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Figure 1: A sample frequency distribution for
N = 100 measurements of the length of a rod.
The parent Gaussian distribution is shown by the
smooth curve.
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Introduction

Data obtained through measurement always
contain random error. Random error is readily
observed by sampling—making repeated mea-
surements while all experimental conditions

remain the same. For various reasons, the
measurements will not all be the same and a
frequency distribution (see Fig. 1) is one way to
display the resulting data. The height of each
vertical bar indicates the number of times a
particular measurement value occurs and the
value is indicated by the position of the bar
along the horizontal axis.

The measurements are referred to as a sam-
ple set, the number of measurements N is
called the sample size, and the frequency dis-
tribution is called a sample distribution. Were
new sample sets taken, random errors would
cause each new sample distribution to vary.
However, as the sample size increases to in-
finity, the sample distribution stabilizes. As
N → ∞, the sample distribution converges
to the parent distribution—a distribution con-
taining complete statistical information about
the particular measurement.

Many of the statistical analysis procedures
described here will strictly apply only to data
whose parent distributions would have the bell
shape of the Gaussian distribution. This re-
striction need not apply rigorously. Results
based on the assumption of a Gaussian parent
distribution will often be acceptable even for
data with non-Gaussian distributions.1

1However, beware of predictions in the tails of a
distribution, i.e., the (small) probabilities of getting
results far from the mean. The probabilities in the
tails are typically where real data deviate most sig-
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Thus, a single measurement should be re-
garded as one sample from a parent distri-
bution. Equivalently, a measurement can be
modeled as the sum of a signal component
and a noise component. The signal compo-
nent would be the center value or mean of
the measurement’s parent distribution, and
the noise component would be the random
error—a quantity equally likely to be positive
or negative—that scatters individual measure-
ment values about the mean.

With an understanding of the measuring in-
strument and its application to a particular
apparatus, the experimenter gives a physical
interpretation to the signal component. For
example, the signal component of a thermome-
ter reading might be interpreted to be the
temperature of a system to which the ther-
mometer is attached. Obviously, the interpre-
tation is subject to possible errors, quite dis-
tinct from any random error that will also be
present in the measurement. For example, the
thermometer may be out of calibration or it
may not be in proper thermal contact with
the system. Such problems can give rise to
systematic errors—non-random deviations be-
tween the measurement and the physical vari-
able.

Theoretical models provide relationships for
physical variables. For example, the tempera-
ture of a fixed quantity of gas might be mea-
sured along with the pressure and volume in a
study of various equations of state such as the
van der Waals model. Coming up with and
testing theoretical models are typical experi-
mental objectives.

Many statistical analysis procedures can
now be broadly summarized as providing some
measure of the probability of a data set given

nificantly from a Gaussian and the true probabilities
of getting results in the tails can be significantly dif-
ferent from the predictions based on a Gaussian data
distribution.

the following two hypotheses:

Experimental model: that measurements
have random errors about a mean and
that any systematic deviations between
that mean and the true value of the phys-
ical quantity assigned to each measure-
ment are sufficiently small.

Theoretical model: that some particular the-
oretical relationships or predictions about
the physical quantities are correct.

If the statistical analysis then indicates that
the data set is too unlikely, at least one of
the hypotheses must be rejected. But even if
the analysis indicates that the data are rea-
sonably likely, one must still be cautious. The
data can appear consistent with the hypothe-
ses even when one or both are false. In par-
ticular, systematic errors are often difficult to
disentangle from the theoretical model. Sort-
ing out the behavior of measuring instruments
from the behavior of the system under investi-
gation and designing experimental procedures
to individually and quantifiably verify all as-
pects of both hypotheses are basic goals of the
experimental process.

Random Variables

A random variable is a numerical quantity
having a value which varies as one repeats
the procedure used to obtain it. Furthermore,
the different values or outcomes should occur
with fixed probabilities (whether or not those
probabilities are known). Throwing a pair of
dice generates a random variable yi with the
possible outcomes being the integers from two
through twelve. A throw of the dice is a dis-
crete random variable, as the outcomes are
countable. Each possible outcome for a dis-
crete random variable occurs with a particu-
lar probability P (yi). For example the prob-
ability of throwing “boxcars” (two sixes) in a
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Figure 2: The Gaussian pdf

dice game is P (12) = 1/36, while the most
likely throw, seven, occurs with a probability
of P (7) = 1/6.

Outcome probabilities for a continuous ran-
dom variable are specified by a probability den-
sity function (pdf) p(y) for all values y in the
range of possible outcomes. Probabilities for
various outcomes are then obtained from the
pdf according to either of the following two
equivalent statements. Differential statement:
The probability dP (y) of an outcome between
y and y + dy is given by

dP (y) = p(y)dy (1)

Integral statement: The probability P (y1 <
y < y2) of an outcome between y1 and y2 is
given by

P (y1 < y < y2) =
∫ y2

y1

p(y) dy (2)

In the introduction, we referred to a fre-
quency distribution for a sample set of infinite
size as the parent distribution. It is also com-
mon to refer to the pdf for a random variable
as the variable’s parent. Knowing the pdf is
equivalent to having an infinite sample set.

Exercise 1 (a) How would you obtain an ap-
proximate value of p(y) (for any y) from a
large sample set, yi, i = 1..N? Your answer
should contain N , ∆y, and ∆N(y), where
∆N(y) is the number of sample measure-
ments in the interval between y − ∆y/2 and
y + ∆y/2. ∆N(y) can be considered given—
obtained from the sample by counting the ac-
tual number of yi’s in the interval. Hint:
Write an expression for the value of ∆N(y)
which would be expected for a given N , p(y),
and ∆y. (b) What are the considerations in
choosing the size of ∆y, i.e., what would hap-
pen if it were made too small or too big?

The Gaussian

The Gaussian probability density function has
the mathematical form

pG(y) =
1√

2πσy

exp

[
−(y − µy)

2

2σ2
y

]
(3)

and is parameterized by two quantities: the
mean µy and the standard deviation σy. The
quantity σ2

y is called the variance. Fig. 2 shows
the Gaussian pdf and gives various integral
probabilities. A more complete listing of prob-
abilities can be found in Table 2. You should
be familiar with the one-sigma and two-sigma
probabilities; there is a 68% probability the
measurement will be within one standard de-
viation of the mean and a 95% probability it
will be within two.

When a measurement is written down with
a certain number of digits, the probability of
the measurement is assumed to be the inte-
gral of the Gaussian over a range ±1/2 of the
least significant digit. For example, if a volt-
age reading is written as y = 3.72 V, then the
integral probability ∆P of this reading would
be

∆P (3.72) =
∫ 3.725

3.715
pG(y′) dy′
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with an implicit dependence on the values of
µy and σy appearing in pG(y′).

Most of the statistical analysis procedures
we will develop are based on the ability to use
differential probabilities to describe real mea-
surement values. For this to be valid, the size
∆y of the least significant digit (0.01 V in the
example above) must be small compared to
the standard deviation σy. Then, pG(y) will
not vary significantly over the range of inte-
gration and we can write

∆P (y) =
∫ y+∆y/2

y−∆y/2
pG(y′) dy′

= pG(y) ∆y (4)

i.e., the integral probability is effectively dif-
ferential.

If ∆y is large compared to σy, the integral
form would be needed to describe the mea-
surement probability and the ability to use
standard analysis techniques would be com-
promised. In the example above, were σy of
the order 0.0001 V, a reading of 3.72 V, were it
obtained once, would be obtained on virtually
all subsequent measurements. Consequently,
multiple measurements and averaging (a com-
mon statistical procedure) could not be used
to improve the determination of the mean.

Uncertainties, errors, deviations

Random errors

A measurement y can be expressed as the sum
of the mean of its pdf µy and a random error
δy

y = µy + δy (5)

The quantity δy = y − µy is also referred to
as the deviation (of the measurement from the
mean).

Normally, the mean is not known and thus
the random error cannot be determined. In-
stead, the experimenter provides an uncer-
tainty quantifying how big a deviation can

reasonably be expected. These uncertainties
will often be the basis for any statistical as-
sessment of the agreement between theory and
experiment.

In this lab, an uncertainty will be taken as
the standard deviation σy of the parent Gaus-
sian for the measurements. For example, a rod
length reported as 2.64± 0.02 cm would indi-
cate a measurement value y = 2.64 cm and a
standard deviation σy = 0.02 cm. Thus, an
uncertainty should not include possible sys-
tematic errors; it should only take into ac-
count expected random errors. Furthermore,
its size should not be chosen extra large to im-
prove the chances of getting results “in range.”
It should be chosen at the “one-sigma” con-
fidence level—in agreement with a standard
deviation—so that the range y±σy should in-
clude the mean µy 68% of the time or, equiv-
alently, with a 68% probability.

Systematic Errors

While random errors cause measurement val-
ues to differ randomly from the mean of the
measurement’s parent distribution, systematic
errors cause the mean of the parent distribu-
tion to differ systematically (non-randomly)
from the true physical quantity the mean is
interpreted to represent. With yt representing
this true value and δsys the systematic error,
this might be expressed

µy = yt + δsys (6)

Sometimes δsys is constant as yt varies. In
such cases, it is called an offset or zeroing error
and µy will always be above or below the true
value by the same amount. Sometimes δsys is
proportional to yt and it is then referred to
as a scaling error. For scaling errors, µy will
always be above or below the true value by
the same fractional amount, e.g., always 10%
high. In some cases, δsys is a combination of
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an offset and a scaling error. Or, δsys might
vary in some arbitrary manner. The proce-
dures to minimize systematic errors are called
calibrations, and their design requires careful
consideration of the particular instrument and
its application.

Accuracy and precision

Combining Eqs. 5 and 6

y = yt + δy + δsys (7)

demonstrates that both random and system-
atic errors contribute to the measurement.
Both can be made smaller but neither can ever
be entirely eliminated. Accuracy refers to the
size of possible systematic errors δsys while pre-
cision refers to the size of possible random er-
rors δy.

While statistical analysis procedures can
help determine the size and effects of random
errors, they have little to say about system-
atic errors. Determining the possible size and
effects of systematic errors is an important,
but often overlooked, part of the experimen-
talist’s work. If systematic errors might be a
significant problem, additional measurements
(calibrations) should be made to check for and
correct them. However, as there is no gen-
eral way to treat uncorrected systematic er-
rors, they will be presumed insignificant in the
sections to follow.2 Consequently, the mean
of a measurement distribution is always
assumed to be the true value. In effect,
this is the experimental model.

2A calibration can be treated as an additional
hypothesis—either experimental or theoretical—
relating the mean of an uncorrected instrument
reading (which then becomes its own independent
physical quantity) to the true value of the real
physical quantity of interest.

Sample and parent averages

Let yi, i = 1..N represent sample values for a
random variable y having probabilities of oc-
currence governed by a pdf p(y). The sample
average of any function f(y) (denoted f(y)) is
defined as the value of f(y) averaged over all
values of yi

f(y) =
1

N

N∑

i=1

f(yi) (8)

For example, for the function f(y) = y, appli-
cation of Eq. 8 represents simple averaging of
the y-values

ȳ =
1

N

N∑

i=1

yi (9)

Note that ȳ, or the sample average of any
function, is a random variable; taking a new
sample set would produce a different value.
However, in the limit of infinite sample size,
the average defined by Eq. 8 converges to a
well defined constant depending only on the
pdf p(y) and the function f(y). This constant
is called the expectation value of f(y) and will
be denoted by putting angle brackets around
the function

〈f(y)〉 = lim
N→∞

1

N

N∑

i=1

f(yi) (10)

Since having an infinite sample is equivalent to
having the parent frequency distribution, an
expectation value is also called a parent aver-
age. The next exercise demonstrates how to
obtain a parent average from p(y).

Exercise 2 Show that Eq. 10 leads to the
equivalent expression:

〈f(y)〉 =
∫ ∞

−∞
f(y) p(y) dy (11)

Hints: Consider the number of measurements
dN(y) that can be expected in an interval be-
tween y and y + dy. Each measurement in
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this interval contributes f(y) and together they
contribute dN(y)f(y) to the sum in Eq. 10.
Finally, consider the entire range of possible
y-values.

Two frequently used properties of expecta-
tion values are easily derived:

1. The expectation value of a sum of terms is
the sum of the expectation value of each
term.

2. Constants can be factored out of the ex-
pectation value brackets.

However, the expectation value of a product is
not necessarily the product of the expectation
values, e.g., 〈y2〉 6= 〈y〉2.

Exercise 3 Show by direct integration (no in-
tegral tables) that the Gaussian pdf (Eq. 3), is
properly normalized, i.e., that

∫ ∞

−∞
p(y)dy = 1 (12)

Also directly integrate Eq. 11 to show the fol-
lowing

〈y〉 = µy (13)〈
(y − µy)

2
〉

= σ2
y (14)

Obviously, you must use f(y) = y for the for-
mer and f(y) = (y − µy)

2 for the latter.

Equation 14 is the origin of the name stan-
dard deviation in that the left side of that
equation gives a standard measure of the devi-
ations y−µy that can be expected from a sam-
ple. Equally likely to be positive as negative,
deviations have a zero mean (〈y − µy〉 = 0,
Eq. 13) and thus some other measure will be
needed to describe their average size. The
mean absolute deviation—the mean of the ab-
solute value of the deviation—would be one
such measure. However, the standard measure

is the root-mean-square or rms value. The rms
value is the square root of the mean of the
square of the values and Eq. 14 says that σy

is this standard deviation for the parent dis-
tribution.

Principle of maximum likelihood

Often, an experimental or theoretical model
includes constants that are predicted to influ-
ence the data. For example, they might be
calibration constants or the slope and inter-
cept of a predicted linear relationship between
two physical quantities. The constants are as-
sumed to be unknown and estimators of their
true values are to be determined based on the
experimental data.

One accepted technique is to choose estima-
tors in such a way as to maximize the probabil-
ity of the data set. This guiding idea is called
the principal of maximum likelihood and any
parameter value it produces is called a maxi-
mum likelihood estimator. We will call such an
estimator a best estimate and we will always
give it a symbol separate from the true value
of the quantity it estimates.

One consequence of the technique is that if
the data still turn out to be too unlikely, the
hypotheses can confidently be rejected regard-
less of the parameter values; any other val-
ues will only make the data less likely. An-
other important property of best estimates is
that they will often be unbiased estimators.
The expectation value of an unbiased estima-
tor is the true value of the quantity being esti-
mated. This is not a necessary consequence of
the Principle and is an important property to
check for in any results obtained using it. One
would like to be certain that if the experiment
is repeated many times, the true values would
be obtained “on average.”
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Weighted Average

The first example we will treat using the Prin-
cipal is a data set yi, i = 1..N in which each
of the values is supposed to be a measure of
the same physical quantity. That is, each yi

is assumed to be a sample from a Gaussian
pdf with the same mean µy, but this mean
or true value is unknown and is to be chosen
based on the data set. Further assume that
the measurements are obtained from a variety
of instruments and/or methods so that each
measurement yi has a different standard devi-
ation σi associated with its parent Gaussian.
The yi (the measurement values) and the σi

(the standard deviations) are given. We wish
to find only the best estimate of the mean µy.

First, we write an expression for the proba-
bility dP (y1) that the first measurement is in
a small interval dy1 about the measured value
y1 in terms of y1, dy1, µy and σ1.

dP (y1) =
1√

2πσ1

exp

[
−(y1 − µy)

2

2σ2
1

]
dy1

(15)
The probability of the whole set will be the
product of N such terms, one for each yi.

dP ({yi}) =
dy1dy2...dyN(√
2π

)N
σ1σ2..σN

(16)

exp

[
−1

2

N∑

i=1

(yi − µy)
2

σ2
i

]

The best estimate of µy is that value which
maximizes this probability. The probability
maximizes when the sum in the argument of
the exponential is minimized. This sum

χ2 =
N∑

i=1

(yi − µy)
2

σ2
i

(17)

called the chi-square, has several uses. Here,
we consider χ2 to be a function of µy and find
the value of µy where it becomes a minimum.

This value (denoted ȳ for reasons that will be-
come obvious shortly) occurs where the deriva-
tive of χ2 with respect to µy is zero.

dχ2

dµy

∣∣∣∣∣
µy=ȳ

= 0 = −2
N∑

i=1

yi − ȳ

σ2
i

(18)

Solving for ȳ gives

ȳ =

N∑

i=1

yi

σ2
i

N∑

i=1

1

σ2
i

(19)

Eq. 19 is called a weighted average:

ȳ =
w1y1 + w2y2 + ... + wNyN

w1 + w2 + ... + wN

(20)

where each weight is the inverse of the vari-
ance:

wi =
1

σ2
i

(21)

Note that larger standard deviations indicate
less precisely known measurements and, ap-
propriately, smaller weights in the average.

This value of ȳ when used for µy minimizes
the chi-square of Eq. 17 and maximizes the
probability of the data set {yi}. Thus, accord-
ing to the Principle, it is the best estimate of
µy. But ȳ is not expected to be exactly µy. It
is a random variable, following its own pdf.

We can find the expectation value of ȳ
quite simply by taking the expectation value
of Eq. 20.

〈ȳ〉 =
〈

w1y1 + w2y2 + ... + wNyN

w1 + w2 + ... + wN

〉

Noting that the weights wi are simply con-
stants, and using the rules for the expectation
value of a sum this becomes

〈ȳ〉 =
w1 〈y1〉+ w2 〈y2〉+ ... + wN 〈yN〉

w1 + w2 + ... + wN
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The expectation values 〈y1〉, 〈y2〉, etc., are all
µy since each yi is a sample from a Gaussian
parent with a mean µy (Eq. 13) giving

〈ȳ〉 =
w1µy + w2µy + ... + wNµy

w1 + w2 + ... + wN

= µy (22)

Thus, the sample average ȳ defined by
Eq. 19 would “on average” give the correct
mean µy. However, as already mentioned, ȳ
will not equal µy for any particular sample.
We will not try to prove that ȳ varies accord-
ing to a Gaussian pdf—it does, and we have
just shown that the mean of this pdf is µy.

We should also want to know the standard
deviation of the pdf for ȳ. To find this value
we use the definition of the variance as the
expectation value of the squared magnitude
of the variable from its mean (Eq. 14)

σ2
ȳ =

〈
(ȳ − µy)

2
〉

Substituting Eq. 20 for ȳ gives

σ2
ȳ =

〈(
w1y1 + w2y2 + ... + wNyN

w1 + w2 + ... + wN

− µy

)2
〉

This equation is easier to evaluate if it is
rewritten

σ2
ȳ =

〈(
w1(y1 − µy) + ... + wN(yN − µy)

w1 + ... + wN

)2〉

(23)
The sum inside this expectation value is
squared and this squaring must be done be-
fore the expectation value can be treated as a
sum of individual terms. The squaring leads
to quadratic terms (yi − µy)

2 and cross terms
(yi − µy)(yj − µy), i 6= j.

Exercise 4 Show that the expectation value
of any cross term is zero.

〈(yi − µy)(yj − µy)〉 = 0 (24)

Hint: the probability for any pair of sample
values yi, yj to occur is given by Eq. 16

dP (yi, yj) =

dyidyj

2πσiσj

exp

[
−(yi − µy)

2

2σ2
i

− (yj − µy)
2

2σ2
j

]

The expectation value in Eq. 24 should then be
evaluated from the expression

∫ ∞

yi=−∞

∫ ∞

yj−∞
(yi − µy)(yj − µy)dP (yi, yj)

Dropping all cross terms in Eq. 23 leaves
only the quadratic terms

σ2
ȳ =

〈
w2

1(y1 − µy)
2 + ... + w2

N(yN − µy)
2

(w1 + w2 + ... + wN)2

〉

Taking expectation values term by term, using
〈(yi − µy)

2〉 = σ2
i (Eq. 14), and noting that

σ2
i = 1/wi (Eq. 21), gives

σ2
ȳ =

w1 + w2 + ... + wN

(w1 + w2 + ... + wN)2

=
1

w1 + w2 + ... + wN

or
1

σ2
ȳ

=
N∑

i=1

1

σ2
i

(25)

Equation 25 always gives a σȳ smaller than
any of the individual σi. Effectively, Eqs. 19
and 25 are a prescription for turning a group
of independent samples (with known standard
deviations) into a single sample ȳ with a re-
duced standard deviation σȳ.

Sample mean and standard deviation

In this section, the Principal will be used to
obtain best estimates of both µy and σy from
a sample set yi, y = 1...N all from the same
Gaussian parent distribution.

All of the previous discussion for weighted
averaging still applies. With all σi equal (we
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will use σi = σy in this case), the σ’s then drop
out of Eq. 19 giving

ȳ =
1

N

N∑

i=1

yi (26)

This is just the sample average, Eq. 9. Pre-
viously shown to have an expectation value
equal to µy, it is now seen to be the best esti-
mate for µy.

Equation 25 applied to this case leads to

σȳ =
σy√
N

(27)

It states that the standard deviation of the
mean is

√
N times smaller than the standard

deviation of a single value, i.e., the average of
100 values is 10 times more precise than a sin-
gle value alone. Equation 27 is an important
result, but it does not provide an estimate of
σy.

To determine a best estimate of σy from a
sample set of yi’s (all from the same parent)
we will first assume that µy is known. Then
the probability of the whole set is constructed
(with all equal σi = σy) leading to

dP ({yi}) =
dy1dy2...dyN(√

2πσy

)N (28)

exp

[
−1

2

N∑

i=1

(yi − µy)
2

σ2
y

]

Exercise 5 Show that maximizing dP ({yi})
with respect to σy leads to the following equa-
tion for the best estimate (which we will call
s2

y) of the parent variance σ2
y

s2
y =

1

N

N∑

i=1

(yi − µy)
2 (29)

s2
y is called the sample variance. sy is called

the sample standard deviation.

Typically, µy is not known. Can its best es-
timate ȳ be used for µy in Eq. 29? Not exactly.
If one uses ȳ, the best estimate of the parent
variance is

s2
y =

1

N − 1

N∑

i=1

(yi − ȳ)2 (30)

One can get a glimpse into the verity of the
1/(N − 1) factor in Eq. 30 by considering a
sample set consisting of a single measurement
y1. In this case, N = 1 and the sample av-
erage is well defined; ȳ = y1, indicating the
best estimate of parent mean is the single mea-
sured value y1. But Eq. 30 gives s2

y = 0/0,
an indeterminate expression indicating—quite
reasonably—that an estimate of the parent
variance cannot be obtained from a single
measurement.

Exercise 6 Both Eqs. 29 and 30 give the
same expectation value

〈
s2

y

〉
= σ2

y for any

value of N . (a) Show this is true for Eq. 29.
This is trivial using Eq. 14. (b) Show this is
true for Eq. 30. This is not trivial at all. You
must use Eq. 26 and keep track of all terms.
Hint 1: Explain why each of the N terms in
Eq. 30 has the same expectation value and then
use this fact to get rid of the sum over i—
replacing it with a factor of N times the ex-
pectation value of one term (say i = 1). Hint
2: Show that both Eqs. 14 and 24 can be ex-
pressed by the equation

〈yiyj〉 = µ2
y + σ2

y δij (31)

where δij = 1 for i = j and δij = 0 otherwise.
(This form is useful in summations.) Hint 3:
To reexpress ȳ2 use

ȳ2 =

(
1

N

N∑

i=1

yi

) 
 1

N

N∑

j=1

yj




=
1

N2

N∑

i=1

N∑

j=1

yiyj (32)
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Figure 3: The pdf pν(χ2
ν) vs. the value of χ2

ν for
ν = 2, 4, 10, 30, 100. The curve for ν = 100 has
the sharpest and highest distribution. For the
other values of ν the curves get broader and lower.
For ν = 1 (not shown) the pdf is actually (inte-
grably) infinite at χ2

ν = 0.

That is, each ȳ must use its own private
dummy index. Hint 4: Show how Eq. 32 with
Eq. 31 gives

〈
ȳ2

〉
= µ2

y +
σ2

y

N
(33)

which is basically a restatement of Eq. 27 and
useful for this exercise.

We have shown that the sample variance s2
y

is the best estimate of the true variance σ2
y and

that the true variance of the mean is given by
σ2

ȳ = σ2
y/N . If σy is unknown and one uses the

sample standard deviation sy in its place, one
obtains the sample standard deviation of the
mean

sȳ =
sy√
N

(34)

which is a best estimate of σȳ.

The reduced chi-square pdf χ2
ν

The sample variance is a random variable;
each new sample set would give a new vari-
ance. However, rather than discuss the pdf

for s2
y directly, it is more useful to introduce a

normalized sample variance

χ2
ν =

s2
y

σ2
y

(35)

and switch the discussion to this quantity.
This new quantity is a reduced chi-square
random variable and its pdf will be written
pν(χ

2
ν). With this normalization, the pdf for

χ2
ν becomes universal—independent of σy. If

σy is not known, as is often the case, simply
keep in mind it is a constant.

The subscript ν, used in labeling the re-
duced chi-square random variable and its pdf,
is called the number of degrees of freedom and
is equal to the sample size minus the number
of parameters obtained from that sample set
and used in the calculation of χ2

ν . If ȳ is de-
termined first and then s2

y is determined using
Eq. 30, a single derived parameter (ȳ) is used
in calculating χ2

ν and ν = N − 1.
If a sample set is obtained over and over

again (with N new yi for each set), the result-
ing distribution of values for s2

y is obviously de-
termined by the randomness of the yi values.
That is, pν(χ

2
ν) is completely determined by

the Gaussian pdf governing the yi. For exam-
ple, properties of the Gaussian pdf were used
in Exercise 6 to demonstrate that

〈
s2

y

〉
= σ2

y

for all values of N . Thus trivially, this exercise
also proves 〈

χ2
ν

〉
= 1 (36)

for all values of ν.
The reduced chi-square pdf’s are a class of

pdf’s distinguished by the integer ν. Several
are shown in Fig. 3. Their dependence on ν
should come as no surprise. Just as the pdf
for ȳ becomes more sharply peaked around µy

as the sample size increases, so too the pdf
for s2

y become more sharply peaked around
σ2

y as ν increases. Consequently, pν(χ
2
ν) be-

comes more sharply peaked around the value
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1 as ν increases. For large values of ν, pν(χ
2
ν)

becomes approximately Gaussian-shaped with
a mean of 1 and a standard deviation near√

2/ν. However, for low values of ν, pν(χ
2
ν) is

asymmetric and fairly broad.

Exercise 7 It is often stated that uncertain-
ties should be expressed with only one signif-
icant figure. Some say two figures should be
kept if the first digit is 1. Roughly speaking,
this suggests uncertainties are only good to
about 10%. Suppose you take a sample set and
evaluate the sample mean ȳ. For the uncer-
tainty, you use the sample standard deviation
of the mean sȳ. What is the minimum number
of samples N needed if one is to be around 60%
confident that sȳ is within 10% of σȳ. Hint: sy

will also have to be within 10% of σy. Thus,
you want to find the value of N such that the
probability P (0.9σy < sy < 1.1σy) = 0.6. Con-
vert this to a condition on χ2

ν and then use
Table 3.

Student-T probabilities

Consider a sample mean ȳ and a sample stan-
dard deviation of the mean sȳ obtained from
a sample set yi, i = 1..N . These quantities
are best estimates of the true mean µy and
true standard deviation of the mean σȳ of the
Gaussian pdf from which ȳ is a sample. Now
suppose one wishes to find a 68% or 95% con-
fidence intervals for the unknown mean µy.

If a random variable y follows a Gaussian
pdf, a y value in the range µy±σy occurs 68%
of the time and a y value in the range µy±2σy

occurs 95% of the time. This logic is invertible
and thus one can construct confidence inter-
vals of the form

y ± zσy

for any value of z and the probability such an
interval will include the true value µy will like-
wise follow from the Gaussian pdf; 68% for

z = 1, 95% for z = 2, etc. Such confidence
intervals and associated probabilities are sel-
dom reported because they are well known and
completely specified once y and σy are given.

To find confidence intervals using a sample
mean and a sample standard deviation of the
mean, one can again express the interval in the
form

ȳ ± zsȳ

However, now that the interval is constructed
with an estimate rather than a true standard
deviation, z = 1 (or z = 2) are not necessarily
68% (or 95%) confidence intervals. William
Sealy Gosset, publishing around 1900 under
the pseudonym “Student” was the first to pro-
vide these “Student-T” probabilities.

A difference arises because sȳ might, by
chance, come out larger or smaller than σȳ; re-
call s2

y/σ
2
y values are distributed according to

the reduced chi-square pdf. When the proba-
bilities for all possible values of sȳ are properly
taken into account, the confidence level for any
z is always smaller than would be predicted
based on the Gaussian pdf.

In effect, the uncertainty in how well sȳ es-
timates σȳ decreases the confidence level for a
given z. Because this uncertainty depends on
the sample size N , the Student-T confidence
intervals also depend on N (via the number of
degrees of freedom ν = N−1). The larger the
ν, the better the estimate and the closer the
Student-T intervals will be to the correspond-
ing Gaussian intervals.

Table 4 at the end of this paper gives some
Student-T probabilities. As an example of its
use, consider five sample values from which are
obtained ȳ and sȳ. There are four degrees of
freedom for an sȳ calculated from five samples.
Looking at the row for ν = 4, the entry in
the second column indicates a 95% probability
that the interval ȳ±2.78sȳ will include the true
mean µy. If one were ignorant of the Student-
T probabilities one might have assumed that
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a 95% confidence interval would be, as for a
Gaussian, ȳ ± 2 sȳ.

Exercise 8 Three sample values from a
Gaussian pdf are 1.20, 1.24, and 1.19. (a)
Find the (sample) mean, standard deviation,
and standard deviation of the mean. Give the
68% and 95% confidence intervals for the true
mean based on this data alone. (b) Now as-
sume those three sample values are known to
come from a pdf with a standard deviation
σy = 0.02. With this assumption, what are the
68% and 95% confidence intervals? Hint: de-
termine the standard deviation of the mean of
three numbers with this σy. (c) Determine the
reduced chi-square for this data set (assuming
σy = 0.02) and the probability it would be this
big or bigger.

Correlation

Generally, when there are several measured
variables in an experiment, they will be re-
lated. Indeed, the typical objective of exper-
imentation is to discover a dependence be-
tween variables or verify a particular math-
ematical relationship. Nonetheless, more of-
ten than not, the measurements are correctly
termed independent thereby indicating a sta-
tistical independence between the measured
quantities. Statistical independence between
two quantities implies that their random er-
rors are independent. The quantities them-
selves may or may not be physically related.
For example, the length L and period T of a
simple pendulum are not physically indepen-

dent; they are related by T = 2π
√

L/g, where
g is the local acceleration due to gravity. How-
ever, the random errors in measurements of
the pendulum’s length and period will be un-
related and thus L and T would be statistically
independent.

While statistical independence is generally
the rule for measured quantities, there are

the occasional exceptions. For example, si-
multaneously measured voltages are prone to
pickup of common random errors. On the
other hand, statistical independence is the ex-
ception rather that rule for two quantities de-
rived from a single set of measurements, even if
the measurements themselves are statistically
independent. For example, the slope and in-
tercept obtained from a linear regression anal-
ysis are random variables, and are not, in gen-
eral, statistically independent. In this section,
the quantitative measures of statistical depen-
dence, correlation and covariance are defined.
Later sections will demonstrate some effects of
correlation.

Consider a sampling experiment in which
there are two variables, x and y. The vari-
ables are always in one-to-one correspondence
so that a single sample consists of an ordered
x, y pair. The pairs are sampled repeatedly to
make the complete sample set of ordered pairs
xi, yi, i = 1..N . The sample set is taken under
unchanging experimental conditions and thus
only random variations are expected.

The analysis begins by considering the data
as two separate sample sets: xi, i = 1..N and
yi, i = 1..N . We assume each set is consistent
with a Gaussian parent. The sample means x̄
and ȳ and the sample variances s2

x and s2
y are

computed. These are, respectively, best esti-
mates for the means µx and µy and variances
σ2

x and σ2
y for each variable’s parent.

Consider first the limiting case of total pos-
itive correlation. In this case, if an xi value is
above (or below) x̄ by the amount sx, the cor-
responding yi value will be above (or below)
ȳ by the amount sy. More generally, for any
xi, yi in the data set

xi − x̄

sx

=
yi − ȳ

sy

Note that, looked at separately, each variable
can still appear to be randomly varying ac-
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cording to a Gaussian parent, but the varia-
tions are not independent, they are totally cor-
related. There is really only one random vari-
ation which completely determines both the xi

and yi variations.
With less than total correlation, one vari-

able’s value only partially predicts the other.
There remains an independent random com-
ponent in addition to the predictive, or corre-
lated, component. With negative correlation,
total or partial, the predictive components be-
come oppositely signed; when one variable in
a pair is above its mean, the predictive com-
ponent of the other is below its mean. With
no correlation, there is no predictive compo-
nent; knowing the value of one member of the
pair provides no information about the other.
This is the case of statistical independence.

Quantitatively, correlation is described by
the correlation coefficient or equivalently by
the covariance. The sample covariance sxy is
defined

sxy =
1

N − 1

N∑

i=1

(xi − x̄)(yi − ȳ) (37)

The true covariance σxy, is defined as the sam-
ple covariance in the limit of infinite sample
size

σxy = lim
N→∞

1

N − 1

N∑

i=1

(xi − x̄)(yi − ȳ) (38)

or equivalently as the expectation value

σxy = 〈(x− µx)(y − µy)〉 (39)

Consider an xi, yi pair chosen randomly
from an infinite sample. Whether or not the
variables are correlated, the x-value (or y-
value) is equally likely to be above or below its
mean, and thus the value of xi− x̄ (or yi− ȳ) is
equally likely to be positive or negative. But
only if the variables are uncorrelated will the
product (xi− x̄)(yi− ȳ) have equally probable

positive and negative values and an expecta-
tion value of zero. With a positive correlation
this product has a positive expectation value
and with a negative correlation it has a nega-
tive expectation value. Consequently, the co-
variance σxy = 〈(xi − x̄)(yi − ȳ)〉 will be zero,
positive, or negative, respectively, depending
on whether there is a no correlation, positive,
or negative correlation.

The covariance σxy is limited by the size of
σx and σy and can vary between

−σxσy ≤ σxy ≤ σxσy (40)

Thus, σxy is also often written

σxy = ρσxσy (41)

where ρ, called the correlation coefficient, is
between -1 and 1.

The inequality expressed by Eq. 40 is also
true for the sample standard deviations and
sample covariance with the substitution of s’s
for σ’s. The sample correlation coefficient r
is then defined sxy = rsxsy and also varies
between -1 and 1.

It is common to define the (symmetric) co-
variance matrix denoted [σ] to describe all
the variances and covariances possible between
two or more variables. For 3 variables x, y, z
it would be

[σ] =




σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 (42)

with the extension to more variables obvious.
Note that σxx = σ2

x is the variance of x with
similar relations for σyy and σzz

Propagation of Errors

One is often interested in a quantity derived
from one or more measurements y1, y2, ..., yM .
For example, y1 might represent a measure-
ment value for the voltage V across a circuit
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element, while y2 might represent a measure-
ment value for the current I through the el-
ement. The derived quantity might be the
element’s resistance R = V/I or the power
dissipated P = IV .

The theoretical model doesn’t really provide
the relationship between the measurement val-
ues and the derived quantity. It is better to
think of the model as providing the relation-
ship between the measurement’s parent means
(true values of the physical quantities) and the
true value of the derived quantity. Denoting
this latter quantity α, the theoretical model
provides the relation

α = f(µ1, µ2, ..., µM) (43)

The measurement uncertainties (standard
deviations) σ1, σ2, ..., σM are assumed known
and thus each yi is a single sample from a
Gaussian pdf of (unknown) mean value µi and
known standard deviation σi.

The first objective is to find a best esti-
mate of α (which will be denoted a) based on
a single set of values y1, y2, ..., yM . Since the
data set probability is maximized if all means
µi are taken equal to the measured values yi,
the Principle of Maximum Likelihood suggests
that a is obtained by using yi for µi in Eq. 43

a = f(y1, y2, ..., yM) (44)

As a is a random variable, consider the
distribution of a values obtained by repeat-
edly evaluating a = f(y1, y2, ..., yM), each time
from a newly sampled set of yi’s. As additional
sample sets are taken, the yi’s would vary ac-
cording to their individual Gaussian parents
and thus the a’s would vary as well—according
to some new pdf.

Since each yi is from a Gaussian parent, bet-
ter than 99% of the time the value for any yi

will be in the range µi±3σi. We will assume all
the σi are small enough that over these ranges,

the function f is accurately represented by a
first-order Taylor expansion about the values
µ1, µ2, ..., µM .

a = f(y1, y2, ..., yM)

= f(µ1, µ2, ..., µM) +

∂f

∂y1

(y1 − µ1) +
∂f

∂y2

(y2 − µ2)

+... +
∂f

∂yM

(yM − µM)

= α +
M∑

i=1

∂f

∂yi

(yi − µi) (45)

where Eq. 43 has been used in the final step.
The partial derivatives are simply constants
that should be evaluated at the expansion
point µ1, µ2, ..., µM . However, as the means
are typically unknown, they will normally be
evaluated at the measured point y1, y2, ...yM .
This should not be a problem because f is as-
sumed to be linear over a range of several σi

about each µi.
If keeping only up to the linear terms

(Eq. 45) is a satisfactory approximation, then
a’s pdf will be Gaussian. A small amount of
curvature will not usually cause a problem,
but f should not have significant nonlineari-
ties over a range of about ±3σi in each vari-
able.

Within the linear approximation, the mean
and standard deviation of a’s pdf can easily
be determined. The mean is defined by Eq. 13
(µa = 〈a〉) and the expectation value is easily
evaluated from Eq. 45

µa = 〈a〉

=

〈
α +

M∑

i=1

∂f

∂yi

(yi − µi)

〉

= 〈α〉+
M∑

i=1

∂f

∂yi

〈(yi − µi)〉

= α (46)

where we have used the expectation values
〈yi−µi〉 = 0 to eliminate all terms in the sum.
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Statistical Analysis of Data 15

Thus, we have demonstrated the important re-
sult that if a is taken as f(y1, y2, ..., yM), it will
“on average” be the true value α.

The standard deviation is determined via
Eq. 14 (σ2

a = 〈(a− µa)
2〉). Using Eq. 45 for a

and canceling µa (= α), the expectation value
becomes

σ2
a =

〈(
M∑

i=1

∂f

∂yi

(yi − µi)

)2〉
(47)

Expanding the square of the sum into two
sums, one including the quadratic terms and
one including the cross terms gives

σ2
a =

〈
M∑

i=1

(
∂f

∂yi

(yi − µi)

)2

+ (48)

2
M∑

i>j=1

∂f

∂yi

∂f

∂yj

(yi − µi)(yj − µj)

〉

where the second sum is over all pairs i, j
where i > j. (The factor of 2 arises because
Eq. 47 would produce two equivalent cross
terms, while the sum includes each cross term
only once.)

Now we can use the definitions for the vari-
ances of σ2

i

σ2
i = 〈(yi − µi)

2〉 (49)

and the definition of the covariance between
variables

σij = 〈(yi − µi)(yj − µj)〉 (50)

to express σ2
a as

σ2
a =

M∑

i=1

(
∂f

∂yi

)2

σ2
i + 2

M∑

i>j=1

∂f

∂yi

∂f

∂yj

σij (51)

In the typical situation, only a single set of
measurements y1, y2, ., yM and standard devi-
ations (uncertainties) σ1, σ2, ., ., σM are avail-
able. The quantity a = f(y1, y2, ., yM) is then

a single sample from a Gaussian parent hav-
ing a standard deviation (uncertainty) σa—
obtained through Eq. 51—and having an un-
known mean which will be the true value α of
the sought-after quantity. As such, a has much
the same interpretation as a single sample or
measurement value.

Exercise 9 Assume there are two derived
quantities u1 and u2 obtained from measure-
ments ya and yb according to the relations

u1 = f1(ya, yb) (52)

u2 = f2(ya, yb) (53)

Further assume ya and yb come from corre-
lated Gaussian pdf’s having variances σ2

a and
σ2

b and a covariance σ2
ab and that the functions

f1 and f2 are approximately linear over the
range of y’s likely to occur. Show that the co-
variance between u1 and u2 is given by

σ12 =
∂f1

∂ya

∂f2

∂ya

σ2
a +

∂f1

∂yb

∂f2

∂yb

σ2
b (54)

+

(
∂f1

∂ya

∂f2

∂yb

+
∂f1

∂yb

∂f2

∂ya

)
σab

Note that σ12 will generally be non-zero
whether or not σab = 0.

Linear Regression

Consider the kind of experiment in which one
measures a dependent or responding variable
y, as an independent or manipulated variable
x is systematically varied.3 The data set con-
sists of corresponding pairs (xi, yi), i = 1...N .

3There can be more than one independent variable.
Although only a single x-variable is treated explicitly,
most of the regression equations and ideas would re-
main the same if the variable x were considered to be
a set of independent variables.
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Often, theoretical considerations predict a re-
lationship between x and y that can be ex-
pressed by a function (called the fitting func-
tion)

y = F (x) (55)

where F (x) includes M unknown constants
αk, k = 1...M called fitting parameters. For
example, F (x) = α1 + α2x would specify
a straight line fitting function with two un-
known fitting parameters—an intercept α1

and a slope α2. Regression analysis is used
to obtain best estimates of the fitting param-
eters from the data set and assess whether the
data are consistent with the fitting function.

Linear regression is used when F (x) can be
expressed as linear function of the fitting pa-
rameters

F (x) = α1f1(x) + α2f2(x) + ... + αMfM(x)

=
M∑

k=1

αkfk(x) (56)

where the fk are linearly independent func-
tions of x with no unknown parameters. Note
that the fk(x) may be nonlinear functions of
x, e.g., x2 or sin(x). The fitting function is
still linear in the coefficients αk as long as the
αk only appear as coefficients (amplitudes) of
the fk(x).

The xi, yi pairs will be assumed to be statis-
tically independent, i.e., have zero covariances.
Although both xi and yi will often have ran-
dom errors, we will first consider the simpler
case where the xi are known exactly and only
the yi have random errors. The expected (rms)
size of the random error associated with each
particular yi value will be represented by σi.
The σi are assumed known (the uncertainties
of the yi) and may be the same for all data
points or they may vary from point to point.

The physical model is not really y = F (x),
but rather that F (xi) gives the mean µi of
the parent Gaussian from which each yi is a

sample.

µi = F (xi) (57)

The probability dPi of obtaining a measured
yi in a small range dyi can then be written

dPi =
dyi√
2πσi

exp

[
−(yi − F (xi))

2

2σ2
i

]
(58)

If there are N such pairs of data points, the
probability of all of them occurring is a prod-
uct of N such terms. The best estimates of
the αk’s are those values ak that maximize
this product probability, i.e., that minimize
the chi-square

χ2 =
N∑

i=1

(yi − F (xi))
2

σ2
i

(59)

This χ2 is an implicit function of the αk that
would appear in F (xi) and is minimized by
setting the M partial derivatives of χ2 with
respect to each αk (evaluated at {α} = {a})
equal to zero.

∂χ2

∂αk

∣∣∣∣∣{α}={a}
= 0 (60)

These M simultaneous equations can then be
solved for the M unknown ak’s.

Let’s see how this works for a two parameter
fit: F (x) = α1f1(x) + α2f2(x). The treatment
is similar for more than two parameters.

χ2 =
N∑

i=1

(yi − (α1f1(xi) + α2f2(xi)))
2

σ2
i

(61)
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Setting the partial derivatives of χ2 with re-
spect to α1 and α2 equal to zero (at α1 = a1

and α2 = a2) leads to the following two equa-
tions, respectively

N∑

i=1

yif1(xi)

σ2
i

= a1

N∑

i=1

f1(xi)f1(xi)

σ2
i

(62)

+a2

N∑

i=1

f1(xi)f2(xi)

σ2
i

N∑

i=1

yif2(xi)

σ2
i

= a1

N∑

i=1

f1(xi)f2(xi)

σ2
i

(63)

+a2

N∑

i=1

f2(xi)f2(xi)

σ2
i

Defining the following quantities—all of
which can be obtained from the known quan-
tities xi, yi, σi, i = 1...N , and the known func-
tions f1 and f2

Y1 =
N∑

i=1

yif1(xi)

σ2
i

(64)

Y2 =
N∑

i=1

yif2(xi)

σ2
i

(65)

x11 =
N∑

i=1

f1(xi)f1(xi)

σ2
i

(66)

x12 =
N∑

i=1

f1(xi)f2(xi)

σ2
i

(67)

x22 =
N∑

i=1

f2(xi)f2(xi)

σ2
i

(68)

we can rewrite Eqs. 62 and 63 in matrix form

(
Y1

Y2

)
=

(
x11 x12

x12 x22

) (
a1

a2

)
(69)

In this form the solution is easily found by the
method of determinants

a1 =
1

D

∣∣∣∣∣
Y1 x12

Y2 x22

∣∣∣∣∣ (70)

a2 =
1

D

∣∣∣∣∣
x11 Y1

x12 Y2

∣∣∣∣∣ (71)

where D is the determinant

D =

∣∣∣∣∣
x11 x12

x12 x22

∣∣∣∣∣ (72)

Alternatively, vector algebra can be used.
The α’s, a’s, and Y ’s can be written as column
vectors

α =

(
α1

α2

)
(73)

a =

(
a1

a2

)
(74)

Y =

(
Y1

Y2

)
(75)

and a matrix [X] can be defined

[X] =

(
x11 x12

x12 x22

)
(76)

so that Eq. 69 can be put in the matrix form

Y = [X]a (77)

This equation is solved by finding the inverse
matrix [X]−1 and multiplying the equation
above by [X]−1 on the left

a = [X]−1Y (78)

The a’s are random variables. If we were to
take a whole new set of measurements (sam-
ples) of the yi (at the previous values for the
xi) and then recalculate the a’s for this set, we
should expect them to change. If we did this
repeatedly, we would find the a’s occur with
probabilities governed by their own pdf’s. For
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a single data set, we don’t expect the a’s to be
exactly equal to the α’s, but we should expect
this to be true on average, i.e.,

〈a〉 = α (79)

The proof can be found in the addendum.
Since the a’s can vary (were repeated data

sets taken) we should also be interested in the
variances of the pdf’s for the a’s. The vari-
ances are defined by

σkk = σ2
k = 〈(ak − αk)

2〉 (80)

(since the mean value of ak = αk). Since the
a’s will generally be correlated, we should also
be interested in the covariance between the
a’s, which are defined by

σkm = 〈(ak − αk)(am − αm)〉 (81)

for k 6= m.
The covariance matrix is used to express

these quantities

[σ] =

(
σ11 σ12

σ12 σ22

)
(82)

It can be shown that

[σ] = [X]−1 (83)

In other words, [X]−1 is the covariance ma-
trix and gives the parameter variances (diag-
onal elements) and covariances (off-diagonal
elements). The proof can also be found in the
addendum.

Take careful note of the fact that the off-
diagonal elements will normally be non-zero.
Non-zero covariances imply the parameters
will be correlated, and correlated parameters
imply the propagated uncertainty in the value
of any expression that includes more than one
of the fitted parameters will need to take into
account the covariance terms.

Uncertainties in Both Variables

When there are uncertainties σxi
and σyi

in
both variables, a reasonable procedure is to
use the following σ2

i in the fitting procedure

σ2
i = σ2

yi
+

(
dF

dx

)2

σ2
xi

(84)

where dF/dx is evaluated at xi using the best
fit parameters from the regression. Consider
that σyi

specifies the rms size of the random y-
variations that can be expected for the point i,
with a similar interpretation for σxi

. Because
dF/dx is the slope of the fitting function at
the ith data point, a random variation in the
x-direction of the amount σxi

would cause an
effective random variation in the y-direction
of the amount (dF/dx)σxi

. The actual and ef-
fective y-variations would be independent and
are thus added in quadrature to get the net
expected y-variations σi.

Of course, the fitting parameters of F would
need to be known to evaluate the derivatives
dF/dx. Thus an iterative approach would be
used, perhaps starting with a fit neglecting the
x-uncertainties. After an initial parameter set
is obtained, the fit would be repeated and new
ak would be found using the net σi as given by
Eq. 84.

Equally weighted linear regression

Excel’s regression program does not let the
user provide the σi values that would ordinar-
ily be needed to apply the linear regression
equations (Eqs. 64-83). The Excel regression
program assumes the σi are the same for all
data points and thus its results are only valid
to the extent this assumption is satisfied. Such
a regression would be called equally weighted.

Exercise 10 A data set (xi, yi), i = 1...N will
be used in a linear regression. Assume the σi
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are the same for all yi and that the xi are
known exactly. (Again, we use σi = σy when
they are all equal.) Use the linear regression
equations to explain (a rigorous proof is not re-
quired): (a) why the fitting parameters ak are
independent of the value for σy and (b) why
the parameter standard deviations σk are pro-
portional to σy. Hint: Refer to Eq. 78 for part
(a) and to Eq. 83 for part (b). Also refer to
the defining equations for the elements of [X]
and Y (Eqs. 64-68) to explain the dependence
(or independence) on σy.

Property (a) implies that the data point un-
certainties need not be known to determine
the fit parameters. This is why Excel does
not need σy to get the ak. And while prop-
erty (b) implies σy must be known in order to
get the fitting parameter uncertainties σk, the
deviations between the data and the fit can
be used to get a best estimate of σy. Excel
uses this best estimate for σy in the regression
equations to get best estimates of the σk.

The best estimate of σy will again be de-
noted sy and it can be obtained using

s2
y =

1

N −M

N∑

i=1

(yi − F (xi))
2 (85)

Compare this with Eq. 30 for a sample set from
a single pdf. In both cases sy is an rms de-
viation between the data point yi-values and
their corresponding best estimates (F (xi) for
Eq. 85, y for Eq. 30). And in both cases the
divisor is the number of degrees of freedom
(N −M for Eq. 85, N − 1 for Eq. 30). Thus,
the sy of Eq. 85 is a sample standard deviation
and a best estimate of σy were σy unknown.
One can even show that 〈s2

y〉 = σ2
y.

In effect, a regression like Excel’s first deter-
mines the fitting parameters ak, then uses the
ak, fk(xi), and yi to determine sy, and then
uses sy as the best estimate of σy to deter-
mine the fitting parameter uncertainties. Be-
cause they are obtained using a best estimate

Figure 4: Excel’s linear regression dialog box

sy instead of the true σy, the fitting parame-
ter uncertainties are really best estimates sk

of the true σk. They are sample standard de-
viations rather than true standard deviations.
Accordingly, the probability that an interval
ak± z sk will include the true value αk is gov-
erned by Student-T probabilities with N −M
degrees of freedom.

Linear regression with Excel

The starting point for using the Excel linear
regression program is to set up columns for the
yi and the fk(xi). The steps will be illustrated
for a quadratic fit: F (xi) = α1 + α2xi + α3x

2
i .

Thus, f1(xi) = 1, f2(xi) = xi, and f3(xi) = x2
i .

In turns out to be unnecessary to have a col-
umn for the constant term; Excel can handle
the constant function without using a column.
There will need to be columns for yi, xi and
x2

i .
Excel’s linear regression is found in the

Tools|Data Analysis|Regression menu. The dia-
log box for this procedure appears as in Fig. 4.

Select the column containing the yi-values
for the Input Y-Range. Select what must be
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xi yi

2 2.4
3 6.7
5 27.8
6 43.2
8 80.7
9 104.5

Table 1: Data for Exercise 11

a contiguous rectangular block containing all
fk(xi) values (two columns for the quadratic
fit). Leave the Constant is Zero box unchecked.
(It would be checked if the fitting function did
not include a constant term.) Leave the Labels
box unchecked unless your x- and y-ranges in-
clude labels at the top of the columns. If you
would like, check the Confidence Level box and
supply a probability for a Student-T interval
next to it. (Intervals for the 95% confidence
level are provided automatically.) Select the
New Worksheet Ply radio button or the Output
Range. For the latter, also specify (in the edit
box to its right) the upper left corner of an
empty spreadsheet area for the results. Select
any of the various options in the lower part of
the dialog box and then click OK.

The upper Regression Statistics area con-
tains the sample standard deviation sy

(Eq. 85) (referred to as the Standard Error).
The lower area contains information about
the constant (labeled Intercept) and the fit-
ting parameters ak (labeled X Variable k. Next
to the best fit values (labeled Coefficients)
are the parameter sample standard deviations
sk (labeled Standard Error). Then there are
columns for the t Stat and P-value for each
parameter. And lastly two double columns for
the lower and upper limits of intervals at con-
fidence levels of 95% and the user specified
percentage.

Exercise 11 Fit the data in Table 1 to a
quadratic formula (y = a + bx + cx2) using
the Excel linear regression program and sub-
mit a printout of the appropriate worksheets.
Save this spreadsheet. It will be used again
for Exercises 12 and 13. (a) What does Ex-
cel use as a best estimate for the value of σi

appearing in the linear regression equations?
Describe and give the formula for this quan-
tity. Circle and label its value on the work-
sheet. (b) The parameter standard deviations
given on the worksheet are sample standard de-
viations sk. Circle and label the parameters ak

and their sample standard deviations sk. (c)
Circle the program’s 95% confidence interval
(for the quadratic coefficient only) and show
how it can be obtained from ak, sk and the
Student-T table.

Considerations if σy is known

In this lab, you will typically be expected to
make an estimate of σy based on the measure-
ment procedures and equipment. So suppose
σy is known. How would this affect the re-
sults and interpretation of a regression, such
as Excel’s, that uses sy for σy?

According to property (a) of Exercise 10,
no adjustments are needed for the parameters
ak because their values do not depend on the
value used for σy. Consequently, the fit and
the rms deviation sy would be unaffected.

However, the parameter uncertainties would
need to be adjusted. According to property
(b) of Exercise 10, the fitting parameter uncer-
tainties σk are proportional to the data point
uncertainties σy. Since the linear regression
uses sy when the proper value is σy, the scal-
ing property implies they must be multiplied
by σy/sy.

Moreover, after scaling them this way, they
should no longer be considered best esti-
mates or sample standard deviations sk. They
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should be considered true standard deviations,
σk. Consequently, the confidence intervals
ak ± zsk calculated according to the Student-
T probabilities become invalid and should be
replaced by intervals ak ± zσk calculated ac-
cording to Gaussian probabilities.

Exercise 12 Return to the spreadsheet for
Exercise 11. (a) Create a column for (yi −
F (xi))

2 (using the fitting parameters) and then
use this column to evaluate sy. Show that it
agrees with Excel’s value. (b) Suppose the un-
certainties in the yi values for that exercise are
known to be σy = 0.5. Use the scaling rule to
determine the parameter uncertainties in this
case. Give the 95% confidence interval for the
quadratic coefficient. Should you use Student-
T or Gaussian probabilities?

Nonlinear Regression

Linear regression techniques can only be used
when the fitting function can be put in the
form of Eq. 56, where dF/dαk is independent
of the entire set of fitting parameters α. Many
fitting functions cannot be so expressed. For
example, a common nonlinear fitting function
is an exponential decay with a constant offset.

F (x) = α1 + α2 exp(−α3x) (86)

Nonlinear regression techniques would be
needed to find the three fitting parameters
in this function for a given data set xi, yi,
i = 1...N .

Nonlinear regression is similar to linear re-
gression in that the fitting parameters are still
taken to be those which minimize the χ2 of
the data set and thus maximize the data set
probability; nonlinear regression is still a least
squares method based on the principle of max-
imum likelihood.

Nonlinear regression programs repeatedly
“try out” various possible sets of fitting pa-

Figure 5: Excel’s Solver dialog box

rameters, evaluating the χ2 value each param-
eter set produces. Consult the references to
learn about the various “search” algorithms
used to find the fitting parameters which min-
imize the χ2. We will not be concerned with
that aspect of the programs. Spreadsheet pro-
grams and other data analysis packages often
have such algorithms (Solver in Excel). Here,
we would like to describe how to use the Excel
Solver to accomplish the task of finding the
best estimates of the fitting parameters and,
if needed, their variances and covariances.

To use Solver:

1. Set up an area of the spreadsheet for the
fitting parameters. The area need not be
contiguous, but using Solver will be some-
what easier if parameters are confined to a
single block of cells. Enter initial guesses
for the values of each fitting parameter.

2. Enter your data in columns, including xi

and yi and their uncertainties σxi
and σyi

.
If either σxi

and/or σyi
is the same for all

data points, the value can be placed in a
single cell.

3. Create a column for F (xi). This will be
the fitted y-values based on the theoreti-
cal formula using the addresses for the xi

and the ak fitting parameters.
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4. Construct a column for σi. These are the
data point uncertainties constructed ac-
cording to Eq. 84, based on the deriva-
tive of the theoretical formula, and using
the cell addresses of the xi-values, the ak

fitting parameters, and the measurement
uncertainties σxi

and σyi
. If σi is the same

for all data points, it can be assigned to
a single spreadsheet cell.

5. Make a column for (yi − F (xi))
2/σ2

i .
These are the data point contributions to
the chi-square. Sum this column in a sep-
arate cell to provide the χ2 value needed
for the fitting procedure.

6. Invoke the Solver from the Tools menu.
The dialog box is shown in Fig. 5.

7. Provide the cell address of the χ2 in the
Set Target Cell: box. Also click the Min
radio button next to Equal To: so that the
χ2 will be minimized (as opposed to max-
imized or made to take on some particular
value, which are also available choices).

8. Provide the cell addresses for the fitting
parameters in the By Changing Cells: box.

9. Click on the Solve button. The solver’s
algorithms then start with your initial fit-
ting parameter guesses and vary them to
find those values which minimize the χ2.

10. Accept the final, changed, fitting param-
eters.

Parameter variances and covariances are not
provided by the Excel Solver program, but can
be calculated in subsequent steps. The guid-
ing principle is quite simple. If you offset a
fitting parameter by its uncertainty, i.e., from
ak to ak + σk, and if all other fitting parame-
ters are then reoptimized, the χ2 will change

by unity. Based on this principle, the follow-
ing procedure can be used to find the fitting
parameter uncertainties.

11. Write down or save to a separate area the
optimized values of all fitting parameters
and the final χ2. Use the spreadsheet
Copy and Paste Special ... Values func-
tions.

12. Change the value in the cell containing
one of the fitting parameters, say ak, by
a bit—to a new (unoptimized) value we
will call a′k. The χ2 will increase be-
cause it was originally at a minimum. The
cell containing ak is then removed from
the list of adjustable parameters and the
Solver is rerun. The other parameters
might change a bit and the χ2 might go
down a bit, but it will still be larger than
the original χ2 for the fit.

13. If the change in χ2 is more (or less) than
unity, the tested change in ak is too big
(or too small). Repeat the procedure with
a value of a′k which is closer to (or farther
from) the best value ak.

14. Repeat until the final χ2 has increased
by unity at which point the amount by
which ak was changed is its uncertainty
σk. That is, when you have found the
a′k for which the χ2 increases by one, you
then have σk = |a′k − ak|.

15. If you will want the covariances between
parameters, record also the new opti-
mized values for the other parameters
which we will label ak

m indicating the new
values for the am as optimized for a′k =
ak + σk.

16. Repeat the whole procedure for all fitting
parameters. The covariances can then be
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calculated from the following

|σkm| =
√
|(σkσm(ak

m − am)(am
k − ak)|

(87)
The sign of σkm is the sign of (a′k −
ak)(a

k
m − am), i.e., if after increasing ak

one finds that am increases (decreases)
upon re-minimizing the χ2, σkm is posi-
tive (negative).

Cautions

One must be wary in case the search algorithm
finds its way into a local χ2 minimum rather
than an absolute minimum. The algorithm
may even fail completely if the initial guesses
for the fitting parameters are not close enough
to the optimum values, and one may have to
adjust the initial parameter guesses to get a
solution.

Depending on how the algorithm varies the
fitting parameters in its search to find the χ2

minimum, it may be important to have the
magnitude of all parameters near unity. This
is often a good practice in any case. Thus,
if the amplitude of an exponential decay is of
order 106, the decay constant is of order 10−3,
and the background is of order 103, rather
than perform the fit directly to Eq. 86 it would
be wiser to fit to

F (x) = 103 · α1 + 106 · α2 exp(−10−3 · α3x)

so that all fitting parameters are of order
unity.

Exercise 13 While linear regression can only
be used for linear models, nonlinear techniques
can be used for both linear and nonlinear mod-
els. In this exercise, you are to use the non-
linear regression techniques just described to
fit the data of Table 1 to a quadratic formula.
This is the same data and model used for Ex-
ercises 11 and 12 and you will be asked to show
that the same results are obtained.

Start with the spreadsheet from Exercise 12.
Add a cell for σy and reference this cell in the
spreadsheet (anywhere σi is needed) so you can
change the value in that cell and have it up-
dated throughout the spreadsheet.

(a) Start by setting σy to 2.0 and then to
3.0 running the solver for each value. Demon-
strate that the ak do not depend on the value
used for σy; that in both cases the optimized ak

are the same as those from Exercise 11. This
demonstrates Exercise 10 property (a). Can
you explain why the algorithm should behave
this way? (b) Now, assume σy is unknown and
use the value of sy for σy. Recall, this is what
the Excel regression program does. What value
of χ2 does this produce? What value should be
expected? Use the numerical method described
in this section for determining parameter un-
certainties to determine the standard deviation
of the quadratic coefficient only. Show it is the
same as that obtained by Excel’s linear regres-
sion. (c) Now assume σy = 0.5. This value
was used in Exercise 12, but in that exercise
you were asked to use scaling arguments to de-
termine how this affected the uncertainty in
a3. Here you will show that that scaling was
correct. Use the numerical method to redeter-
mine the uncertainty of a3 with σy = 0.5. Now
you have two values for the uncertainty in a3,
one using σy = sy and one using σy = 0.5.
Show that they scale in proportion to the value
used for σy. This demonstrates Exercise 10
property (b).

Evaluation of a Fit

The first evaluations of the agreement between
a fitting function and a data set should be
performed graphically. Typically, the best fit
function y = F (x) is plotted vs. x as a smooth
curve (no markers) and overlayed with the
xi, yi data points (markers, no curve). It may
also be helpful to include error bars on these
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graphs—lines extending ±σ about each point
in either or both the x- and y-directions. The
fitting function should pass through roughly
68% of the data points (including their error
bars).

Deviations between the fit F (xi) and the
data yi should be random. Deviations which
vary smoothly with x would be indicative of
systematic errors. Graphing the deviations
(also called residuals) yi − F (xi) vs. xi can
be helpful in clarifying whether the deviations
are random or systematic.

The chi-square test

In this section, it will be important to dis-
tinguish between the true theoretical function
Fα(x) using the true parameters αk and the
best fit Fa(x) using the best estimates ak ob-
tained from the fit.

Recall σi is the expected rms deviation be-
tween the measured yi value and the mean of
the distribution from which yi is a sample. Ac-
cording to the theory, this mean is Fα(xi) and
thus the expectation can be expressed

〈
(yi − Fα(xi))

2
〉

= σ2
i (88)

Of course, any particular value of (yi−Fα(xi))
2

might be larger or smaller than σ2
i ; it should

only be σ2
i “on average.”

In order to treat the general case where the
σi are not the same for all points, this equation
needs to be rewritten:

〈
(yi − Fα(xi))

2

σ2
i

〉
= 1 (89)

Equation 89 is true for every data point and so
a sum of this quantity over all N data points
should have an expectation value of N .

〈
N∑

i=1

(yi − Fα(xi))
2

σ2
i

〉
= N (90)

Note that the term inside the expectation val-
ues is the chi-square of Eq. 59.

Normally, Fα(x) is unknown and it is only
Fa(x) that is determined by the fit. How does
this affect things? Is Eq. 90 valid if Fa(xi) is
substituted for Fα(xi)? Recall that the fitted
values for ak always minimize the chi-square.
Thus, for the data set that produced it, Fa(xi)
will always give a lower value of χ2 than would
Fα(xi). How much lower? Here is the “on
average” answer:

〈
N∑

i=1

(yi − Fa(xi))
2

σ2
i

〉
= N −M (91)

The expectation value of the χ2 falls by the
number of fit parameters M .

The proof of Eq. 91 is tedious (it is a more
difficult version of Exercise 6b) and so we will
simply illustrate its validity for one particular
case. Suppose experimental xi, yi data points
are predicted to lie on a straight line. If the
line (slope and intercept, M = 2) is known
ahead of time (i.e., Fα(x) is known), the points
would not be expected to fall exactly on that
line. On average, random error would scatter
each point one-σi from the line. Were there
only two points in the complete data set (a
rather small data set, but perfect to make our
argument) the χ2 obtained using Fα(x) would
have an expectation value of 2. Obviously, if
the two points are fit to a straight line, the line
will pass exactly through those points. That
is, yi = Fa(xi), and thus χ2

ν = 0—in agreement
with Eq. 91.

One can show that the quantity

χ2
ν =

1

N −M

N∑

i=1

(yi − Fa(xi))
2

σ2
i

(92)

is a reduced chi-square random variable with
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N − M degrees of freedom.4 and Eq. 91 im-
plies that it has the proper expectation value.
Of course, the actual χ2

ν value obtained from
a fit should have a probability of occurrence
governed by a reduced chi-square pdf, and the
chi-square test is a simple check to see whether
this χ2

ν value is reasonable.

Appreciating the meaning of a given χ2
ν is

often more important than the chi-square test
itself. A value of χ2

ν near one would indicate
that the data points on average (in an rms
sense) miss the fit by the expected amount—
one-σi. A value of χ2

ν = 4 would indicate
the data points on average miss the fit by
2σi. A value of χ2

ν = 0.25 would indicate the
data points on average miss the fit by 0.5σi

In other words, the square root of the reduced
chi-square gives the rms deviation in units of
σi.

Larger values of χ2
ν indicate poorer agree-

ment between the data and the fit. Thus,
one looks at the reduced chi-square table for
the probability of getting a value as large or
larger than the actual χ2

ν value from the fit.
If all such values are too improbable to be ac-
cepted as a chance occurrence, one must con-
clude that the data miss the fit by more than
can be expected. Either the σi are underesti-
mated or the fitting formula does not model
the data. The latter conclusion might be ap-
propriate if the data appear to deviate sys-
tematically from the best fit, while the former
might be more appropriate if the scatter in the
data points simply appears to be larger than
expected.

In rare cases, the χ2
ν value may come out

4If Fα(x) is known, the quantity

χ2
ν =

1
N

N∑

i=1

(yi − Fα(xi))2

σ2
i

is a reduced chi-square random variable with N de-
grees of freedom.

too small—well under the expected value of
one and indicating that the data agree with
the fit too well. In this case, use the table
to evaluate the probability of getting any re-
duced chi-square value this small or smaller.
If such small values are too unlikely to be ac-
cepted as a chance occurrence, the only logi-
cal conclusion is that the σi are incorrect and
overestimated.

Considerations if σi is unknown

If the values of the σi are only roughly known,
the χ2

ν value from a fit would not be very use-
ful for a chi-square test. It is not unusual for
experimental estimates of σi to be uncertain at
the factor-of-two of level in which case the χ2

ν

is uncertain at the factor-of-four level and the
chi-square test is unusable. One might then
take the χ2

ν as an indication of how well the σi

were estimated. A χ2
ν = 0.25 would then be

taken to mean that the σi were overestimated
by a factor of two; a χ2

ν = 4 would mean the
σi were underestimated by a factor of 2. How-
ever, if even the largest σi’s one might reason-
ably assign still give an unreasonably large χ2

ν ,
one would then conclude the fit and data are
not in agreement.

If the σi are so roughly known that the chi-
square test is unusable, the fitting parameter
uncertainties would also be unreliable. In this
case, the σi can be determined or scaled so as
to force the χ2 value to take on its expectation
value, N − M . If the σi so adjusted can be
considered reasonable, the method described
previosuly can then be used to determine the
fitting parameter uncertainties. They would
then become sample standard deviations sk

and Student-T confidence intervals would be
applicable.

Exercise 14 (a) What is the χ2
ν for the fit of

Exercise 13 assuming σy = 0.5? What is the
probability it would have come out this big or
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bigger? (b) Suppose σy was not known. How
small would it have to be before the deviations
from the fit would have to be deemed (at the
99% level) too big to be in agreement with the
quadratic fitting formula? (c) How big would
σy have to be before one would have to con-
clude it is too big to be reasonable (at the 99%
level).



µ µ LFσ

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.02790 0.03188 0.03586
0.10 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535
0.20 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409
0.30 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173
0.40 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793

0.50 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240
0.60 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490
0.70 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524
0.80 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327
0.90 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891
1.00 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214

1.10 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298
1.20 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147
1.30 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41308 0.41466 0.41621 0.41774
1.40 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 0.42922 0.43056 0.43189
1.50 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408

1.60 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449
1.70 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327
1.80 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062
1.90 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670
2.00 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169

2.10 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574
2.20 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899
2.30 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158
2.40 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361
2.50 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520

2.60 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643
2.70 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736
2.80 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807
2.90 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861
3.00 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49896 0.49900

Table 2: Half-sided integral of the Gaussian probability density function. The body of the table gives
the integral probability P (µ < y < µ + zσ) for values of z specified by the first column and row.



χ 1ν

P 0.99 0.98 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.001
ν

1 0.000 0.001 0.004 0.016 0.064 0.148 0.275 0.455 0.708 1.074 1.642 2.706 3.841 5.412 6.635 10.827
2 0.010 0.020 0.051 0.105 0.223 0.357 0.511 0.693 0.916 1.204 1.609 2.303 2.996 3.912 4.605 6.908
3 0.038 0.062 0.117 0.195 0.335 0.475 0.623 0.789 0.982 1.222 1.547 2.084 2.605 3.279 3.782 5.422
4 0.074 0.107 0.178 0.266 0.412 0.549 0.688 0.839 1.011 1.220 1.497 1.945 2.372 2.917 3.319 4.617
5 0.111 0.150 0.229 0.322 0.469 0.600 0.731 0.870 1.026 1.213 1.458 1.847 2.214 2.678 3.017 4.103

6 0.145 0.189 0.273 0.367 0.512 0.638 0.762 0.891 1.035 1.205 1.426 1.774 2.099 2.506 2.802 3.743
7 0.177 0.223 0.310 0.405 0.546 0.667 0.785 0.907 1.040 1.198 1.400 1.717 2.010 2.375 2.639 3.474
8 0.206 0.254 0.342 0.436 0.574 0.691 0.803 0.918 1.044 1.191 1.379 1.670 1.938 2.271 2.511 3.265
9 0.232 0.281 0.369 0.463 0.598 0.710 0.817 0.927 1.046 1.184 1.360 1.632 1.880 2.187 2.407 3.097

10 0.256 0.306 0.394 0.487 0.618 0.727 0.830 0.934 1.047 1.178 1.344 1.599 1.831 2.116 2.321 2.959

11 0.278 0.328 0.416 0.507 0.635 0.741 0.840 0.940 1.048 1.173 1.330 1.570 1.789 2.056 2.248 2.842
12 0.298 0.348 0.436 0.525 0.651 0.753 0.848 0.945 1.049 1.168 1.318 1.546 1.752 2.004 2.185 2.742
13 0.316 0.367 0.453 0.542 0.664 0.764 0.856 0.949 1.049 1.163 1.307 1.524 1.720 1.959 2.130 2.656
14 0.333 0.383 0.469 0.556 0.676 0.773 0.863 0.953 1.049 1.159 1.296 1.505 1.692 1.919 2.082 2.580
15 0.349 0.399 0.484 0.570 0.687 0.781 0.869 0.956 1.049 1.155 1.287 1.487 1.666 1.884 2.039 2.513

16 0.363 0.413 0.498 0.582 0.697 0.789 0.874 0.959 1.049 1.151 1.279 1.471 1.644 1.852 2.000 2.453
17 0.377 0.427 0.510 0.593 0.706 0.796 0.879 0.961 1.048 1.148 1.271 1.457 1.623 1.823 1.965 2.399
18 0.390 0.439 0.522 0.604 0.714 0.802 0.883 0.963 1.048 1.145 1.264 1.444 1.604 1.797 1.934 2.351
19 0.402 0.451 0.532 0.613 0.722 0.808 0.887 0.965 1.048 1.142 1.258 1.432 1.587 1.773 1.905 2.306
20 0.413 0.462 0.543 0.622 0.729 0.813 0.890 0.967 1.048 1.139 1.252 1.421 1.571 1.751 1.878 2.266

22 0.434 0.482 0.561 0.638 0.742 0.823 0.897 0.970 1.047 1.134 1.241 1.401 1.542 1.712 1.831 2.194
24 0.452 0.500 0.577 0.652 0.753 0.831 0.902 0.972 1.046 1.129 1.231 1.383 1.517 1.678 1.791 2.132
26 0.469 0.516 0.592 0.665 0.762 0.838 0.907 0.974 1.045 1.125 1.223 1.368 1.496 1.648 1.755 2.079
28 0.484 0.530 0.605 0.676 0.771 0.845 0.911 0.976 1.045 1.121 1.215 1.354 1.476 1.622 1.724 2.032
30 0.498 0.544 0.616 0.687 0.779 0.850 0.915 0.978 1.044 1.118 1.208 1.342 1.459 1.599 1.696 1.990

32 0.511 0.556 0.627 0.696 0.786 0.855 0.918 0.979 1.043 1.115 1.202 1.331 1.444 1.578 1.671 1.953
34 0.523 0.567 0.637 0.704 0.792 0.860 0.921 0.980 1.042 1.112 1.196 1.321 1.429 1.559 1.649 1.919
36 0.534 0.577 0.646 0.712 0.798 0.864 0.924 0.982 1.042 1.109 1.191 1.311 1.417 1.541 1.628 1.888
38 0.545 0.587 0.655 0.720 0.804 0.868 0.926 0.983 1.041 1.106 1.186 1.303 1.405 1.525 1.610 1.861
40 0.554 0.596 0.663 0.726 0.809 0.872 0.928 0.983 1.041 1.104 1.182 1.295 1.394 1.511 1.592 1.835

42 0.563 0.604 0.670 0.733 0.813 0.875 0.930 0.984 1.040 1.102 1.178 1.288 1.384 1.497 1.576 1.812
44 0.572 0.612 0.677 0.738 0.818 0.878 0.932 0.985 1.039 1.100 1.174 1.281 1.375 1.485 1.562 1.790
46 0.580 0.620 0.683 0.744 0.822 0.881 0.934 0.986 1.039 1.098 1.170 1.275 1.366 1.473 1.548 1.770
48 0.587 0.627 0.690 0.749 0.825 0.884 0.936 0.986 1.038 1.096 1.167 1.269 1.358 1.462 1.535 1.751
50 0.594 0.633 0.695 0.754 0.829 0.886 0.937 0.987 1.038 1.094 1.163 1.263 1.350 1.452 1.523 1.733

60 0.625 0.662 0.720 0.774 0.844 0.897 0.944 0.989 1.036 1.087 1.150 1.240 1.318 1.410 1.473 1.660
70 0.649 0.684 0.739 0.790 0.856 0.905 0.949 0.990 1.034 1.081 1.139 1.222 1.293 1.377 1.435 1.605
80 0.669 0.703 0.755 0.803 0.865 0.911 0.952 0.992 1.032 1.076 1.130 1.207 1.273 1.351 1.404 1.560
90 0.686 0.718 0.768 0.814 0.873 0.917 0.955 0.993 1.031 1.072 1.123 1.195 1.257 1.329 1.379 1.525

100 0.701 0.731 0.779 0.824 0.879 0.921 0.958 0.993 1.029 1.069 1.117 1.185 1.243 1.311 1.358 1.494

120 0.724 0.753 0.798 0.839 0.890 0.928 0.962 0.994 1.027 1.063 1.107 1.169 1.221 1.283 1.325 1.447
140 0.743 0.770 0.812 0.850 0.898 0.934 0.965 0.995 1.026 1.059 1.099 1.156 1.204 1.261 1.299 1.410
160 0.758 0.784 0.823 0.860 0.905 0.938 0.968 0.996 1.024 1.055 1.093 1.146 1.191 1.243 1.278 1.381
180 0.771 0.796 0.833 0.868 0.910 0.942 0.970 0.996 1.023 1.052 1.087 1.137 1.179 1.228 1.261 1.358
200 0.782 0.806 0.841 0.874 0.915 0.945 0.972 0.997 1.022 1.050 1.083 1.130 1.170 1.216 1.247 1.338

Table 3: Integral of the χ2
ν probability density function for various values of the number of degrees

of freedom ν. The body of the table contains values of χ2
ν , such that the probability P of exceeding

this value is given at the top of the column.



P 0.99 0.95 0.90 0.80 0.70 0.68 0.60 0.50
ν
1 63.6559 12.70615 6.31375 3.07768 1.96261 1.81899 1.37638 1.00000
2 9.92499 4.30266 2.91999 1.88562 1.38621 1.31158 1.06066 0.81650
3 5.84085 3.18245 2.35336 1.63775 1.24978 1.18893 0.97847 0.76489
4 4.60408 2.77645 2.13185 1.53321 1.18957 1.13440 0.94096 0.74070
5 4.03212 2.57058 2.01505 1.47588 1.15577 1.10367 0.91954 0.72669

6 3.70743 2.44691 1.94318 1.43976 1.13416 1.08398 0.90570 0.71756
7 3.49948 2.36462 1.89458 1.41492 1.11916 1.07029 0.89603 0.71114
8 3.35538 2.30601 1.85955 1.39682 1.10815 1.06022 0.88889 0.70639
9 3.24984 2.26216 1.83311 1.38303 1.09972 1.05252 0.88340 0.70272

10 3.16926 2.22814 1.81246 1.37218 1.09306 1.04642 0.87906 0.69981

11 3.10582 2.20099 1.79588 1.36343 1.08767 1.04149 0.87553 0.69744
12 3.05454 2.17881 1.78229 1.35622 1.08321 1.03740 0.87261 0.69548
13 3.01228 2.16037 1.77093 1.35017 1.07947 1.03398 0.87015 0.69383
14 2.97685 2.14479 1.76131 1.34503 1.07628 1.03105 0.86805 0.69242
15 2.94673 2.13145 1.75305 1.34061 1.07353 1.02853 0.86624 0.69120

16 2.92079 2.11990 1.74588 1.33676 1.07114 1.02634 0.86467 0.69013
17 2.89823 2.10982 1.73961 1.33338 1.06903 1.02441 0.86328 0.68919
18 2.87844 2.10092 1.73406 1.33039 1.06717 1.02270 0.86205 0.68836
19 2.86094 2.09302 1.72913 1.32773 1.06551 1.02117 0.86095 0.68762
20 2.84534 2.08596 1.72472 1.32534 1.06402 1.01980 0.85996 0.68695

21 2.83137 2.07961 1.72074 1.32319 1.06267 1.01857 0.85907 0.68635
22 2.81876 2.07388 1.71714 1.32124 1.06145 1.01745 0.85827 0.68581
23 2.80734 2.06865 1.71387 1.31946 1.06034 1.01643 0.85753 0.68531
24 2.79695 2.06390 1.71088 1.31784 1.05932 1.01549 0.85686 0.68485
25 2.78744 2.05954 1.70814 1.31635 1.05838 1.01463 0.85624 0.68443

26 2.77872 2.05553 1.70562 1.31497 1.05752 1.01384 0.85567 0.68404
27 2.77068 2.05183 1.70329 1.31370 1.05673 1.01311 0.85514 0.68369
28 2.76326 2.04841 1.70113 1.31253 1.05599 1.01243 0.85465 0.68335
29 2.75639 2.04523 1.69913 1.31143 1.05530 1.01180 0.85419 0.68304
30 2.74998 2.04227 1.69726 1.31042 1.05466 1.01122 0.85377 0.68276

31 2.74404 2.03951 1.69552 1.30946 1.05406 1.01067 0.85337 0.68249
32 2.73849 2.03693 1.69389 1.30857 1.05350 1.01015 0.85300 0.68223
33 2.73329 2.03452 1.69236 1.30774 1.05298 1.00967 0.85265 0.68200
34 2.72839 2.03224 1.69092 1.30695 1.05249 1.00922 0.85232 0.68177
35 2.72381 2.03011 1.68957 1.30621 1.05202 1.00879 0.85201 0.68156

36 2.71948 2.02809 1.68830 1.30551 1.05158 1.00838 0.85172 0.68137
37 2.71541 2.02619 1.68709 1.30485 1.05116 1.00800 0.85144 0.68118
38 2.71157 2.02439 1.68595 1.30423 1.05077 1.00764 0.85118 0.68100
39 2.70791 2.02269 1.68488 1.30364 1.05040 1.00730 0.85093 0.68083
40 2.70446 2.02107 1.68385 1.30308 1.05005 1.00697 0.85070 0.68067

∞ 2.57583 1.95996 1.64485 1.28155 1.03643 0.99446 0.84162 0.67449

Table 4: Student-T probabilities for various values of the number of degrees of freedom ν. The body
of the table contains values of z, such that the probability P that the interval y ± zsy will include
the mean µy is given at the top of the column.


