2.4
3 6.7
5 27.8
6 43.2
8 80.7
9 104.5

Table 10.1: Data for Exercise 10

(b) The parameter standard deviations given on the worksheet are sample
standard deviations sk. Circle and label the parameters ak and their sample
standard deviations sk. (c) Circle the program’s 95% confidence interval (for
the quadratic coefficient only) and show how it can be obtained from ak, sk
and the Student-T table.

Exercise 11 Open the spreadsheet from the previous exercise. (a) Add a
column for yfit based on the fit parameters, another for the deviations (yi −
yfit
i ), and another for their squares (yi−yfit

i )2. Use this last column to evaluate
sy and show that it agrees with Excel’s value. (b) Suppose the uncertainties
in the yi values for that exercise are known to be σy = 0.5. Use the scaling
rule to determine the parameter uncertainties in this case. Give the 95%
confidence interval for the quadratic coefficient. Should you use Student-T
or Gaussian probabilities? (c) Submit a graph of yi vs. xi with error bars and
overlay the fit as a smooth curve.

Nonlinear regression with Excel

Excel’s Solver can be used for nonlinear regression. It can be used to find the
best fit parameters for linear or nonlinear functions and can take into account
varying uncertainties in the input data. It does not provide the covariance
matrix directly, but can do so indirectly through additional procedural steps.

The Solver does not let the user specify the Jacobian matrix [J ]. Solver
determines it numerically by evaluating the yfit

i while varying the ak fit pa-
rameters in small steps. When creating worksheets for the Solver program,
keep in mind all cells contributing to the calculation of the yfit and χ2 will
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Figure 10.2: Excel’s Solver dialog box

be evaluated repeatedly during the iterations. If execution speed is an issue,
keep the calculations as efficient as possible.

To use Solver:

1. Set up an area of the spreadsheet for the fitting parameters. Using
Solver will be somewhat easier if parameters are confined to a single
block of cells. Enter initial guesses for the values of each fitting param-
eter.

2. Enter your data in columns, including xi and yi. Depending on whether
one or both of the xi or yi have uncertainties and whether or not they
are the same for all data points, various additional cells and/or columns
for the raw uncertainties and/or the final σi will have to be constructed.

3. Create a column for yfit
i based on the fitting function using the addresses

for the xi and the ak fitting parameters.

4. Create the main graph including the (xi, yi) data points with error
bars and a smooth curve for yfit

i vs. xi. Adjust the fitting parameters
to get the data and the fit close enough for the Solver program to
work properly. If desired, make a separate plot of the deviations or
normalized deviations versus xi.

5. Make a column for (yi − yfit
i )2/σ2

i . Sum this column in a separate cell
to provide the χ2 value needed for the fitting procedure.

6. Invoke the Solver from the Tools menu. The dialog box is shown in
Fig. 10.2.
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7. Provide the cell address of the χ2 in the Set Target Cell: box. Click the
Min radio button next to Equal To: so that the χ2 will be minimized
(as opposed to maximized or made to take on some particular value,
which are also available choices).

8. Provide the cell addresses for the fitting parameters in the By Changing
Cells: box.

9. Click on the Solve button. The solver’s algorithms then start with
your initial fitting parameters, varying them to find those values which
minimize the χ2.

10. Accept the final, changed, fitting parameters.

Parameter variances and covariances

Solver does not provide parameter variances or covariances. However, these
quantities are easily calculated with the following procedures based on the
∆χ2 = 1 rule.

11. Write down or save to a separate area the optimized values of all fitting
parameters and the final χ2. Use the spreadsheet Copy and Paste Special
... Values functions.

12. Change the value in the cell containing one of the fitting parameters,
say ak, by a bit—try to change it by what you suspect will be its
uncertainty. Call this new (unoptimized) value a′k. The χ2 will increase
because it was originally at a minimum.

13. Remove the cell containing ak from the list of adjustable parameters
and rerun the Solver. The other parameters might change a bit and
the χ2 might go down a bit, but it will still be larger than the original
χ2 for the fit.

14. If χ2 changed by one, then the amount that ak was changed is its
standard deviation: σk = |a′k − ak|. If the change in ∆χ2 is more (or
less) than unity, the tested change in ak is larger (or smaller) than σk.
Equation 8.59 can then be used with the parameter change a′k−ak and
the resulting chi-square change ∆χ2 to determine σk.
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15. The covariances between ak and the other parameters can also be de-
termined by keeping track of the magnitude and sign of the changes
in the other variables after the re-optimization. Using these parameter
changes with the change in ak and Eq. 8.60 then provides the covari-
ances.

16. Check that these procedures gives roughly the same σk and σjk using a′k
values both above and below ak and such that ∆χ2 values are around
0.1 and around 10. If σk is roughly constant for all four cases (say
within 10%), one can be reasonably assured that confidence intervals
ak ± zσk should be close to the Gaussian predictions up to z = 3.

Cautions

The Solver may fail to find the best fit if the initial parameter guesses are
not close enough to the best-fit values. If necessary, readjust them to get the
Solver to proceed to the solution. It may also help to have the magnitude of
all parameters near unity. Thus, if the amplitude of an exponential decay is
of order 106, the decay constant is of order 10−3, and the background is of
order 103, rather than perform the fit directly to Eq. 8.45 it would be wiser
to fit to

yfit
i = 106a1e

−10−3a2xi + 103a3

so that all fitting parameters are of order unity.
While linear regression can only be used for linear models, nonlinear

techniques can be used for both linear and nonlinear models. In the next
exercise, you are to use the nonlinear regression techniques just described to
fit the data of Table 1 to a quadratic formula. This is the same data and
model used for Exercises 10 and 11 and you will be asked to show that the
same results are obtained.

Exercise 12 Start with the spreadsheet from Exercise 11. Add a cell for σy
and reference this cell in the spreadsheet (anywhere σi is needed) so you can
change the value in that cell and have it updated throughout the spreadsheet.
Then go through the steps to do a fit using Solver.

Start by setting σy to 2.0 and then to 3.0 running Solver for each value.
(a) Demonstrate that the ak do not depend on the value used for σy; that in
both cases the optimized ak are the same as those from Exercise 10. Explain
why the algorithm should be insensitive to the value of σy.
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(b) Now, assume σy is unknown and use the value of sy for σy. Recall, this
is what the Excel linear regression program does. What value of χ2 does this
produce? What value should be expected? Use the ∆χ2 = 1 rule to determine
the standard deviation of the quadratic coefficient only. Show it is the same
as that obtained by Excel’s linear regression.

(c) Now assume σy = 0.5. This value was used in Exercise 11, but in that
exercise you were asked to use scaling arguments to determine how this af-
fected the uncertainty in a3. Here you will show that that scaling was correct.
Use the ∆χ2 = 1 rule to redetermine the uncertainty of a3 with σy = 0.5.
Now you have two values for the uncertainty in a3, one using σy = sy and
one using σy = 0.5. Show that they scale in proportion to the value used for
σy.

Exercise 13 (a) What is the χ2
ν for the fit of Exercise 12 assuming σy = 0.5?

What is the probability it would have come out this big or bigger? (b) Suppose
σy was not known. How small would it have to be before the deviations from
the fit would have to be deemed (at the 99% level) too big to be in agreement
with the quadratic fitting formula? (c) How big would σy have to be before
one would have to conclude it is too big to be reasonable (at the 99% level).
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Gaussian

probabilities µ µ LFσ

z 0.00 0.02 0.04 0.06 0.08

0.00 0.00000 0.00798 0.01595 0.02392 0.03188
0.10 0.03983 0.04776 0.05567 0.06356 0.07142
0.20 0.07926 0.08706 0.09483 0.10257 0.11026
0.30 0.11791 0.12552 0.13307 0.14058 0.14803
0.40 0.15542 0.16276 0.17003 0.17724 0.18439

0.50 0.19146 0.19847 0.20540 0.21226 0.21904
0.60 0.22575 0.23237 0.23891 0.24537 0.25175
0.70 0.25804 0.26424 0.27035 0.27637 0.28230
0.80 0.28814 0.29389 0.29955 0.30511 0.31057
0.90 0.31594 0.32121 0.32639 0.33147 0.33646
1.00 0.34134 0.34614 0.35083 0.35543 0.35993

1.10 0.36433 0.36864 0.37286 0.37698 0.38100
1.20 0.38493 0.38877 0.39251 0.39617 0.39973
1.30 0.40320 0.40658 0.40988 0.41308 0.41621
1.40 0.41924 0.42220 0.42507 0.42785 0.43056
1.50 0.43319 0.43574 0.43822 0.44062 0.44295

1.60 0.44520 0.44738 0.44950 0.45154 0.45352
1.70 0.45543 0.45728 0.45907 0.46080 0.46246
1.80 0.46407 0.46562 0.46712 0.46856 0.46995
1.90 0.47128 0.47257 0.47381 0.47500 0.47615
2.00 0.47725 0.47831 0.47932 0.48030 0.48124

2.10 0.48214 0.48300 0.48382 0.48461 0.48537
2.20 0.48610 0.48679 0.48745 0.48809 0.48870
2.30 0.48928 0.48983 0.49036 0.49086 0.49134
2.40 0.49180 0.49224 0.49266 0.49305 0.49343
2.50 0.49379 0.49413 0.49446 0.49477 0.49506

2.60 0.49534 0.49560 0.49585 0.49609 0.49632
2.70 0.49653 0.49674 0.49693 0.49711 0.49728
2.80 0.49744 0.49760 0.49774 0.49788 0.49801
2.90 0.49813 0.49825 0.49836 0.49846 0.49856
3.00 0.49865 0.49874 0.49882 0.49889 0.49896

Table 10.2: Half-sided integral of the Gaussian probability density function. The
body of the table gives the integral probability P (µ < y < µ+ zσ) for values of z
specified by the first column and row.
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Reduced

chi-square

probabilities χ 1
ν

P 0.99 0.98 0.95 0.9 0.8 0.2 0.1 0.05 0.02 0.01 0.001
ν

1 0.000 0.001 0.004 0.016 0.064 1.642 2.706 3.841 5.412 6.635 10.827
2 0.010 0.020 0.051 0.105 0.223 1.609 2.303 2.996 3.912 4.605 6.908
3 0.038 0.062 0.117 0.195 0.335 1.547 2.084 2.605 3.279 3.782 5.422
4 0.074 0.107 0.178 0.266 0.412 1.497 1.945 2.372 2.917 3.319 4.617
5 0.111 0.150 0.229 0.322 0.469 1.458 1.847 2.214 2.678 3.017 4.103

6 0.145 0.189 0.273 0.367 0.512 1.426 1.774 2.099 2.506 2.802 3.743
7 0.177 0.223 0.310 0.405 0.546 1.400 1.717 2.010 2.375 2.639 3.474
8 0.206 0.254 0.342 0.436 0.574 1.379 1.670 1.938 2.271 2.511 3.265
9 0.232 0.281 0.369 0.463 0.598 1.360 1.632 1.880 2.187 2.407 3.097

10 0.256 0.306 0.394 0.487 0.618 1.344 1.599 1.831 2.116 2.321 2.959

11 0.278 0.328 0.416 0.507 0.635 1.330 1.570 1.789 2.056 2.248 2.842
12 0.298 0.348 0.436 0.525 0.651 1.318 1.546 1.752 2.004 2.185 2.742
13 0.316 0.367 0.453 0.542 0.664 1.307 1.524 1.720 1.959 2.130 2.656
14 0.333 0.383 0.469 0.556 0.676 1.296 1.505 1.692 1.919 2.082 2.580
15 0.349 0.399 0.484 0.570 0.687 1.287 1.487 1.666 1.884 2.039 2.513

16 0.363 0.413 0.498 0.582 0.697 1.279 1.471 1.644 1.852 2.000 2.453
17 0.377 0.427 0.510 0.593 0.706 1.271 1.457 1.623 1.823 1.965 2.399
18 0.390 0.439 0.522 0.604 0.714 1.264 1.444 1.604 1.797 1.934 2.351
19 0.402 0.451 0.532 0.613 0.722 1.258 1.432 1.587 1.773 1.905 2.306
20 0.413 0.462 0.543 0.622 0.729 1.252 1.421 1.571 1.751 1.878 2.266

22 0.434 0.482 0.561 0.638 0.742 1.241 1.401 1.542 1.712 1.831 2.194
24 0.452 0.500 0.577 0.652 0.753 1.231 1.383 1.517 1.678 1.791 2.132
26 0.469 0.516 0.592 0.665 0.762 1.223 1.368 1.496 1.648 1.755 2.079
28 0.484 0.530 0.605 0.676 0.771 1.215 1.354 1.476 1.622 1.724 2.032
30 0.498 0.544 0.616 0.687 0.779 1.208 1.342 1.459 1.599 1.696 1.990

32 0.511 0.556 0.627 0.696 0.786 1.202 1.331 1.444 1.578 1.671 1.953
34 0.523 0.567 0.637 0.704 0.792 1.196 1.321 1.429 1.559 1.649 1.919
36 0.534 0.577 0.646 0.712 0.798 1.191 1.311 1.417 1.541 1.628 1.888
38 0.545 0.587 0.655 0.720 0.804 1.186 1.303 1.405 1.525 1.610 1.861
40 0.554 0.596 0.663 0.726 0.809 1.182 1.295 1.394 1.511 1.592 1.835

42 0.563 0.604 0.670 0.733 0.813 1.178 1.288 1.384 1.497 1.576 1.812
44 0.572 0.612 0.677 0.738 0.818 1.174 1.281 1.375 1.485 1.562 1.790
46 0.580 0.620 0.683 0.744 0.822 1.170 1.275 1.366 1.473 1.548 1.770
48 0.587 0.627 0.690 0.749 0.825 1.167 1.269 1.358 1.462 1.535 1.751
50 0.594 0.633 0.695 0.754 0.829 1.163 1.263 1.350 1.452 1.523 1.733

60 0.625 0.662 0.720 0.774 0.844 1.150 1.240 1.318 1.410 1.473 1.660
70 0.649 0.684 0.739 0.790 0.856 1.139 1.222 1.293 1.377 1.435 1.605
80 0.669 0.703 0.755 0.803 0.865 1.130 1.207 1.273 1.351 1.404 1.560
90 0.686 0.718 0.768 0.814 0.873 1.123 1.195 1.257 1.329 1.379 1.525

100 0.701 0.731 0.779 0.824 0.879 1.117 1.185 1.243 1.311 1.358 1.494

120 0.724 0.753 0.798 0.839 0.890 1.107 1.169 1.221 1.283 1.325 1.447
140 0.743 0.770 0.812 0.850 0.898 1.099 1.156 1.204 1.261 1.299 1.410
160 0.758 0.784 0.823 0.860 0.905 1.093 1.146 1.191 1.243 1.278 1.381
180 0.771 0.796 0.833 0.868 0.910 1.087 1.137 1.179 1.228 1.261 1.358
200 0.782 0.806 0.841 0.874 0.915 1.083 1.130 1.170 1.216 1.247 1.338

Table 10.3: Integral of the χ2
ν probability density function for various values of

the number of degrees of freedom ν. The body of the table contains values of
χ2
ν , such that the probability P of exceeding this value is given at the top of the

column.
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Student-T probabilities

P 0.99 0.95 0.90 0.80 0.70 0.68 0.60 0.50
ν
1 63.6559 12.70615 6.31375 3.07768 1.96261 1.81899 1.37638 1.00000
2 9.92499 4.30266 2.91999 1.88562 1.38621 1.31158 1.06066 0.81650
3 5.84085 3.18245 2.35336 1.63775 1.24978 1.18893 0.97847 0.76489
4 4.60408 2.77645 2.13185 1.53321 1.18957 1.13440 0.94096 0.74070
5 4.03212 2.57058 2.01505 1.47588 1.15577 1.10367 0.91954 0.72669

6 3.70743 2.44691 1.94318 1.43976 1.13416 1.08398 0.90570 0.71756
7 3.49948 2.36462 1.89458 1.41492 1.11916 1.07029 0.89603 0.71114
8 3.35538 2.30601 1.85955 1.39682 1.10815 1.06022 0.88889 0.70639
9 3.24984 2.26216 1.83311 1.38303 1.09972 1.05252 0.88340 0.70272

10 3.16926 2.22814 1.81246 1.37218 1.09306 1.04642 0.87906 0.69981

11 3.10582 2.20099 1.79588 1.36343 1.08767 1.04149 0.87553 0.69744
12 3.05454 2.17881 1.78229 1.35622 1.08321 1.03740 0.87261 0.69548
13 3.01228 2.16037 1.77093 1.35017 1.07947 1.03398 0.87015 0.69383
14 2.97685 2.14479 1.76131 1.34503 1.07628 1.03105 0.86805 0.69242
15 2.94673 2.13145 1.75305 1.34061 1.07353 1.02853 0.86624 0.69120

16 2.92079 2.11990 1.74588 1.33676 1.07114 1.02634 0.86467 0.69013
17 2.89823 2.10982 1.73961 1.33338 1.06903 1.02441 0.86328 0.68919
18 2.87844 2.10092 1.73406 1.33039 1.06717 1.02270 0.86205 0.68836
19 2.86094 2.09302 1.72913 1.32773 1.06551 1.02117 0.86095 0.68762
20 2.84534 2.08596 1.72472 1.32534 1.06402 1.01980 0.85996 0.68695

21 2.83137 2.07961 1.72074 1.32319 1.06267 1.01857 0.85907 0.68635
22 2.81876 2.07388 1.71714 1.32124 1.06145 1.01745 0.85827 0.68581
23 2.80734 2.06865 1.71387 1.31946 1.06034 1.01643 0.85753 0.68531
24 2.79695 2.06390 1.71088 1.31784 1.05932 1.01549 0.85686 0.68485
25 2.78744 2.05954 1.70814 1.31635 1.05838 1.01463 0.85624 0.68443

26 2.77872 2.05553 1.70562 1.31497 1.05752 1.01384 0.85567 0.68404
27 2.77068 2.05183 1.70329 1.31370 1.05673 1.01311 0.85514 0.68369
28 2.76326 2.04841 1.70113 1.31253 1.05599 1.01243 0.85465 0.68335
29 2.75639 2.04523 1.69913 1.31143 1.05530 1.01180 0.85419 0.68304
30 2.74998 2.04227 1.69726 1.31042 1.05466 1.01122 0.85377 0.68276

31 2.74404 2.03951 1.69552 1.30946 1.05406 1.01067 0.85337 0.68249
32 2.73849 2.03693 1.69389 1.30857 1.05350 1.01015 0.85300 0.68223
33 2.73329 2.03452 1.69236 1.30774 1.05298 1.00967 0.85265 0.68200
34 2.72839 2.03224 1.69092 1.30695 1.05249 1.00922 0.85232 0.68177
35 2.72381 2.03011 1.68957 1.30621 1.05202 1.00879 0.85201 0.68156

36 2.71948 2.02809 1.68830 1.30551 1.05158 1.00838 0.85172 0.68137
37 2.71541 2.02619 1.68709 1.30485 1.05116 1.00800 0.85144 0.68118
38 2.71157 2.02439 1.68595 1.30423 1.05077 1.00764 0.85118 0.68100
39 2.70791 2.02269 1.68488 1.30364 1.05040 1.00730 0.85093 0.68083
40 2.70446 2.02107 1.68385 1.30308 1.05005 1.00697 0.85070 0.68067

∞ 2.57583 1.95996 1.64485 1.28155 1.03643 0.99446 0.84162 0.67449

Table 10.4: Student-T probabilities for various values of the number of degrees
of freedom ν. The body of the table contains values of z, such that the probability
P that the interval y ± zsy will include the mean µy is given at the top of the
column.
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