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“Physics is like sex:

sure, it may give some practical results, but that’s not why we do it.”

Richard P. Feynman
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Chapter 1

Conventions and Definitions

1.1 Conventions

Throughout this paper Planck units are used (c = ~ = G = 1), unless otherwise specified.

This means that κ ≡ 8πG = 8π. The Planck mass is defined as mpl ≡
√

~c
G , and

the reduced Planck mass as Mpl ≡
√

~c
8πG =

mpl√
8π

. A dot denotes a time derivative:

Ȧ ≡ dA
dt , Ä ≡ d2A

dt2
etc. A subscript comma denotes a derivative; G,x≡ ∂G

∂x , G,xx≡
∂2G
∂x2 ; and a subscript semicolon (G;x) denotes a covariant derivative; a derivative along

tangent vectors on a manifold. Round brackets around multiple indices denotes the

symmetrized part of the tensor: A(µν) ≡ 1
2(Aµν +Aνµ) and square brackets denotes the

antisymmetrized part: A[µν] ≡ 1
2(Aµν −Aνµ)

The mostly plus convention is used for the metric: gµν = diag(−1, 1, 1, 1)
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Chapter 2

Introduction

2.1 Why Modify Gravity?

In 1687 Newton published the now world famous Philosophiæ Naturalis Principia Math-

ematica [1]. He presented a mathematical treatment of gravity, resulting in the well

known formula for gravitational forces:

Fg = G
m1m2

r2
(2.1)

This however turned out to be only half the story. The theory of general relativity,

proposed by Einstein some 250 years later, is the other half. Einstein’s theory says that

gravitation isn’t a force at all, but rather a distortion of the four dimensional space-

time in which we live. Newton’s theory allowed information to travel at infinite speeds,

whereas Einstein showed that nothing can exceed the speed limit of the universe, the

speed of light, not even gravity. General relativity accounts for many experimental phe-

nomenon, including gravitational lensing (e.g. by observing stars behind the sun during

a solar eclipse), anomalous precession of planet orbits and the behavior of gravity waves

(e.g. by observing the decay of a binary pulsar orbit).

However in the last few decades scientists have found several problems which cannot be

explained properly with general relativity alone (see next section). Solutions of these

problems in the framework of General Relativity demand large amounts of invisible mat-

ter and energy, called Dark Matter (DM) and Dark Energy (DE) respectively.

Currently the standard model of cosmology is the ΛCDM model (see next section).

Modified gravity theories (MG) seek to find explanations for the problems in the ΛCDM

model by modifying General Relativity. In order to test the validity of modified gravity

2



Cosmology. Basic Concepts 3

theories one can compare the predictions of the theory with solar system experiments

and observations of, e.g., rotation curves of galaxies, the accelerated expansion of the

universe and the spectrum of the CMB.

One of the most famous attempts to modify gravity was MOdified Newtonian Dynamics

(MOND), proposed by M. Milgrom in 1986 [2]. Besides MOND multiple different theo-

ries have been developed over the past decades. A few examples are Scalar-Tensor-Vector

Gravity Theory (STVG) [3], sometimes also referred to as MOdified Gravity (MOG),

and Tensor-Vector-Scalar gravity (TeVeS), which is a relativistic extension of MOND [4].

Section 2.2 provides an overview of the basics of cosmological physics. Chapter 3 contains

a summary of a few different theories of modified gravity; MOND, TeVeS, Quintessence,

f(R) Theories, Brans-Dicke and Horndeski Theory and a short description of Screening

Mechanisms.

2.2 The ΛCDM Model

2.2.1 Current Model

The current standard model for cosmology is the ΛCDM model. It is based on the

cosmological principle, which states that the universe is isotropic and homogeneous (on

large scales), and Einstein’s theory of General Relativity (GR). According to the ΛCDM

model the universe was created during the Big Bang. The model includes large amounts

of Dark Energy (Λ) and (cold) dark matter (CDM). To account for the accelerated

expansion one can include a Cosmological Constant (CC). The simplest physical mecha-

nism that causes the CC to exist is DE. DE functions as anti-gravity, pushing everything

apart, and can be interpreted as a nonzero vacuum energy density. It has a negative

pressure p = −ρ which, according to GR, results in accelerated expansion. The DE

density of the universe is estimated to be ∼ 69% of the total mass and energy density

based on observations using the Planck satellite [5].

Cold DM is some form of non-baryonic (i.e. not consisting of neutrons and protons),

dissipationless (not emitting light to cool) matter distributed throughout the universe.

Because it only interacts through gravity (and possibly through the weak force) it cannot

be seen directly and its presence is therefore inferred indirectly through observations that

are hard to explain without assuming large amounts of invisible mass and energy (e.g.

flat rotation curves, galaxy cluster dynamics, gravitational lensing, etc.). Cold DM is

called cold because its velocity (at the end of the radiation-matter equality epoch) was
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much smaller than the speed of light. The Planck data estimates the DM density of

the universe to be ∼ 27% of the total matter and energy density of the universe. The

remaining ∼ 4% is visible baryonic matter. There is also a negligible amount of curvature

(the universe is flat) and radiation [5].

2.2.2 The Einstein Field Equations

The ΛCDM model incorporates the Einstein Field Equations (EFE) from GR:

Rµν −
1

2
gµνR+ gµνΛ =

8πG

c4
Tµν (2.2)

where Rµν is the Ricci curvature tensor, gµν is the metric tensor, R is the scalar curvature

(the trace of Rµν with respect to gµν), Λ is the Cosmological Constant (CC), G is the

gravitational constant, c is the speed of light, and Tµν is the stress–energy tensor. The

EFE can be written more compactly (using Planck units; G = c = 1) as

Gµν + gµνΛ = 8πTµν (2.3)

where Gµν is the Einstein Tensor, defined as Gµν ≡ Rµν − 1
2gµνR. The EFE describe

gravity resulting from the curvature of space-time by matter and energy. The left hand

side of (2.3) represents the curvature of space-time (dependent on the metric gµν . The

relevant parameter is usually taken to be the metric gµν since Rµν is a (non-linear)

function of gµν . Einstein introduced the CC to ensure that the universe was static (not

expanding or collapsing). This however turned out to be wrong, as the universe is in

fact expanding. The CC is still useful as it fulfills the purpose exactly opposite to its

initial function; it describes the expansion of the universe. The EFE are non-linear and

an exact general solution does not exist.

2.2.3 Friedman-Lemâıtre-Robertson-Walker Metric

The most general metric following from the EFE is

ds2 = g00dt
2 + 2g0idx

idt+ σijdx
idxj (2.4)

A metric obeying the EFE for an expanding or collapsing (3+1) dimensional universe

where the Cosmological Principle holds is the Friedman-Lemâıtre-Robertson-Walker

Metric (FLRW Metric). It was found independently by Friedman, Lemâıtre, Robertson
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and Walker and it follows from (2.4) after imposing the Cosmological Principle (homo-

geneity and isotropy). The FLRW Metric is given by

ds2 = −dt2 +
a2(t)

1 + kr2/4
[dr2 + r2(dθ2 + sin2θdφ2)] (2.5)

or, equivalently, in Cartesian coordinates

ds2 = −dt2 +
a2(t)

1 + k(x2 + y2 + z2)/4
[dx2 + dy2 + dz2] (2.6)

with k = 0,±1, depending on whether the universe is open (k = 1), closed (k = −1) or

flat (k = 0). From the FLRW Metric the Friedmann equations can be derived:

H2 +
k

a2
− Λ

3
=

8π

3
ρ (2.7)

2
ä

a
+H2 +

k

a2
− Λ = −8πp (2.8)

where H ≡ ȧ
a . They are connected through the conservation equation:

ρ̇+ 3H(ρ+ p) = 0 (2.9)

The density when k = 0 is called the critical density and is given by

ρ =
3H2

8π
≡ ρc (2.10)

This allows a density parameter Ωm to be defined:

Ωm =
ρm
ρc

. (2.11)

Similarly one can define Ωr, ΩΛ and Ωk, representing the radiation density, DE density

and the curvature of the universe respectively. The expansion history of the universe is

determined by the sum of these parameters:

Ωm + Ωr + ΩΛ + Ωk = 1 (2.12)

This can then be combined with (2.7), (2.8) and (2.9) giving

H2 = H2
0 (Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωk(1 + z)2) (2.13)

This equation indicates that the mass density ρm ∝ a−3 = (1 + z), the radiation density

ρr ∝ a−4 = (1 + z)4, ΩΛ is the result of the DE density and the last term represents the

amount of curvature.

DE can be interpreted as the energy density of vacuum. Lorentz invariance of the
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stress-energy tensor of the vacuum means that all observers see the same vacuum:

TΛ
µν = ρΛgµν (2.14)

Putting this in the EFE gives

Gµν = 8π(Tµν + ρΛgµν) (2.15)

where Tµν = diag(ρ, p, p, p) (for a perfect fluid, assuming homogeneity and isotropy).

From this follows that

pΛ = −ρΛ (2.16)

DE thus behaves like an ideal fluid with negative pressure. ρΛ is related to the cosmo-

logical constant Λ through ρΛ ≡ Λ
8π .

2.2.4 Main Problems

Despite accounting for nearly all observations, there are some serious problems with

ΛCDM. The first problem is the Flatness Problem the universe today is very close to

being flat (as opposed to being spherical or hyperbolic) but the solution of the Friedmann

equations with k = 0 (flat universe) is unstable and a small deviation (i.e. small amounts

of curvature) would lead to either Ω → 0 or Ω → ∞. The current value of Ω (Ω0) is

close to unity. This would mean that at earlier times Ω must have been even closer to

unity, but that would be an extraordinary coincidence.

This problem can be solved by introducing inflation, a period of rapid expansion between

∼ 10−36 and ∼ 10−33 s after the big bang. Analogously, a sphere appears to be flat

(locally) after being inflated. What causes inflation is still a mystery, the (hypothetical)

field that is responsible is called inflaton.

The curvature of the universe is usually expressed as

Ωk = − k

a2H2
(2.17)

This shows that large amounts of expansion (inflation) causes Ωk to approach zero and

therefore the universe to be (practically) flat. This explains why Ω ≈ 1. DE manifests

itself in GR through the cosmological constant Λ. From the Friedmann equations (2.7)

and (2.8) and the conservation equation (2.9) and assuming flat space (k = 0) the

following relation for H can be derived:

H =

√
8π

3
a−3(1+w)/2 (2.18)
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where w = p
ρ , which leads to

a ∼ t
2

3(1+w) (2.19)

A period of accelerated expansion requires w < −1
3 . Inflation stabilizes the Ω = 1 path.

The second main problem is the Horizon Problem: the CMB is (almost) isotropic,

even across distance between points that are causally disconnected. Inflation solves this

problem as well. The regions that are currently causally disconnected were connected

before the period of inflation, in which they separated faster than the speed of light.

Another big problem is the Cosmological Constant Problem. Assuming the expansion of

the universe is due to DE, and DE can be attributed to vacuum energy, the value of the

cosmological constant must be∼ 10−47GeV. Quantum Field Theory estimates the energy

of vacuum to be∼ 1071 GeV [6]. Why is the measured value for the cosmological constant

so very small compared to the theoretical predictions based on the zero point energy of

vacuum in Quantum Field Theory? It is off by some 120(!) orders of magnitude. The

current most accepted solution is the ”multiverse”: there are many different universes

each with a different value for the CC, and we just happen to live in the one with a very

small value.

The last big problem is the Coincidence Problem. The ratio of DE and matter today is

close to unity:
ρDE
ρm

=
ΩΛ

Ωm
∼ O(1). (2.20)

But it scales with the expansion factor:

ΩΛ

Ωm
∝ a3 (2.21)

This makes it a remarkable coincidence, since measuring earlier or later in the life of

the universe would lead to a completely different value. Moreover the period in which

the ratio is this way is incredibly short. At this very moment the universe is undergoing

a metamorphosis: from matter dominated to DE dominated. The coincidence problem

can be tackled in many different ways, e.g. anthropic reasoning ”solves” this problem

by arguing that this is not a coincidence, since in order for life to exist the ratio must

be close to unity. This solution is however still subject to debate, just like virtually all

other solutions, including solutions to the other mentioned problems.
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2.3 Observational Cosmology

One of the most important aspects of cosmology is testing hypotheses derived in the

theoretical field. This is often a challenging task, as observations with telescopes are the

only way the universe can be probed.

Distances to astronomical objects must be determined in order to do most of the relevant

calculations. A commonly used method is to measure the lightcurve (brightness against

time) of type Ia supernovae. When the mass of a white dwarf star in a binary system

reaches a certain limit (”Chandrasekhar Mass”; ∼ 1, 4M�), it explodes and the resulting

absolute magnitude of such an event is known. Comparing the absolute magnitude to the

apparent magnitude reveals a good estimate of the distance. The redshift can then also

be calculated, which in turn is used to place constraints on ΩΛ and Ωm. The accelerated

expansion of the universe was discovered using type Ia supernovae. Two other very

useful features of the universe are the CMB and Baryonic Acoustic Oscillations (BAO).

Measurements of the CMB constrain the total energy density (Ωtot = Ωm + ΩΛ + Ωk) as

well as (Ωm+ΩΛ), the latter of which can be combined with the supernova observations.

BAO are ”pressure and density waves” in the galaxy power spectrum, caused by pressure

waves in the primordial plasma of baryons and photons. When atoms formed the density

fluctuations were ”frozen in time” and are visible in the universe as variations in density

on a scale of ∼ 150 Mpc. BAO can also be used to constrain Ωm and ΩΛ (see figure 2.1)

This method is based on ΛCDM. Using wCDM models instead of ΛCDM, with a perfect

fluid (arbitrary w), gives constraints in the (Ωm, w) plane, revealing that w ≈ −1 (see

figure 2.2) Since GR is very well established in the solar system, theories that include an

extra force (”fifth force”) to impact larger scales should be shielded from the solar system,

and other high density regions in general. The strength of the fifth force depends on the

local density, becoming weaker as the density rises. Usually new theories can therefore

not be tested close to earth. But voids (low density regions in large scale structure) are

an excellent alternative, as the extra force is strongest there.
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Figure 2.1: Constraints placed on Ωm and ΩΛ (68.3%, 95.4 % and 99.7% confidence
regions). Taken from the Supernova Cosmology Project [7]

Figure 2.2: Constraints placed on Ωm and w (68.3%, 95.4 % and 99.7% confidence
regions). Taken from the Supernova Cosmology Project [7]
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Solar system tests are used to constrain extra degrees of freedom. They force the neces-

sity for screening mechanisms on several theories of modified gravity. Examples include

measurements of the deflection of light rays by the sun, and the anomalous perihelion

precession of the planets (Mercury is often used).

Some alternatives for GR, unlike GR itself, do not obey the Weak Equivalence Princi-

ple (WEP). It states that the trajectory of a freely falling body is independent of its

internal structure and composition. This is easily tested by monitoring two different

objects in a gravitational field to check whether they undergo the same gravitational

acceleration [8][9]. Many modified gravity theories do obey the WEP. Some of them

alternatively predict a deviation from the inverse square law (1/r2) of gravity. These

deviations can be tested in the laboratory by analyzing the forces between objects under

certain conditions [10].

An interesting way to distinguish DE models from modified gravity is to analyze the

evolution of the linear growth of matter perturbations (δm ≡ δρm
ρm

). It is determined by

the following differential equation:

δ̈m + 2Hδ̇m = 4πGeffρmδm (2.22)

where Geff = Q(a)G and Q(a) = 2+4Ω2
m

3+3Ω2
m

.

A solution of this equation is δm ∝ D(t), where D(t) is the linear growing mode, nor-

malized to unity at the present time: D(t) = δm(t)
δm(tnow) .

Substituting and changing variables (t→ a) then gives

a2

D

d2D

da2
+

(
3 + a

d lnE

da

)
a

D

dD

da
=

3

2
Ωm(a)Q(a) (2.23)

Looking at the growth rate of clustering f(a) = d ln(D)
d ln(a) ' Ωγ

m, where γ (”growth index”)

depends on w(z) and is a useful tool for testing different gravity theories. For GR with

DE γ ' 3(w−1)
6w−5 , which gives γ ' 6/11 ≈ 0.55 for the ΛCDM model, as w ' −1. [11]



Chapter 3

Overview of Modified Gravity

3.1 Theories of Modified Gravity

Modified gravity theories must obey certain restrictions in order to be a reasonable

alternative to General Relativity.

There are constraints from both the theoretical and the observational field. Theoretical

considerations force any proper theory to obey the following rules. For the full list see

[4] and references therein.

• Action principle

The theory must be derivable from an action principle. This is to guarantee that

the conservation of energy, linear momentum and angular momentum are taken

care of automatically.

• Relativistic Invariance

The action must be a relativistic scalar to ensure that all equations derived from

it are relativistically invariant.

• Equivalence Principle

To make the theory obey the Equivalence Principle it must be a metric theory,

i.e., all other laws of physics (i.e. not gravitational laws), must be expressed with

the metric gµν replacing the Lorentz metric.

• Causality

The theory should obviously be consistent with the rules of causality, no superlu-

minal propagation is allowed.

11
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• Positive Energy

Fields cannot have negative energy; any bounded system must have positive energy.

This is to provide vacuum stability.

Observations have also provided a great deal of conditions to be met. The MG theory

must be compatible with the following list of observational phenomena (taken from [4])

without assuming DM and/or DE (depending on the theory and its application):

• Extragalactic Phenomena

The theory should correctly predict extragalactic phenomena, such as the dynamics

of galaxies in clusters and of clusters in superclusters.

• Gravitational Lensing

Gravitational lensing should be identical to GR with DM to match observations.

• Solar System Tests

Solar system test, mainly the perihelion precession of planets, the deflection of light

and the delay in radar signals, must be well predicted. Since the gravitational field

varies relatively slowly in the solar system, tests performed there can only address

the weak field limit of theories.

• Binary Pulsars

The theory must correctly predict the observed pulse times of arrival from binary

pulsars. This allows for detection of relativistic time delay, periastron precession

and the orbit’s decay due to gravitational radiation. Pulsars are essentially very

stable clocks. In a binary pulsar the clock moves and through the Doppler effect

the orbital velocity can be determined, together with the parameters characterizing

the orbit, such as the period and the eccentricity. Observations can be compared

to the theory in question. If the theory can correctly predict values for the two

masses orbiting each other with the correct orbit parameters the theory has passed

the test [12]. Binary pulsar allow, in contrast to solar system test, the strong field

regime of theories to be tested. For (mathematical) details regarding binary pulsars

as test see, for example, [13].

• Cosmology

The theory should account for cosmological phenomena, such as the Hubble ex-

pansion, the structure of the CMB, the element abundances in the universe etc.

Obviously it is possible to create a very general modified gravity theory that adds many

new degrees of freedom and depends on several free parameters in order to provide a



Overview. Modifying Gravity 13

good fit to observational data. Consequently these kind of models require a great deal

of fine tuning. Requiring serious fine tuning is not a good sign. Theories are judged in

three different but not completely independent ways: Apart from the aforementioned

theoretical and experimental ones, there are also esthetical ones (”Occam’s Razor”),

whether the proposed model is natural enough to be considered as predictive, or needs

so much fine tuning that it becomes an uninteresting ad hoc fit to experimental data.

These criteria are related, as fine tuning can be necessary to explain observations or hide

theoretical inconsistencies.

Following is a non exhaustive list of several different proposals to modify gravity. The

theoretical basis is discussed along with constraining observations and experiments.

3.1.1 MOND

Physics

Milgrom proposed to modify Newton’s Universal Law of Gravitation in the limit of

very small accelerations. He came up with a relation between the acceleration and the

corresponding gravitational force (and thus gravitational potential):

Fg = mgµ
a

a0
a (3.1)

Where

µ(x� 1) ≈ 1, µ(x� 1) ≈ x (3.2)

This form ensures that the gravitational force reduces to the standard Newtonian

F = ma when a � a0. The theory does not provide information about the form of

µ(a/a0). A few example of used functions are µ(x) = 1√
1+x2

(to fit rotation curves) and

the simple interpolating function µ(x) = x
1+x . The value for a0 was found empirically

to be ∼ 2 · 10−8 cm/s2 [2]

Note that none of the other assumptions for gravitation in the non-relativistic regime

have been changed. An example of the effects this theory has on a simple system such

as the harmonic oscillator is that the well known equation of motion

ẍ =
k

m
(3.3)

transforms into

ẍµ

(
ẍ

a0

)
=

k

m
x (3.4)
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when x . 10−10

ω2 . The small size of the scale at which MOND dominates the dynamics

makes it very difficult to perform tests on earth [14].

The modified formula for gravitational force however doesn’t constitute an entire theory

by itself. It is just an effective formula [15].

Astronomy

The formula has been extensively tested and seems to be consistent with e.g. the flat

rotation curve, the Faber-Jackson and Tully-Fisher relations, and gravitational lensing

[15]. During earlier epochs, MOND should have dominated when the deceleration of the

Hubble expansion was smaller than a0. The size of a causally connected region during

these epochs was larger than the scale where MOND starts to take over. This means

that the ”early MOND Universe” is the same as the early universe described by the

standard FLRW metric (2.5) and the Friedmann equations (2.7) and (2.8): MOND does

not seem to have a significant effect on the cosmology of the early universe. Certain

regions however (with M ∼ 1011M�) recollapse at a redshift of ∼ 26 ”...which implies

that large galaxies should be in place as virialized objects by redshift of 5 to 10. This is

earlier than the epoch of galaxy formation in the standard CDM paradigm” [16]. Cluster

sized objects reach maximum expansion at z ∼ 3 (hierarchical bottom-up structure for-

mation; larger mass collapses after smaller mass), so one should be able observe slightly

more massive, more clustered galaxies.

Big bang nucleosynthesis in the MOND model is unchanged, but structure formation is

marginally more rapid [17]. Unfortunately for MOND there are observations that would

still require the presence of DM even in MOND, although less than in the ΛCDM model.

Even after adding the maximum allowed number of 2 eV neutrinos the dynamical mass

would still fall short [18]. This is obviously an embarrassment for a model that was

primarily developed to replace DM. Especially observations of the Bullet Cluster (1E

0657-558) provide strong evidence for DM, even in MOND the DM would comprise at

least half of the total mass in this cluster.

But MOND isn’t necessarily ruled out completely, but rather requires less DM, it man-

aged to reduce the matter discrepancy by a factor of ∼ 5 [19].
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3.1.1.1 TeVeS Theory

Physics

To upgrade MOND to a full-fledged theory, it must be generalized to include the rel-

ativistic regime. Tensor Vector Scalar Theory has been developed to do just that. It

introduces another scalar field φ, and a vector field Aµ next to the already present gµν

from GR, hence the name ’Tensor Vector Scalar Theory’.

The most used method to specify TeVeS theory is to write the action in two mixed

frames; write the action in the ’Bekenstein frame’ for the gravitational fields, and in

the physical frame for the matter fields. This way the Einstein equivalence principle

is obeyed. The three gravitational fields are the metric g̃µν (’Bekenstein Metric’), the

vector field Aµ (’Sanders Vector Field’) and the scalar field φ. The scalar field φ plays the

role of DM, as the Newtonian potential ΦN is replaced by total potential Φ = αΦN + φ

with α ≈ 1. ΦN and φ are related through

∇ · [µs∇φ] = ∇2ΦN = 4πGρ (3.5)

Where µs depends on the strength of the scalar field (gs = |∇φ|), and ΦN is the (New-

tonian) potential generated by the baryonic density ρ [20]. The vector field Aµ is con-

strained to be unit-timelike:

g̃µνAµAν = −1 (3.6)

This constraint is a phenomenological requirement to give the right bending of light

around massive objects. To preserve Einstein’s equivalence principle it is useful to define

a single ’universally coupled metric’

gµν ≡ e−2φg̃µν − 2 sinh(2φ)AµAν (3.7)

to be able to use only the ’Bekenstein Metric’ g̃µν in further analysis. The action in

TeVeS theory is split into 4 parts

S = Sg̃ + SA + Sφ + Sm. (3.8)
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Where Sg̃, SA, Sφ and Sm are the actions for g̃µν , Aµ, φ and the matter respectively.

Sg̃ is given by

Sg̃ =
1

2κ

∫
d4x
√
−g̃R̃ (3.9)

notable is that it resembles the standard Einstein-Hilbert Action of GR. SA is given by

SA = − 1

4κ

∫
d4x
√
−g̃ [KFµνFµν − 2λ(AµA

µ + 1)] , (3.10)

where Fµν = ∇µAν −∇νAµ and λ is a Lagrange multiplier to guarantee (3.6) holds. K

is a (dimensionless) constant. The action for the scalar field φ is

Sφ =
1

2κ

∫
d4x
√
−g̃
[
µğµν∇̃µφ∇̃νφ+ V (µ)

]
, (3.11)

where µ is some constant dimensionless scalar field, ∇̃µ is the connection corresponding

to gµν and ğµν is defined as

ğµν ≡ g̃µν −AµAν (3.12)

to preserve causality. Finally the action for the matter part is

Sm =

∫
d4x
√
−gL[g, χA,∇χA] (3.13)

for some matter field χA. Note that Sm depends on gµν rather than ğµν or g̃µν .

Using the variational principle gives the field equations as well as two constraints. The

first constraint (for µ) is

ğµν∇µφ∇νφ = −dV
dµ

. (3.14)

The other obtained constraint is (3.6). The field equations are



Overview. Modifying Gravity 17

G̃µν = κ
[
Tµν + 2

(
1− e−4φ

)
AρTρ(aAν)

]
+ µ

[
∇̃µφ∇̃νφ− 2Aρ∇̃ρφA(a∇̃b)φ

]
+

1

2
(µV,µ−V ) g̃µν

+K

[
F ρµFρν −

1

4
F ρσFρσ g̃µν

]
− λAµAν

(3.15)

Where G̃µν is the Einstein tensor of g̃µν . The field equations for Aµ and φ are

K∇̃ρFρµ = λAµ − µAν∇̃νφ∇̃µφ+ κ(1− e−4φ)AνTνµ (3.16)

∇̃µ
[
µğµν∇̃νφ

]
= κe−2φ

[
gµν + 2e−2φAµAν

]
Tµν (3.17)

TeVeS is free from ghosts (negative kinetic terms), guaranteeing its stability and making

it an even more viable alternative to GR [21]. Details and additional information can

be found in [22][23].

Astronomy:

In TeVeS for a homogeneous and isotropic (flat) universe the metrics gµν and g̃µν are

ds2 = a2(−dη2 + dr2) (3.18)

ds̃2 = b2(−e−4φdη̃2 + dr̃2) (3.19)

where a and b are the scale factors, related through a = be−φ. The Friedmann equation

(in the g̃µν frame) is given by

3
ḃ2

b2
= a2

[
1

2
e−2φ(µV,µ +V ) + 8πe−4φρ

]
(3.20)

where ρ is the matter-energy density field (not including the scalar field). The vector

field is constant and points in the time direction. V (µ) is a free function. In order to

restrain TeVeS to reduce to both MOND and Newtonian dynamics in the right limits

the derivative of V (µ), V,µ, must be of the form

V,µ = − 1

16π`B

µ2

(1− µ/µ0)m
f(µ) (3.21)
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where `B is some scale, µ0 is a (dimensionless) constant and f(µ) is an arbitrary function

with the only constraint that f(0) 6= 0. The µ2 term is needed to include the MOND

limit (µ → 0) and the (1 − µ/µ0) part is used to reach the Newtonian limit (µ → µ0)

[24]. To describe the background dynamics the equation of motion for φ is needed:

φ̈ = φ̇

(
ȧ

a
− φ̇

)
− 1

µ+ 2V,µ /V,µµ

[
3µ
ḃ

b
φ̇+ 4πa2e−4φ(ρ+ 3p)

]
(3.22)

where p denotes the pressure (again not including the scalar field).

In the other frame the (effective) Friedmann equation is given by

3
ȧ2

a4
= 8π

e−4φ

(1 + dφ
d ln a)2

(3.23)

and the (effective) density of the φ is

ρφ =
1

16π
e2φ(µV,µ +V ) (3.24)

[25] [26]

In [4] and [27] it is shown that all these conditions are mostly satisfied: in a spherically

symmetric situation the theory is consistent with disk galaxies that have low surface

brightness, dwarf (spheroidal galaxies), and the outer regions of spiral galaxies: Grav-

itational lensing in TeVeS is the same as in GR with DM; The three standard solar

system tests (mentioned in the list above) produce the same results in both TeVeS and

GR with DM up to at least the precision of the used equipment. The observations of

binary pulsars however force a large significant fine tuning upon TeVeS.

3.1.2 Quintessence

A very simple extension to the ΛCDM Models is the quintessence. Quintessence models

are strictly speaking not theories of modified gravity, but rather theories of dynamical

DE. Quintessence replaces the cosmological constant with a minimally coupled scalar

field Q (i.e. only feeling gravity) rolling down a corresponding potential V (Q). Q is not

constant across space-time but depends on the local density. The kinetic contribution

to the Lagrangian is linear in the kinetic energy (canonical). The Lagrangian is then

given by

L =
1

2
∂µQ∂

µQ− V (Q) (3.25)
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V (Q) is an arbitrary function and any given possible history of the universe can be

modeled using the right form. The Lagrangian leads to the equations of motion:

Q̈+ 3HQ̇ = −dV/dQ (3.26)

The density and pressure can be shown to be

ρQ =
1

2
Q̇2 + V (Q) +

1

2
(∇Q)2

pQ =
1

2
Q̇2 − V (Q)− 1

6
(∇Q)2

(3.27)

Combining the above relations and using wQ = pQ/ρQ gives:

wQ =
K − V
K + V

(3.28)

Where K and V are given by

K =
1

2
ρQ(1− w)

V =
1

2
ρQ(1 + w)

(3.29)

4 different regimes can be distinguished in the behavior of scalar fields.

• Fast Roll

– Fast rolling fields have kinetic energy greater than potential energy, or, in

terms of w, w > 0. For certain forms of the potential there are many differ-

ent possible initial conditions that lead to a reasonable energy density. An

example of a fast rolling model is a tracker models. These models follow

attractor trajectories such that at certain epochs their equation of state is

determined by the dominant energy density component. These models how-

ever have problems reaching w . −0.7, while observations show that w < 0.7.

These models are thus considered unreliable[28].
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• Slow Roll

– Slow rolling fields have a large potential energy and relatively small kinetic

energy w ≈ −1. This requires domination of DE in the energy density to

explain accelerated expansion. Good models require a combination of fast

and slow rollers because quintessence models with only slow rolling fields have

the same fine tuning and coincidence problems as the cosmological constant.

• Steady Roll

– Steady rolling fields have a linear potential and have different epochs of fast

and slow rolling. The potential does not have a minimum, letting the field roll

even past zero, where it becomes negative. Such a universe would eventually

collapse, and end in a ”Big Crunch”, the opposite of the big bang [29].

• Oscillation

– Oscillating fields have a potential of the form V (Q) ∼ Qn. For even n the

fields will have at least one minimum. The fields will eventually reach that

minimum and oscillate around it. For n = 2 the fields behave like nonrela-

tivistic matter and for n = 4 the fields act like radiation. An example of an

oscillating fields is the axion, a DM candidate.

For more details on dynamical DE, quintessence models and the above summary see

[28][30][31][32]

Astronomy

The main goal of quintessence (in Latin: ”Quinta Essentia”, means ”fifth element”)

is to solve the coincidence problem and the cosmological constant problem. In this the

cosmological constant is not constant but varies with time, rolling down a potential

from being large in the early universe and small today. The Matter and DE ratio in

quintessence is fixed (solving the coincidence problem). Tracker models solve the coinci-

dence problem by letting many different initial condition converge into a single solution.

The equation of motion for tracker fields (in a flat background) is

Q̈+ 3HQ̇+ V,Q = 0 (3.30)

with H2 = 8π
3 (ρm + ρr + 1

2Q̇
2 + V ). ρm and ρr are the matter and radiation density

respectively. One can define ΩQ (similarly to Ωm, Ωk etc.):

ΩQ ≡
ρQ
ρc

(3.31)
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Tracking solutions have the property −1 < wQ < wB (where w is the equation of state

parameter for the background). [33] claims that for tracking to occur the potential must

obey two constraints, the first one is

V,QQ V

V,2Q
> 1 (3.32)

and the second constraint is that
V,QQV

V,2Q
is (nearly) constant over the range of all Q; from

V (Q) = ρB all the way to V (Q) = ρB at the matter-radiation equality epoch (spanning

over 100+ orders of magnitude). There are many different potentials satisfying these

conditions. For example all inverse power-law potentials (V (Q) ∝ 1/Qa, a > 0) obey

them. Fields like the above mentioned power-law (V (Q) ∝ Qn) do not exhibit tracking

behavior and thus do require fine tuning, making them less desirable. [33][34] Supernova

observations support quintessence models (in a flat universe) as being viable extensions

to GR [35].

3.1.3 f(R) Theories

Physics

f(R) theories modify the Einstein equations by replacing R (Ricci scalar) by an ar-

bitrary function of R. They try to generalize the Lagrangian of the Einstein-Hilbert

action

S =
1

2κ

∫
d4x
√
−gR (3.33)

by replacing R with f(R):

S =
1

2κ

∫
d4x
√
−gf(R) (3.34)

Where g = |gµν |, and f(R) is some function of the Ricci Scalar. The Ricci Scalar is

defined as R = gµνRµν . Rµν is the Ricci tensor, which represents the deviation from

euclidean space.

Three different classes of f(R) theories can be distinguished based on the variational

principle (formalism) used on the Einstein-Hilbert action to derive Einstein’s equations;

’Metric f(R) Gravity’, ’Palatini f(R) Gravity’ and ’Metric-affine f(R) Gravity’. In the

first formalism one varies only with respect to the metric, while in the second formalism

one varies with respect to the metric and connection, assuming they are independent.
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Figure 3.1: Schematic Diagram of f(R) Theories. This diagram shows the connection
between the different f(R) theories. Taken from [38]

In the last, and most general formalism, one very varies with respect to the metric

and connection, without the assumption of independence. This means that the last

formalism is the most general, reducing to the other two under certain restrictions, see

figure 3.1 and [36] [37].

Figure 3.1 shows how the different f(R) theories are connected, showing the different

restrictions placed on the various relevant parameters to switch between theories. It is

worth noting that apart from f(R) theories there is also a somewhat similar class of

theories called ’Modified Gauss-Bonnet Gravity’, f(R,G), in which the action not only

depends on R (more generally f(R)) but also on G ≡ R2−4RµνR
µν+RµνξσR

µνξσ (called

the Gauss-Bonnet Invariant) [39][40].

An obvious way to create an f(R) theory is to replace R by an infinite power series:

f(R) = . . .
α2

R2
+
α1

R
− 2Λ +R+

R2

β2
+
R3

β3
. . . (3.35)

where αi and βi are the coefficients of the terms in the expansion with the right di-

mension. But nearly all of the possible functions based on (3.35) are merely toy models

devoid of any practical use since most of them do not reduce to the correct Newtonian

limit[41][42], or are unable to pass solar system test[43].

Astronomy

To create useful f(R) theories a few boundary conditions must be set. These boundary

conditions are needed to unify inflation and late time acceleration (dark energy). To

ensure the inflation in the early universe

lim
R→∞

f(R) = −Λi (3.36)



Overview. Modifying Gravity 23

where Λi is an effective cosmological constant for the early universe, with values of the

order of Λi ∼ 1020∼38eV2. Or one could chose

lim
R→∞

f(R) = αRm (3.37)

with m a positive integer and constant α. f,R> −1 and α > 0 or anti-gravity will occur.

This leads to f(R) > 0 at the early universe, but to account for the current acceleration

one should impose

f(R0) = −2R̃0, |f,R (R0)| � (10−33eV )4 (3.38)

where R̃0 = R0 + κTmatter, Tmatter is trace of the matter energy-momentum tensor.

The last boundary condition is

lim
R→0

f(R) = 0, (3.39)

meaning there is a flat space-time solution[44].

[45] analyzed several f(R) models, based on their growth index. They can be written

in the following form:

f(R) = R− λRcf1(R/Rc) (3.40)

where Rc(> 0) defines a characteristic value for R; when λ ≈ 1 Rc roughly corresponds

to the value for R in the present time. λ(> 0) is a free parameter. The investigated

models differed in the form of f1(R/Rc):

f1a =
(R/Rc)

2n

(R/Rc)2n + 1
, n > 0 (3.41)

f1b = 1− (1 + (R/Rc)
2)−n, n > 0 (3.42)

f1c = 1− e−(R/Rc) (3.43)

f1d = tanh(R/Rc) (3.44)

For the right choice of λ and n these models can all pass the observational constraints.

The first and second model, (3.41) and (3.42), are viable models when λ ≈ 1.55 and

n = 1. This leads to a growth index γ0 ≡ γ(z = 0) ' 0.41, dropping to 0 with increasing
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z. This is notably different from the ΛCDM model which has γ0 ≈ 0.55.

For the third model (3.43) γ0 is dispersed between 0.40 and 0.55 for 2 ≤ λ ≤ 8, but

for 1 ≤ λ ≤ 2 the value for γ0 lies between 0.40 and 0.43. The last model (3.44)

has 0.40 ≤ γ0 ≤ 0.55 only now 1.5 ≤ λ ≤ 4. Again the growth index converges to

0.40 ≤ γ0 ≤ 0.43 but now for 0.905 ≤ λ ≤ 1.5.

The three different types of f(R) theories (Metric, Palatini and Metric-affine f(R) Grav-

ity) will be discussed in the following sections.

3.1.3.1 Metric f(R) Theories

Physics

In the metric formalism the action is varied with respect to the metric. The action

in f(R) gravity is given by:

S =
1

2κ

∫
d4x
√
−gf(R) +

∫
d4xLM (gµν ,ΨM ) (3.45)

Where LM is the matter Lagrangian, dependent on the metric and the matter fields

ΨM . After varying (3.45) with respect to the metric the field equations are obtained.

f,RRµν −
1

2
fgµν [∇µ∇ν − gµν2]f,RR = Tµν (3.46)

where ∇µ is the covariant derivative associated with the Levi-Civita connection of the

metric and 2 ≡ ∇µ∇µ. Some algebraic manipulation results in:

f,R (R)R− 2f(R) = 0 (3.47)

at a de Sitter point corresponding to a vacuum solution (energy-momentum tensor van-

ishes), where R is constant. For the standard FLRW metric (2.6) with k = 0 (i.e. flat

space time) the field equations are

3f,RH
2 =

1

2
(f,RR− f)− 3Hḟ,R +κρM (3.48)

−2f,R Ḣ = f̈ ,R−Hḟ,R +κ(ρM + pM ) (3.49)
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An example of a solution to (3.47) is f(R) = αR2. In another model where f(R) =

R+αR2 (Starobinsky model) the inflationary expansion ends when αR2 becomes smaller

than R. This is followed by a reheating stage in which the oscillation of R leads to the

gravitational particle production. For more details and the derivation of (3.47), (3.48)

and (3.49) see for example [36], [37] or [44] and references therein.

The metric f(R) gravity corresponds to generalized Brans-Dicke Theory with ωBD = 0

(with a potential) [37][46], Brans-Dicke theory will be discussed in Section 4.1.4.

Astronomy

(Metric) f(R) gravity is only useful if it predicts accelerated expansion without DE (or

inflation). In [36] the authors accomplish this by defining the effective energy density

and effective pressure:

ρeff =
Rf,R−f(R)

2f,R
− 3HṘf,RR (R)

f,R
(3.50)

Peff =
Ṙ2f,RRR +2HṘf,R +R̈f,RR +1

2(f −Rf,R )

f,R
(3.51)

by plugging

Tµν = (ρ+ P )uµuν + Pgµν (3.52)

into the field equations (3.46) where uµ is the four-velocity of an observer. Dividing

(3.50) and (3.51) leads to the effective equation of state parameter weff

weff =
Ṙ2f,RRR +2HṘf,RR +R̈f,RR +1

2(f −Rf,R )
Rf,R−f

2 3HṘf,RR
(3.53)

3.1.3.2 Palatini f(R) Theory

Physics

In the Palatini Formalism the action (3.45) is not only varied with respect to the metric,

but also with respect to the connection, which leads to:

δS =
1

2κ

∫
d4x
√
−g[

(
f,RR(µν) −

1

2
f(R)gµν

)
δgµν + f,R g

µνδRµν ] + δSm (3.54)

where R(µν) is the symmetric part of Rµν

This equation leads to the following field equations:



Overview. Modifying Gravity 26

f,RRµν(Γ)− 1

2
f(R)gµν = κT (M)

µν (3.55)

−∇λ
(√
−gf,R gµν

)
+ δνλ∇ρ

(√
−gf,R gµρ

)
+

2
√
−gf,R (gµνSσσλ − δνλgµρSσσρ + gµσSνλσ) = Hνµ

λ (3.56)

Milgrom, the inventor of MOND[2], has also used the Palatini formalism on his theory

using the Lagrangian:

LN =
1

κ
(~g2 − 2φ~∇~g) + ρ

(
1

2
~v2 − φ

)
(3.57)

where ρ =
∑

imiδ(~x − ~xi); variations over φ and ~g. This leads to the following set of

equations:

~̈xi = −~∇φ(~xi (3.58)

~∇~g = −κ
2
ρ (3.59)

~∇φ = µ

(∣∣∣∣∣ ~∇~ga0

∣∣∣∣∣
)
~g (3.60)

More details can be found in [47] and [48]. In the Palatini version of f(R) theories the

independent connection does not introduce new dynamical degrees of freedom in contrast

to the metric formalism. Rather, it changes the way matter generates the space-time

curvature corresponding to the metric by generating new terms for matter on the right

side of the field equations [47]. The Palatini f(R) gravity corresponds to generalized

Brans-Dicke theory with ωBD = −3/2 and a potential [47][37], for Brans-Dicke Theory

see section 3.1.4.

3.1.3.3 Metric-Affine f(R) Theories

Varying with respect to both the metric and the connection without assuming indepen-

dence the following field equations are acquired [49]:
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f,RR(µν) −
1

2
f(R)gµν = κTµν (3.61)

1√
−g
[
−∇λ(

√
−gf,R gµν) +∇σ(

√
−gf,R (R)gµσδνλ)

]
+

2f,R (R)gµσSσλ
ν = κ(∆µν

λ −
2

3
∆σ

σ[νδµ]
λ) (3.62)

Sσµσ = 0 (3.63)

Where ∆µν
λ ≡ −

2√
−g

δSM
Γλµν

, the so called hypermomentum, indicating the variation of the

matter action SM with respect to the connection. The hypermomentum is somewhat

analogous to the stress-energy tensor [36], and ”it encapsulates all the information re-

lated to the spin angular momentum of matter, the intrinsic part of dilation current and

the shear current”[50]. When the matter action depends at most linearly on the connec-

tion (which is true for e.g. scalar and gauge fields, where there is no dependence, and for

fermion fields, where the matter action depends linearly on the connection) and depends

only on first order derivatives of the matter fields, ∆µν
λ will only depend algebraically

on the connection. This leads to the following equation:

Rµν −
1

2
Rgµν = κTµν (3.64)

Where Rµν and R are the Ricci tensor and the Ricci scalar of the metric gµν respectively,

and Tµν will be a second rank tensor which depends on the metric, ∆µν
λ and Tµν . Tµν

reduces to Tµν when ∆µν
λ = 0. Eq. (3.64) describes GR with modified matter interactions

[50].

For more details on Metric-Affine Gravity see for example [23],[49],[51],[50].
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Simulations

Apart from solar system tests numerical simulations can be used to provide (often

stronger) constraints on modified gravity theories. A particularly interesting f(R) model

that benefits from simulations is the model proposed by [52]:

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
n > 0 (3.65)

m is the mass scale, the authors used m = κ2ρ̄0

3 where ρ̄0 is the average density in the

present epoch. This model is equivalent to (3.41). It passes solar system and cosmo-

logical tests by using the chameleon screening mechanism and predicts the accelerated

expansion of the universe without a cosmological constant. When R/m2 � 1, (3.65)

can be approximated by the expansion

f(R) ≈ −c1

c2
m2 +

c1

c2
2

m2

(
m2

R

)n
(3.66)

f,R is then

f,R = −nc1

c2
2

(
m2

R

)n+1

(3.67)

The ratio c1/c2 is constraint by the fact that the model should predict the correct

expansion history, corresponding to ΛCDM: m2c1/c2 = 16πρ̄Λ. Filling this in and

rewriting in terms of f,R0 , the current background value for the field gives

f(R) = −16πρ̄Λ −
f,R0

n

R̄n+1
0

Rn
(3.68)

f,R = f,R0

(
R̄0

R

)n+1

(3.69)

Looking into models with n = 1, the only free parameter to be constraint is f,R0 . A lot

of effort has been put into numerical simulations of this model with

|f,R0 | = 10−4, 10−5, 10−6. The code used in these simulations is ECOSMOG. It is based

on the RAMSES code (for N-body hydrodynamical simulations, structure formation)

[53] and performs N-body simulations for modified gravity theories [54]. For example

[55] looked into clustering of galaxies in redshift space. Figure 3.2 shows that for higher

k the model significantly deviates from GR, implying observations should be able to

distinguish the two.
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Figure 3.2: Ratio of linear growth rate against scale compared to GR for different
parameters. Taken from [55]

Similar work was carried out in [56]. The authors investigated the same model with the

same code to examine the properties of a halo (similar to the Virgo Cluster) at different

redshifts.

In figure 3.3 the density along the line of sight is shown for the model and ΛCDM. F4, F5

and F6 correspond to |f,R0 | = 10−4, 10−5 and 10−6 respectively which have c1
c22

= 0.168,

0.0168 and 0.00168 respectively. Simulations of the model show small but noticeable

deviation from ΛCDM.
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Figure 3.3: Density along line of sight for the model and ΛCDM at various redshifts.
Taken form [56]
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The same model was investigated using the same code (ECOSMOG) in the context of

voids in [57]. Two different classes of voids were modeled; with radii ranging from 15

to 25 Mpc/h and 35 to 55 Mpc/h. The void density profiles are shown for F4, F5 and

F6 and ΛCDM in 3.4. The left figures correspond to a small void and the right figures

to a larger void. The bottom two graphs show the deviation of the model from GR.

Smaller voids generally have a sharper edge, as is visible in the graph. The fact that

the over-dense void edge (r ∼ rvoid) is bigger in the model is most likely due to the fact

that the voids in the model have different radii compared to their GR counterparts. The

paper concludes that in this particular f(R) model voids grow marginally larger and

faster. It will be difficult to distinguish the model from GR observationally [57]. Voids

are emptier and steeper in this particular f(R) model [58].

Figure 3.4: Void profiles for the model and ΛCDM (GR).Taken form [57]

For a list of constraints on f,R0 , see [59] and references therein.

3.1.4 Brans-Dicke

Physics

Brans-Dicke Theory (BD), sometimes referred to as Jordan-Brans-Dicke Theory, is a

Scalar-Tensor gravity theory. This theory adds an extra scalar field φ to the tensor

equations to account for the measurable gravitational constant. The value of this scalar

field depends on the point in space-time. The theory is based on two principles, Mach’s

principle and Dirac’s Large Number Hypothesis (LNH). The first principle says that

”motion of any individual body is to be defined with respect to the entire universe”

[60], but there are many other interpretations [61]. LNH states that large dimensionless

numbers in physics are related (e.g. the gravitational constant and the radius and mass

of the universe are related: GMuniverse ∼ Runiverse) [62]. The premise of BD theory is
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that the gravitational constant G is replaced by a scalar field φ, depending on the matter

distribution in the universe, with G ∼ φ−1. The Lagrangian (without a potential) on

which the action is based in BD is

LBD = φR+ 16πLm + Lφ(φ, ∂µφ) (3.70)

Notice that this is just the normal Lagrangian from GR multiplied by G−1 = φ, except

for the last term which is there to ensure the Lagrangian leads to a second order equation.

The action is then

SBD =

∫
d4x
√
−gLBD (3.71)

On basis of unit consistency (and simplicity) the chosen Lφ is

Lφ = −ω∂µφ∂
µφ

φ
(3.72)

Combining the above equations results in

2φ− ∂µφ∂
µφ

2φ

φ

2ω
R (3.73)

Which relates φ to the Ricci curvature R using ω [63]. The value for ω is not given

by the theory and can only be determined by observation. ω represents a measure of

the fraction of the gravitational force caused by the scalar field. The strength of the

coupling of the scalar field compared to that of gravity can be written as

α =

(
ω +

3

2

)−1

(3.74)

In the limit ω → ∞ the coupling of the scalar field becomes negligible and BD theory

reduces to GR [64][65], but it is important to note that there are problems arise when

taking this limit, especially when the trace of the energy-momentum tensor vanishes [66].

Physics/Astronomy

Solar system test however indicate that ω > 250, which means that the scalar force

is smaller than 0.2% of the gravitational force; the predictions based on the theory are
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essentially the same as those based on GR, rendering Brans-Dicke theory (without po-

tential) unappealing [67]. Many other tests resulted in large values as well, even using

slightly different models. Some calculations neglected the potential of the scalar field

while others used the Newtonian approximation and spherical symmetry. The most

stringent condition was found in a solar system test done by the Cassini Spacecraft:

ω > 40000 [68].

When the scalar field gradient is large compared to some constant a0 ([a0] = [L][T ]−2)

ω → ∞ and theory reduces to GR. When ω → −3
2 the scalar force becomes arbitrarily

large compared to gravity with increasing distance from a massive object [65].

In the weak field limit the theory reduces to a theory with field equations

∇2φ1 = 4φ(1− λ)ρ (3.75)

∇ ·
[
µ

(
λ∇φ2

a0
∇φ2

)]
= 4πλρ (3.76)

where

λ =
1

2ω0 + 4
(3.77)

µ(x) =
dF

dx
(3.78)

that are equivalent to the standard Newtonian theory and reduce to MOND (in cases of

high symmetry)[67].

According to the theory gravitation decreases in time, at a rate depending on ω. The

age of the universe tu can be expressed as a function of ω and the Hubble time tH

tu =
2 + 2ω

4 + 3ω
tH (3.79)

For ω = 6 the value of tu/tH is 7/11 ≈ 0.64, only slightly smaller than the ratio 2/3 based

on the Einstein-de Sitter model. Applying the theory observations (e.g. the anomalous

precession of Mercury’s perihelion) leads to ω & 6 [64].
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An interesting example of an action (in the f(R) gravity theory class) is treated in

[69]. It shows the connection between general Scalar-Tensor theories, quintessence, f(R)

theories and BD. Starting with

S =

∫
d4x
√
−g
[

1

2
f(ϕ,R)− 1

2
ζ(ϕ)(∇ϕ)2

]
+ Sm (3.80)

where ϕ is a scalar field and ζ is some function of ϕ, the authors considered theories of

the type

f(ϕ,R) = F (ϕ)R− 2V (ϕ) (3.81)

where F ≡ ∂f
∂R and V (ϕ) is a potential. They then introduced a new scalar field

φ =

√
6

2
lnF (3.82)

so that the action (in the Einstein Frame) becomes

SE =

∫
d4x
√
−g̃
[

1

2
R̃

1

2
(∇̃φ)2 − RF − f

2F 2

]
+ Sm (3.83)

The tilde denotes a quantity in the Einstein Frame. This means that f(R) gravity is

equivalent to a more general scalar-tensor theory with action (3.80), of the type described

by (3.81) with potential V (in Jordan Frame) given by V = RF−f
2 . The coupling strength

between DE and (non-relativistic) matter can be expressed by defining

Q = −
F,φ
2F

(3.84)

Comparing Q with (3.82) shows that f(R) gravity corresponds with Q = − 1√
6
.

If one instead defines the scalar field

φ =

∫ √3

2

(
F,ϕ
F

)2

+
ζ

F

 dϕ (3.85)

the action changes slightly:

SE =

∫
d4x
√
−g̃
[

1

2
R̃− 1

2
(∇̃φ)2 − V

F 2

]
+ Sm (3.86)
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This leads to

F = e−2Qφ, ζ = (1− 6Q2)F

(
dφ

dϕ

)2

(3.87)

The action (3.80) is now given by

S =

∫
d4x
√
−g
[

1

2
FR− 1

2
(1− 6Q2)F (∇φ)2 − V

]
+ Sm (3.88)

Comparing this to the general action in BD (with a potential V ):

S =

∫
d4x
√
−g
[

1

2
χR− 1

2

ωBD
χ

(∇χ)2 − V
]

+ Sm (3.89)

clearly shows that the two are equivalent when χ = F and 3 + 2ωBD = 1
2Q2 . When

Q→ 0 the model reduces to a quintessence model.

The observational constraints on ωBD carry over to Q when no potential is added:

ωBD > 40000 means that Q < 0.0025. It is difficult to distinguish this from the Q = 0

case. But with a potential, w is allowed to be smaller, and Q will then be much larger.

[69]

3.1.5 Horndeski Theory

Horndeski theory is the most general scalar-tensor model that has second-order equations

of motion and obeys the weak equivalence principle. Horndeski Theory encompasses all

scalar-tensor theories with second order field equations in curved 4-dimensional space-

time[70]. The reason for avoiding higher order field equations is to stay away from

Ostrogradski instabilities. A requirement for modified gravity theories is the absence

of ghosts. According to the Ostrogradski Theorem, these types of instabilities appear

in theories with a non-degenerate Lagrangian (i.e. with higher time derivatives). A

Lagrangian L(q, q̇, q̈) is non degenerate when ∂2L
∂q̈2 6= 0. Even though Horndeski was

considered to be the most general scalar tensor models devoid of Ostrogradski insta-

bilities, more general theories have been developed [71], e.g. ”Generalized Generalized

Galileons” (G3)[72].

In Horndeski the action is given by

SH =

∫
d4x
√
−g

[
5∑
i=2

Li + Lm(gµν)

]
, (3.90)
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where gµν is the metric, Lm is the matter Lagrangian and Li are given by

L2 = G2(φ,X) (3.91)

L3 = −G3(φ,X)2φ (3.92)

L4 = G4(φ,X)R+G4X(φ,X)
[
(2φ)2 − φ;µνφ

;µν
]

(3.93)

L5 = G5(φ,X)Gµνφ
;µν − 1

6
G5X(φ,X)

[
(2φ)3 + 2φ;µ

νφ;ν
αφ;α

µ − 3φ;µνφ
;µν2φ

]
(3.94)

G2, G3, G4 and G5 are arbitrary functions of the scalar field φ and X = −φ;µφ;µ/2 (the

canonical kinetic term). SH is the most general action for a single scalar field that has

second-order equations of motion and satisfies the weak equivalence principle[73]. The

Li are very general due to the dependence on the arbitrary Gi.

Horndeski theory is a generalization of many other, more specific theories of gravity,

for example Brans-Dicke (BD) theory (with potential V (φ)), is corresponds to functions

G2 = −MplωBDX/(2φ)−V (φ), G3 = 0, G4 = Mplφ/2, G5 = 0, where Mpl is the reduced

Planck mass and ωBD is the Brans-Dicke parameter; The covariant Galileon corresponds

to the functions G2 = β2X, G3 = β3X, G4 = M2
pl/2 + β4X

2 and G5 = βX2, where βi

are constants [74].

Astronomy

Horndeski theory is very general and in need of constraints in order to be useful in

practice. Solar system tests demand a screening mechanism to screen the extra degree

of freedom (”fifth force”) from high density regions. This is done by enforcing ”self-

tuning”, i.e. the theory contains Minkowski space as a solution, in the presence of a

cosmological constant. This results in the following set of Lagrangians, dubbed ”Fab

Four” [75]:

LJohn = VJohn(φ)Gµν∇µφ∇νφ (3.95)

LPaul = −1

4
VPaul(φ)εµνλσεαβγδRλσγδ∇µφ∇αφ∇νφ∇βφ (3.96)

LGeorge = VGeorge(φ)R (3.97)

LRingo = VRingo(φ)
(
RµναβR

µναβ − 4RµνR
µν +R2

)
(3.98)
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3.2 Screening

Most modified gravity theories introduce new degrees of freedom. GR however has been

tested very well in the solar system meaning that the fifth force must be shielded from

high density regions. This can be achieved using a so called screening mechanism. Theo-

ries adding an extra scalar degree of freedom almost always need a screening mechanism.

A typical Lagrangian for such a scalar-tensor theory where the scalar field is conformally

coupled to matter is given by

L = −1

2
Zµν(φ, ∂φ, ...)∂µφ∂νφ− V (φ) + g(φ)Tµµ (3.99)

Where Zµν represents derivative self-interactions of the field, and Tµµ is the trace of

the matter stress-energy tensor. Close to a point source Tµµ → −ρ, ρ = Mδ3(~x). The

resulting potential is

V (r) = − 1

4πr

g2(φ̄)

Z(φ̄)c2
s(φ̄)

e
− m(φ̄)

cs(φ̄)
√
Z(φ̄)

r
M (3.100)

Where a bar over a quantity denotes background values for that quantity. This however

means that a light scalar field will produce a force F ∝ 1/r2. This problem can be fixed

by realizing that g, m, Z or cs depends on the background: [10]

• Weak Coupling: When g depends on the environment, the coupling is very small in

regions of high density such that all test are satisfied. Examples of theories based

on this are the symmetron [76] or varying dilaton [77] theories. In symmetron

screening the coupling of the scalar field to matter is proportional to the vacuum

expectation value of the field. In low density regions the field has a nonzero vacuum

expectation value, but in high density regions it approaches zero. Dilaton screening

is similar but has a different potential and coupling to matter.

• High Mass: An alternative is to make m(φ̄) depend on the local matter density.

In regions of high density m(φ̄) acquires a very high mass and its interaction range

becomes very short, making it unobservable, whereas in low density regions it

mediates a force. Chameleon screening is based mostly on this assumption [78].

• Kinetic Screening: The third option is to make Z (the kinetic function) large

environmentally. This leads to kinetic screening, where first or second derivatives

become relevant. The mechanism where the second derivative becomes important
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is called Vainshtein screening [79]. Kinetic screening is used in for example K-

Inflation models [80], while Vainshtein screening is seen in models based on brane

constructions in higher dimensions, in limits of massive gravity theories [81] [82].

• Sound Speed: The last possibility is to make cs very large. This however gives rise

to superluminality.



Chapter 4

Conclusion

4.1 ΛCDM or Modified Gravity?

Unfortunately neither of the two paradigms seems to have enough proof backing it up

to completely rule out the other. MG is still a relatively young field of study and will

undoubtedly undergo much development in the coming years. As for now the ΛCDM

model still stands proud as the cosmological standard model, despite craving a more

fundamental understanding of both dark matter and dark energy. It would also be a

shame to replace or modify GR, as it is an incredibly elegant theory capable of predicting

almost all observations with great accuracy.

Both sides will benefit from better observational data, as is often the case in astrophysics.

Tighter observational constraints will help weed out the bad MG theories and improve

the good ones, as well as hopefully help to uncover the true nature of gravity.
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