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Abstract

The aim of this thesis is to study the kinematics of the Local Group dwarf

spheroidal galaxies Ursa Minor and Draco. These two galaxies are an interesting

pair to study, since they are similar in terms of mass, extent, and distance. However,

while Draco appears to have a perfect, undisturbed stellar distribution, Ursa Minor

shows signs of tidal disturbance. We use new optical spectroscopy of individual red gi-

ant branch stars from the AF2-WYFFOS fiber spectrograph on the William Herschel

Telescope. We observed several hundred stars in the CaII triplet region. The data

have been pipeline-processed at CASU in Cambridge using prototype WEAVE pro-

cessing. We combine our dataset of Draco with data published by Walker, Olszewski

& Mateo (2015) and apply orbit-based Schwarzschild modeling to the velocity data in

order to constrain the dwarf spheroidal’s (dark) matter distribution. We are able to

determine the dark matter halo mass distribution for a NFW and a cored profile.
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Chapter 1

Introduction

Dwarf galaxies are, as the name suggests, small stellar systems. In this context, small refers

to both the system’s diameter as well as to its luminosity. The closest dwarf galaxies that

can be observed with the naked eye (from the southern hemisphere), are the Small and

Large Magellanic Clouds and they are a rather large example of this class. Dwarf galaxies

are found in all environments including groups and clusters of galaxies. In these populated

environments, dwarf galaxies are often satellites of a larger galaxy.

Dwarf galaxies are classified by their morphology. One distinguishes between dwarf

irregular (dIrr), dwarf elliptical (dE), and dwarf spheroidal (dSph) galaxies. The latter

two types do not show signs of recent star formation, while star formation is still ongoing

in dIrrs, which is the reason why dE and dSph galaxies consist of an old stellar population,

while dIrr galaxies also contain young stars.

Even though we are surrounded by a large number of dSphs in the Local Group, the

first dSph galaxies were only discovered towards the middle of the 20th century, due to

their faintness. The first Local Group dSphs were discovered by Shapley (1938), and were

named after the constellations they were observed in, Sculptor and Fornax.

It is believed that dSph galaxies are among the most dark-matter-dominated galaxies

in the Local Group and therefore provide an ideal testing ground for details of ΛCDM

cosmological models. As the name suggests, they are among the smallest type of galaxies

we know of. From their kinematics one can infer a high mass-to-light ratio (M/L), which

indicates that they contain a large amount of dark matter. The first ideas about the

evidence for the existence of dark matter were made by the astronomers Oort and Zwicky

in the first half of the twentieth century, and were based on kinematic studies. Zwicky

(1937) compared the luminous mass to the total mass in the Coma cluster, the latter being

inferred from the motions of galaxies in the cluster. He inferred a much larger total mass

than is visible and thus suggested unseen, dark matter (DM) as an explanation for this

discrepancy. According to recent results from the Planck mission, we now know that our

Universe consists of 68.25% of dark energy, 4.90% baryonic (visible) matter, and 26.71%

dark matter (Planck Collaboration 2014).
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1.1 Galaxy Formation

Dark matter plays an important role in structure formation. At the moment, a cold dark

matter (CDM) dominated Universe with a cosmological constant (ΛCDM) is favored,

since it can explain the observed large scale properties of galaxy distributions. In ΛCDM,

structure forms hierarchically (White & Rees, 1978; Peebles, 1982). CDM consists of

massive, non-relativistic (cold) particles, whose interaction is even weaker than the weak

interaction. Their low velocities, with a dispersion that is insignificant with respect to the

Hubble flow, allows for a collapse of structure on all scales.

Structure formation originates in small adiabatic density fluctuations, which, on the

smallest scales, can be observed in the cosmic microwave background. As gravity is the

driving force in structure formation, overdensities become denser with time, attracting

more matter from underdense regions, which in turn get even less dense. Once an overdense

region reaches a critical density, it starts to collapse, forming a small halo. These are the

building blocks of larger structures, which are formed via mergers and accretion. Small

objects like dSphs are expected to have formed before bigger galaxies, such as the the Milky

Way (MW). This makes dSphs particularly interesting to study. They are potentially the

building blocks of galaxies like our own, but also provide insights into structure formation

in the early Universe.

While ΛCDM is in good agreement with observed large-scale structures, problems

arise on the scales of individual galaxies. By studying cosmological N-body simulations,

Navarro, Frenk & White (1996, 1997) showed that objects that form in a ΛCDM cosmology

follow a universal density profile, called the NFW profile, on all scales, from clusters of

galaxies to dwarf galaxies. However, the profile does not fit some low-surface-brightness

galaxies, which favor a cored rather than a cusped DM distribution (e.g., de Blok, 2010).

This might be due to more complicated processes involving the baryonic component, such

as feedback processes from star formation. For small systems like dSph galaxies, the energy

released by a supernova event can be comparable to the system’s binding energy. Therefore

feedback, from explosions like supernovae should be able to transform a cuspy halo into a

cored one in more massive systems (e.g., Navarro, Eke & Frenk, 1996). However, it is not

yet clear whether this is also the case in dSphs (Peñarrubia et al., 2012), since their star

formation rate is much lower than that in more massive galaxies.

Typical DM simulations do not contain baryons and thus cannot account for the feed-

back mechanisms affecting the baryonic component. Comparisons between DM-only sim-

ulations and observations are thus not completely straightforward as one cannot directly

link a luminous (satellite) galaxy to a corresponding DM (sub-) halo. Therefore, on the

theoretical side, it is important to incorporate baryonic effects in semi-analytic or hydro-

dynamic simulations of (dSph) galaxies (e.g., Cole et al., 1994; Somerville & Primack,

1999; Benson et al., 2002a; Benson et al., 2002b; Salvadori, Schneider & Ferrara, 2007;

De Lucia & Helmi, 2008; Revaz et al., 2009; Revaz & Jablonka, 2012; Starkenburg et al.,
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2013). On the observational side, it remains important to obtain accurate total mass

estimates of dSphs.

Another issue that arises at the mass scale of dSphs is the missing satellite problem.

ΛCDM models predict that galaxies like the MW should be surrounded by 100-1000 DM

subhalos of the mass of dSph galaxies (Klypin et al., 1999; Moore et al., 1999). At the

beginning of this century, only 11 MW satellite galaxies had been identified. With the

Sloan Digital Sky Survey, more than a dozen faint MW satellites have been discovered in

the last decade (Willman et al., 2005b; Willman et al., 2005a; Zucker et al., 2006a; Zucker

et al., 2006b; Belokurov et al., 2006; Belokurov et al., 2007; Walsh, Jerjen & Willman,

2007). The faintest of these systems are also known under the name of ultra-faint dwarfs

and new systems are still being discovered (e.g., Koposov et al., 2015).

1.2 Local Group dSph galaxies

Figure 1.1: Galaxies in the Local Group (left) and a zoom-in of the satellite-galaxy system of the
MW (right, Powell (2015)).

Throughout the universe, galaxies are typically not distributed uniformly, but found

in groups or clusters consisting of multiple galaxies. The smaller associations are called

groups and the bigger ones clusters. The Local Group consists of more than 80 galaxies

within a radius of about 1 Mpc (McConnachie, 2012, Table 1, updated 2014). The three

biggest galaxies are spirals: the MW, the Andromeda galaxy (M31), and the Triangulum

galaxy (M33). The MW and M31 are approaching each other and are predicted to even-

tually merge. As already mentioned, both the MW and M31 are surrounded by many

smaller satellite galaxies. Figure 1.1 shows the distribution of galaxies in the Local Group

and a zoom-in of the satellite-galaxy system of the Milky Way.

In the Local Group, dSphs are typically found close to the MW (within a radius of 300

kpc), whereas dIrr galaxies are found far from it. This is called the morphology-density

relation (Einasto et al., 1974; van den Bergh, 1999). While dSphs are pressure-supported

and devoid of gas, dIrrs are rotation-supported and contain gas. The transformation of a
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rotation-supported system (dIrr) to a pressure-supported one (dSph) may be possible via

tidal stirring due to the host galaxy (Mayer et al., 2001; Mayer et al., 2006).

Due to their proximity, the satellites of the MW (and M31) have been excellent targets

for resolved stellar population studies (Baade, 1944a,b) . The study of a galaxy’s color-

magnitude diagram (CMD) allow us to accurately determine its star formation history.

The dSph galaxies in the Local Group mostly consist of older stellar populations, which are

also found in late-type galaxies. However, the star formation in dSphs ceased sometimes

millions of years ago, sometimes billions of years ago (e.g., Tolstoy, Hill & Tosi, 2009;

Weisz et al., 2011; Weisz et al., 2014).

An extensive review of the structural properties of the Local Group dwarf galaxies

has been published by Mateo (1998) and is still used for reference. In this thesis, we are

going to focus on two northern dSphs, Draco and Ursa Minor, which have been named

after the constellations in which they are found. They were both discovered by A. G.

Wilson during the National Geographic Society’s Palomar Observatory Sky Survey in 1954

(Wilson, 1955). While Draco appears to have a perfect, undisturbed stellar distribution,

Ursa Minor shows signs of tidal disturbance. The two galaxies are otherwise similar in

terms of mass, extent, distance, and position on the sky, making them an interesting pair

to analyze using the same methods.

1.2.1 Draco

Figure 1.2: Image of the Draco dSph (Moore,
2015).

Draco is a small, faint, and metal-poor

dSph galaxy. Its coordinates are RA

17h20m19s and Dec +57◦54.8′ (J2000) and

its distance is 82± 6 kpc (Grillmair et al.,

1998). Its line-of-sight (LOS) optical ve-

locity is −293 ± 2 km/s (Armandroff, Ol-

szewski & Pryor, 1995). One can barely

make it out in Figure 1.2. It mainly con-

sists of old, metal-poor stars (Baade &

Swope, 1961) and a smaller intermediate-

age population (Aaronson, 1983). The first

spectroscopic studies revealed a spread in

metallicity (Zinn, 1978), which has been confirmed by high-resolution spectroscopy

(Shetrone, Bolte & Stetson, 1998). Draco has ceased star formation long ago and does

not show any signs of tidal disruption (e.g., Odenkirchen et al., 2001; Piatek et al., 2002;

Dolphin, 2002; Klessen, Grebel & Harbeck, 2003).

Draco has received much attention due to its high velocity dispersion. Since it does

not show any signs of tidal interaction with the MW, the dispersion is assumed to be due

to a high DM content. Previous studies have inferred M/L well above 100 M�/L� (e.g

Kleyna et al., 2001; Odenkirchen et al., 2001).
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1.2.2 Ursa Minor

Figure 1.3: Image of the Ursa Minor dSph (Bin-
newies & Pöpsel, 2015).

Ursa Minor is another faint satellite dSph

and shown in Figure 1.3. Its coordi-

nates are RA 15h09m11s and Dec +67◦12.9′

(J2000). Its distance is 66 ± 3 kpc (Ol-

szewski & Aaronson, 1985) and its LOS op-

tical velocity is−248±2 km/s (Armandroff,

Olszewski & Pryor, 1995). In many of its

properties, it is similar to the Draco dSph

galaxy, but in contrast to Draco, it shows

signs of tidal interaction with the MW

(e.g., Hodge & Michie, 1969; Mart́ınez-

Delgado et al., 2001). Stellar members

have been detected well beyond the tidal

radius and it also shows signs of stellar substructure (e.g., Olszewski & Aaronson, 1985;

Irwin & Hatzidimitriou, 1995; Kleyna et al., 1998). Its stellar population is old and metal

poor (Canterna & Schommer, 1978; Zinn, 1981; Shetrone, Côté & Sargent, 2001).

1.3 Dynamical modeling

1.3.1 Early attempts to model dSphs

One of the first attempts to determine a dSph’s M/L was made by Aaronson (1983).

He observed the spectra of three carbon stars in Draco and one in Ursa Minor with

the Multiple Mirror Telescope (MMT) Echelle spectrograph. The spectrum of one of

the observed Draco stars suggested a binary system. The LOS velocities were determined

using velocity templates from galactic carbon stars. Since calculating a velocity dispersion

from three measurements is crude, Aaronson instead determined the minimum velocity

dispersion allowable by a χ2-test at 5% level, which results in 〈V 2
r 〉 = (6.5 km/s)2. He used

the following relation between mass M and velocity dispersion 〈V 2
r 〉 for globular clusters

by Illingworth (1976)

M = 167 rcm̃〈V 2
r 〉, (1.1)

which is based on the velocity distribution function of King (1966). The object’s core

radius is denoted with rc and m̃ is a dimensionless mass parameter, which combines

multiple parameters of the King model. Using rc = 6.5′ and m̃ = 4.1 results in a M/L of

M/L = 0.72〈V 2
r 〉 = 31 M�/L�. (1.2)
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This is much larger than the M/L of a typical globular cluster, which is of the order of 3

M�/L�. Aaronson’s result went hand in hand with the theoretical findings of Faber & Lin

(1983), who derived the masses of dSphs using the tidal limit theory. They assumed that

dSphs are tidally limited by the gravitational field of the Milky Way and can be described

by truncated cluster models (King, 1962), which results in the following expression for the

tidal radius rt:

rt = dp

(
MdSph

(3 + e)MMW

)1/3

, (1.3)

where MMW is the mass of the MW within the perigalactic distance dp; MdSph is the mass

of the dSph within rt, and e is the orbital eccentricity. Instead of inferring the mass of the

MW from the dSph mass, this formula can be inverted in order to obtain MdSph. Using

rt = 0.5 kpc, they obtain a M/L of 13 M�/L�, which is consistent with Aaronson’s result

within the 95% confidence level. They also concluded that the M/L values of dSphs are

roughly one order of magnitude higher than those of globular clusters.

Rood, Page, Kintner & King (1972) introduced an analytic model based on the King

model in order to determine the M/L of the Coma Cluster using the system’s projected

density distribution. Their formalism was expanded by Richstone & Tremaine (1986) to

determine the M/L of spherical stellar systems. The M/L can be written as

M

L
= η

9σ20
2πGI0Re

, (1.4)

where σ0 is the central velocity dispersion; I0 is the central surface brightness; Re is the

half-light radius at which the surface brightness drops to half its central value, and η is a

model-dependent dimensionless factor. In almost any spherical system with an isotropic

velocity distribution, M/L independent of radius, and a well-defined, flat, central core, η

is near unity. King’s method uses equation 1.4 with η = 1. This method is, for example,

applied by Kleyna et al. (2005) to determine the M/L of Ursa Major. However, the

authors state that the assumption of a constant M/L independent of radius does not hold

for a dSph with a DM halo. Clearly, a different approach that does not require such an

assumption to be made would be preferred.

1.3.2 Jeans modeling

Jeans modeling is another technique for modeling the line-of-sight velocity distribution

(LOSVD) of galaxies that can be used to infer their mass distribution. Jeans modeling

has been commonly used to estimate the mass distribution of dSphs (e.g  Lokas, 2001;

Kleyna et al., 2001; Battaglia et al., 2008b; Walker et al., 2007).
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Jeans modeling is based on the assumption that a collisionless system is described

by a distribution function (DF) f(x,v). The derivation of the Jeans equations from the

continuity equation is shown in Appendix A. The Jeans equations are

0 =
∂ν

∂t
+
∂(νv̄i)

∂xi
, (1.5)

ν
∂v̄j
∂t

+ νv̄i
∂v̄j
∂vi

= −ν ∂Φ

∂xj
−
∂(νσ2ij)

∂xi
, (1.6)

In the equation above, ν denotes the density, vi is the i-th velocity moment, and σi,j is

the velocity dispersion tensor.

Binney & Tremaine (2008) describe a number of distribution functions for spherical

and axisymmetric systems. While it is easy to calculate the velocity moments v and

vivj given a DF, it is not straightforward to find a DF that is compatible with a given

probability density distribution ν(x). Furthermore, not every solution to the Jeans equa-

tion corresponds to a physical DF. A DF is physical when it is non-negative everywhere.

Depending on the galaxy that is modeled, it might be necessary to impose additional con-

ditions that will lead to physical solutions. There exist techniques to infer moments from

stellar densities without having to make prior assumptions about the DF. One of them is

Schwarzschild modeling.

1.3.3 Schwarzschild modeling

Currently, Schwarzschild modeling is one of the favored techniques for determining the

mass profiles of elliptical galaxies. It was developed by Schwarzschild (1979) and Richstone

& Tremaine (1984). It is described as an orbit-based method since it combines orbits in

order to match the light and kinematic distribution of a galaxy, which distinguishes it

from particle-based N-body methods. Given a specific gravitational potential, a large

number of orbits are integrated for many crossing times, in order to sample the entire

phase space that is expected to be occupied by the galaxy. These form the orbit library

and are weighted to obtain a model that fits the observed distribution. While the choice of

the mass and light distributions might lead to unphysical DF in Jeans modeling, the DFs

functions of the Schwarzschild method are always physical. However, due to the building

and orbit-weighting processes, it is computationally more expensive and a smaller variety

of gravitational potentials can be probed.

Despite its success on elliptical galaxies, the method has not been used that much on

dSph galaxies. Jardel & Gebhardt (2012; 2013) model the Fornax and Draco dSphs using

Schwarzschild modeling, and for Draco they find that the preferred model is a power-

law with a NFW-like slope. The modeling work presented in this thesis is based on the

Schwarzschild code of Maarten Breddels (Breddels et al., 2013), which he used to model

the mass distributions of the Sculptor, Fornax, Carina, and Sextans dSphs (Breddels,

2013).
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1.4 Outline of this thesis

The aim of this thesis is to apply Schwarzschild modeling to new observations of a large

sample of individual stellar velocities in the Draco dSph galaxy. In Chapter 2 I describe

new spectroscopic data of the Ursa Minor and Draco dSphs from AF2-WYFFOS at the

William Herschel Telescope (WHT), La Palma. In Chapter 3 I describe the dynamical

modeling of dwarf spheroidal galaxies using the Schwarzschild code developed by Breddels

et al. (2013). In Chapter 4 I present the modeling results and in Chapter 5 I conclude.
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Chapter 2

Data

In this chapter, I describe new optical spectroscopy of individual red giant branch (RGB)

stars in the Ursa Minor and Draco dSphs. We observed several hundred stars using

the AutoFib2 - Wide Field Fibre Optical Spectrograph (AF2-WYFFOS) at the William

Herschel Telescope (WHT) during two observing runs in May 2014 and May 2015. The

instrument was upgraded in 2012-2013, leading to a significant improvement of its perfor-

mance. The AF2-WYFFOS combination consists of an automatic fiber positioner, which

places the fibers within the one degree field of the prime focal plane. The 150 science

fibers each have a diameter of 1.6 arcsec. Furthermore, for acquisition and guiding, up to

10 fiducial bundles can be used.

2.1 Observations

Targets for spectroscopic follow-up were selected from deep wide-field photometry from

the MegaCam imager on the Canada France Hawaii Telescope. The photometric data of

Draco have been published by Ségall et al. (2007) and of Ursa Minor by Muñoz et al.

(2012). The selection regions on the galaxies’ CMDs are shown in Figure 2.1.

The field of view of AF2-WYFFOS is one degree. However, fibers can only be placed

within the inner radius of 25 arcmin, since optical distortions affect the fibers placed

beyond that radius. The aim was to place the majority of science target fibers within

the central 20 arcmin. Thus the galaxies were covered by 5 fields that overlapped slightly

in order to have repeat measurements of some stars for calibration purposes. The field

configurations were defined using the instrument’s configuration software, which can be

run automatically but requires some manual optimization. In each field, 70 - 90 fibers

were placed on target stars. The remaining fibers were placed on blank patches of the

sky to allow accurate sky subtraction on the science fibers. Each field was observed three

times for 30 minutes and the resulting spectra were then combined.
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Figure 2.1: CMDs of the Draco (left) and the Ursa Minor (right) dSphs within their ditdal radius.
The candidate RGB stars to be observed are shown in red and HB stars are shown in blue.

2.2 Results

Since the data from our observing run in 2015 have not been reduced yet, we will only

describe the results from observations on the nights of May 21-24 2014. After data reduc-

tion with a WEAVE1 prototype pipeline at the Cambridge Astronomical Survey Unit by

Mike Irwin and Jim Lewis, there are 400 line-of-sight velocities and metallicities ([Fe/H])

in Ursa Minor and 524 in Draco, which include some repeat measurements. The metal-

licities were determined using the CaII triplet (e.g Battaglia et al., 2008a; Starkenburg

et al., 2010). In the following, we only consider spectra with a signal-to-noise ratio per

Ångström (S/N per Å) greater than 12, which reduces the sample to 296 stars in Ursa

Minor and 340 in Draco.

2.2.1 Velocity distribution and membership

In order to select likely member stars, we have a look at the distribution of stars in

LOS-velocity-metallicity space, which is shown in Figure 2.2. Since the galaxies’ systemic

velocities are clearly distinct from the foreground stars’ velocities, we can determine likely

member stars based on their velocity. The foreground mainly consists of Milky Way halo

and disk stars, which typically have heliocentric LOS velocities in the range of −200 to

100 km/s. Draco’s systemic heliocentric LOS velocity is vDra,sys = −293 km/s and Ursa

Minor’s is vUMi,sys = −248 km/s. Based on Figure 2.2, we choose to select stars within

1WEAVE is a multi-object fiber spectrograph for the WHT, which is currently being built and expected
to be operational by 2017.
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Figure 2.2: Metallicity versus heliocentric LOS velocity color coded by S/N per Å of Draco (left)
and Ursa Minor (right) and PDF of the LOS velocity. The membership regions are shaded in red
and all stars outside this region are most likely non-members.

Figure 2.3: Spatial distribution of likely velocity member stars in Draco (left) and Ursa Minor
(right) with S/N per Å ≤ 12. The stars are color-coded by their heliocentric LOS velocity.

approximately 3σ of the central velocity, which is v = vDra,sys±35 km/s in Draco and with

v = vUMi,sys±50 km/s in Ursa Minor. This leaves us with 99 likely member stars in Draco

and 108 in Ursa Minor, which we will focus on in the following. The spatial distributions

of likely member stars color-coded by their velocity are shown in Figure 2.3.

2.2.2 Metallicity distribution

The [Fe/H] distribution is shown in Figures 2.4 and 2.5 for Draco and Ursa Minor. While

there is no evidence for a metallicity gradient in Ursa Minor, there is a trend of decreasing

metallicity towards the outskirts in Draco. We observe a large spread in metallicity in both

galaxies. The lack of a metallicity gradient in Ursa Minor might be related to the dSph

galaxy’s tidal interaction with the MW that is also reflected in the dSph’s morphology.

Draco does not show any signs of tidal interaction with the MW. Its morphology has not

been disturbed and therefore perhaps an intrinsic metallicity gradient has been preserved.
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Figure 2.4: Elliptical radius versus metallicity for the Draco (left) and Ursa Minor (right) dSphs.

Figure 2.5: Spatial distribution of likely velocity member stars in Draco (left) and Ursa Minor
(right) with S/N per Å ≤ 12. The stars are color-coded by their metallicity.
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Figure 2.6: Comparison of the LOS velocities of stars present in our Draco data and published
by WOM15. The right panel shows the likely velocity members.

2.3 Literature data

Another spectroscopic survey of Draco has recently been published by Walker, Olszewski

& Mateo (2015; hereafter WOM15), which we can include in our Schwarzschild mod-

eling. The authors observed more than 500 LOS velocity members with the 6.5 m-

MMT/Hectochelle spectrograph. Their observed area is larger than the region we ob-

served, and in the central region there are a number of stars that have also been observed

by us. The largest radial distance from the center is 0.6 degrees in our observations, and in

WOM15 observations it is 2 degrees, although there is some doubt about the membership

beyond the tidal radius. Odenkirchen et al. (2001) determined Draco’s tidal radius to

be at 0.7 degrees, however the definition of the tidal radius varies in the literature and

different authors state different values ranging from 0.5 to 1 degree. We compare the LOS

velocities and [Fe/H] values for stars with S/N per Å ≥ 12 that overlap with WOM15’s

catalog. WOM15 fit spectra using a Bayesian method.

Figure 2.6 shows the comparison of the LOS velocities. The velocities agree for most

of the measurements for both likely Draco member stars and also for foreground stars.

The origin of the clear discrepancy for some stars is currently unclear, but likely due to

data reduction issues in our data.

WOM15 determined [Fe/H] using the Mg b triplet and FeII lines. As shown in Figure

2.7, there is a scatter in the comparison between our [Fe/H] values and those of WOM15.

The investigation of this scatter lies beyond the scope of this thesis, since we will use only

their velocity measurements.
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Figure 2.7: Comparison of the [Fe/H] values of likely velocity member stars present in our Draco
data and published by WOM15.
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Chapter 3

Schwarzschild modeling

In this chapter, I introduce the Schwarzschild method that we use to model our data.

It was developed by Schwarzschild (1979) to determine the numerical model of a triaxial

system in dynamical equilibrium. With the rapid increase of spectroscopic datasets in

recent years, it has become more popular to model the kinematic properties of dSphs

using this method. In this thesis, I use the Schwarzschild code developed by Breddels

(2013) and Breddels et al. (2013), which is based on the ideas of Rix et al. (1997) and

van den Bosch et al. (2008), and has been optimized for spherical symmetry. It has been

used to model the Fornax, Sculptor, Carina, and Sextans dSphs. Below, I first explain

the general modeling procedure and then explore the method using a Sculptor-like mock

galaxy.

3.1 The method

In the following, I will explain the three main steps of the Schwarzschild method. In

general, they can be summarized as follows (e.g., Rix et al., 1997):

1. A representative library of orbits is calculated in a given potential.

2. The orbits are projected onto the space of observables.

3. The combination of orbits with (non-negative) weights that fits the observed data

best is determined.

The DF can be inferred from the orbit weights, which are determined in the last

step. By construction, the orbit weights and the resulting DF are always non-negative.

This is in contrast to Jeans modeling, where, without additional constraints, the DF

corresponding to a solution of the Jeans equations can be negative. In Schwarzschild

modeling, no assumptions about the form of the distribution function are made. Even

though we restrict ourselves to a spherically symmetric model, the Schwarzschild method

can be used to model many different geometries and functional forms of potentials and

the model can have different components. The model we use consists of a simple stellar

component embedded in a DM halo.
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In the remainder of this chapter, I will describe the Schwarzschild method developed

by Maarten Breddels. A detailed description can be found in Breddels (2013).

3.1.1 Density distribution and model parameters

We can describe the dSphs using a Plummer profile embedded in a DM halo. Both

components are spherically symmetric. Since we can assume that the light distribution is

accurately known from observations, the parameters of the stellar component are fixed,

while we vary the set of parameters describing the DM halo.

Stellar component

The Plummer potential was introduced by Plummer (1911) in order to describe globular

clusters. Its functional form is

ΦPlummer(r) = − GM√
r2 + b2

, (3.1)

where M is the system’s total mass and b the Plummer scale length, which sets the linear

scale of the model. The corresponding density can be derived using Poisson’s equation

and is

ρPlummer(r) =
3M

4πb3

(
1 +

r2

b2

)−5/2
. (3.2)

Dark matter halo

For the DM halo, I compared two density distributions. The first one is a NFW profile

(Navarro, Frenk & White, 1996), which is a well-known and well-used profile for fitting

the density distribution of DM halos in cosmological N-body simulations. The density

distribution is defined as

ρNFW(r) =
ρ0

(r/rs)(1 + r/rs)2
. (3.3)

It is governed by the density parameter ρ0 and the scale radius rs. The density parameter

is related to the NFW halo concentration c:

ρ0
ρcrit

=
200

3

c3

ln(1 + c)− c/(1 + c)
, (3.4)

where ρcrit = 3H2/8πG is the critical density in a ΛCDM Universe.

The potential corresponding to the density in equation (3.3) is

ΦNFW(r) = −4πGρ0r
2
s

ln(1 + r/rs)

r/rs
, (3.5)

which can be derived using Poisson’s equation.
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The second profile is a modified Dehnen profile (Dehnen, 1993), which we simply call

the cored profile. It follows the density distribution

ρcore(r) =
ρ0

(1 + (r/rs)γ)β/γ
, (3.6)

which also has the free parameters rs and ρ0. It is further described by the outer slope,

β, and the parameter γ, which quantifies the transition between the inner and the outer

slope of the profile. The corresponding potential is calculated numerically, since no analytic

expression exists for this profile. Poisson’s equation is solved numerically using a Finite

Element Method. This has been tested in the case of the NFW profile and it has been

found that the relative errors are of the order of 10−6 (Breddels et al., 2013).

Model parameters

Both potentials are governed by the parameters rs and ρ0. The cored model has two further

parameters β and γ. Following Breddels & Helmi (2013), we choose β = 3 and γ = 1

and keep these parameters fixed. First we model the mass enclosed within 1 kpc, M1 kpc,

and the scale radius, rs. In order to express the potential using these two parameters, the

enclosed mass at radius r can be calculated using

Mencl(r) =

∫ r

0
4πr′2ρ(r′)dr′ (3.7)

and can then be related to the density parameter ρ0. The mass profiles for the two DM

profiles described in the previous section are thus:

MNFW(r) = 4πρ0r
3
s

(
ln(1 + r/rs)−

r/rs
1 + r/rs

)
(3.8)

Mcore(r) = 4πρ0r
3
s

(
ln(1 + r/rs)−

r(3r + 2rs)

2(r + rs)2

)
(3.9)

Breddels & Helmi (2013) studied the shape of the mass distribution in different DM

halo profiles including the cored and the NFW profiles ffor the dSph galaxies Fornax,

Sculptor, Carina, and Sextans. They find that there is a radius at which all the best-

fit DM density profiles have a similar logarithmic slope, κ = d log ρ/d log r. While the

logarithmic slope is similar, the linear slope dρ/dr can be quite different. This radius is

near the position where the logarithmic slope of the stellar density profile is −3. It is

denoted by r−3. For a Plummer profile, the logarithmic slope is

κ =
d ln ρPlummer

d ln r
= − 5r2

b2 + r2
(3.10)

and the radius at which it is −3 is

r−3 =

√
3

2
b. (3.11)
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The finding that there is a finite region where the mass determination is more accurate has

also been made by other authors using Jeans modeling (Wolf et al., 2010; Walker, 2013;

Jardel et al., 2013). Therefore, another pair of free parameters is introduced, which are

recovered at r−3, being the enclosed mass M−3, and the corresponding logarithmic slope

of the DM density profile, κ(r−3) = κ−3. For the two profiles described in the previous

section, we derive

κ(r) =
d ln ρ

d ln r
(3.12)

and find the following relations between κ−3 and rs:

rs,NFW = −rκ+ 3

κ+ 1
(3.13)

rs,core = r

(
−κ
β + κ

)−1/γ
(3.14)

3.1.2 Orbit integration

In the first step, 10240 orbits are integrated in the potentials described above. The number

of orbits integrated is related to the observables, as is explained in the following section.

The equations of motions are integrated using the GNU scientific library ODE solver (8th

order Runge-Kutta Dormand-Prince method). The total energy is conserved up to ±0.1%.

The orbital timescale is

torb =
2πra
vcirc

, (3.15)

where ra is the orbit’s apocentre radius and vcirc the circular velocity at that radius. The

orbits are integrated for 100 orbital timescales and stored at 1000 points, which results

in a (constant) step size of 0.1 torb. Since the system is spherically symmetric, the orbits

are integrated in a two-dimensional plane. In order to obtain a three-dimensional orbit

library, each orbit is subsequently randomly rotated 25 times after a complete orbit has

been computed.

3.1.3 Observables

Having calculated the orbit library, in the second step, the orbits are projected onto the

space of observables. From the observations, the light distribution and the moments of

the LOSVD can be inferred. The system is governed by a DF, which we want to recover.

In contrast to other modeling techniques, as for example Jeans modeling, Schwarzschild

modeling does not assume that the DF has a certain functional form, but that it is a sum

of Dirac δ-functions on a grid in energy (E) and angular momentum (L) space:

f(E,L) =
∑
i,j

f̂i,jδ(E − Ei)δ(L− ljLmax,i) (3.16)
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To obtain a rectangular grid, the relative angular momentum l = L/Lmax is used.

In order to calculate the orbit weights, the orbits are compared with the observables.

In principle, this would mean that the number of free parameters that define the DF equals

the number of orbits. Instead of determining the orbit weights for every orbit separately,

we determine them for small volumes in phase space by adding neighboring orbits. The

volume consists of NdE × Ndl = 8 × 8 = 64 orbits, which share the same DF coefficient.

This concept is also known under the name of dithering. Thus the DF is described by

NE × Nl = (N ′E × N ′l )/(NdE × Ndl) free parameters. For NE = 20 and Nl = 8, the

distribution function has 160 free parameters. In total we integrate 10240 orbits.

The 6D-phase-space information contained in the orbit library needs to be translated

into observables. We distinguish between observables derived from the light distribution

and observables derived from the LOSVD.

Light distribution

First the light distribution in 250 projected radial bins is calculated. Under the assumption

that mass equals light for the stellar component, the mass contributed by the orbits in

each bin is determined. First, the normalized mass is introduced as

dm?(R)

M?
= 2πRΣ0(R)dR, (3.17)

where Σ0 is the surface brightness per area of the galaxy. The mass contributed by the

orbit i, j with energy Ei and relative angular momentum lj in bin k is

∆m?,i,j,k

M?
=

Rk+1∫
Rk

2πRΣ0,i,j(R)dR (3.18)

This is equal to the fractional time the orbit has spent in bin k. This can be determined

by counting the number of times the orbit crosses the bin and dividing it by the total

number of time steps, since the time step is fixed. The total mass contributed by all orbits

in bin k is thus

∆m?,k

M?
=

N ′
E∑

i=1

N ′
l∑

j=1

g(Ei, Lj)f̂i,jLmax∆Ei∆li︸ ︷︷ ︸
c′i,j

×
∆m?,i,j,k

M?

(3.19)
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where g(E,L) is the density of states and c′i,j the orbital weights that have to be deter-

mined. Having determined the light profile Σ?(R) from photometric observations, one can

calculate the projected mass in each bin:

∆m?,true,k

M?
=

Rk+1∫
Rk

2πRΣ?(R)dR (3.20)

The difference in projected mass between the model and the observations is required to

be smaller than one percent: ∣∣∣∣∆m?,true,k

M?
−

∆m?,k

M?

∣∣∣∣ ≤ 0.01 (3.21)

Kinematics

After having derived the expressions for the observables from the light distribution, a

similar procedure is used to determine the moments of the LOSVD. The projected second

and fourth moments of the LOSVD in bin k are

µ2,k =
M?

∆m?,k

N ′
E∑

i=1

N ′
l∑

j=1

c′i,j

Rk+1∫
Rk

2πRµ0,i,j(R)µ2,i,j(R)dR (3.22)

µ4,k =
M?

∆m?,k

N ′
E∑

i=1

N ′
l∑

j=1

c′i,j

Rk+1∫
Rk

2πRµ0,i,j(R)µ4,i,j(R)dR, (3.23)

where µ0,i,j(R), µ2,i,j(R), and µ4,i,j(R) are the zeroth, second, and fourth moments of

orbit i, j. Similar to determining the projected mass in each bin, to evaluate the integrals

in the equations above, the number of times an orbit crosses bin k is counted. For every

count, the sum of the second (fourth) moment of the LOSVD in quadrature (to the fourth

power) is added. The final sum is divided by the number of time steps.

The n-th moment of the LOSVD is

Exp[mn] = Exp

[
1

N

N∑
i

(vi + εi)
n

]
, (3.24)

where vi is the i-th velocity measurement and εi is the associated unknown measurement

noise, which is assumed to be drawn from a normal distribution. The average of the

estimated squared errors is

s2 = Exp

[
1

N

N∑
i

ε2i

]
. (3.25)
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Hence the estimator of the second moment is

µ̂2 =
1

N

N∑
i

(vi + εi)
2 − s2. (3.26)

Along the same lines, the estimator of the fourth moment is found to be

µ̂4 =
1

N

N∑
i

(vi + εi)
4 − 3s22 − 6µ2s2. (3.27)

The variance of the variable x is defined as var(x) = Exp[x2]−(Exp[x])2. The variances

of the estimators are

var(m2) =
1

N
(µ4 − µ22 + 2s22 + 4µ2s2) (3.28)

var(m4) =
1

N
(µ8 + 105s42 + 204µ4s

2
2 + 420µ2s

3
2 + 28µ6s2 − 9s42), (3.29)

where µ6 and µ8 are the sixth and eighth moment of the LOSVD. The variances of the

moments are needed in the following step, where a solution is found using χ2-fitting.

3.1.4 Finding a solution

In order to find a solution, the likelihood of the kinematic data given a model is calculated.

The likelihood is

p(kinematic data|model) ∝ exp

(
1

2
χ2
kin

)
(3.30)

with

χ2
kin =

Nbin∑
k

(µ̂2,k − µ2,k)2

var(µ̂4,k)
+
Nbin∑
k

(µ̂4,k − µ4,k)2

var(µ̂4,k)
. (3.31)

The moments µ2,k and µ4,k are calculated from the orbits via equations (3.22) and (3.23)

under the assumption that var(mn) ≈ var(µ̂n). The estimators µ̂2,k and µ̂4,k are deter-

mined from the observed LOSVD profile. Quadratic programming (QP) is used to find the

coefficients ci,j that maximize the likelihood p and fulfill the requirements that ci,j ≥ 0 and∑
i

∑
j ci,j = 1. QP is a numerical method that is used to solve a quadratic optimization

problem with linear constraints.

Even though the parameter space has already been significantly reduced using dither-

ing, it is still rather large, which can lead to spiky DFs. Therefore, a regularization con-

straint is introduced (Cretton et al., 1999; van den Bosch et al., 2008), which effectively

reduces the parameter space further. It is added as a penalty term

χ2 = χ2
kin + χ2

reg (3.32)

Since the regularization term is also quadratic, QP can still be used to minimize equation

(3.32). We use the same regularization constraint as Breddels et al. (2013). The problem
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is defined by the linear constraints on the light distribution (equation (3.21)) and the

constraints on the DF coefficients ci,j .

3.2 Testing the method using a Sculptor-like mock galaxy

In order to (re-)test the method, we use a Sculptor-like mock galaxy, which has been

created according to previously published dynamical models of the system (Battaglia et

al., 2008b) by Breddels et al. (2013). The stellar component is a Plummer sphere with

stellar mass M? = 106 M� and scale radius b = 0.3. It is embedded within a spherical

NFW DM halo with scale radius rs = 0.5 kpc and mass M1kpc = 108 M� enclosed within 1

kpc. We model two data sets, one with 2000 stars randomly chosen from the mock galaxy

and one with 200 randomly chosen stars, since this is approximately the size of the data

set we obtained for Draco.

As shown in panel (a) of Figure 3.1, we correctly recover the NFW input parameters,

however, with only 200 stars, both the scale radius and the logarithmic slope are very

unconstrained. In the following plots, the relative likelihood of the model is shown, which

is prel = p/max(p). Besides being of interest for studying the effect of different sample

sizes, these tests are also useful to evaluate whether the same scale radius is recovered when

using the slope κ−3 as a free parameter instead. Using equations (3.13) and (3.14), we

convert the recovered slopes to the corresponding halo scale radii and find rs,NFW = 0.86

kpc and rs,core = 0.27 kpc. Recalling that the true halo scale radius is 0.5 kpc, we find

that the recovered NFW scale radius is a nearly factor of two too large. We do not recover

the true value, however it lies within the 2σ contours. For the sample of 2000 stars, the

best-fit slopes of the cored and the NFW profile are both κ ≈ −1.6. Cored profiles always

have a smaller scale radius, if we require that the slopes are the same at r−3 for the cored

and the NFW profiles, since
rs,NFW

rs,core
=

κ

κ+ 1
. (3.33)

It is therefore not surprising that we recover a smaller scale radius using the cored model.
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(a) NFW profile (b) NFW profile

(c) Cored profile

Figure 3.1: Relative likelhood contours for the two parameters κ−3 and M−3 characterizing the
NFW profile (a, b) and the cored profile (c) for a Sculptor-like mock galaxy. The free parameters
in (a) are the M1kpc and rs and in (b) and (c) they are M−3 and κ−3. Shown in black and red are
the 1- and 2σ contours for datasets consisting of 2000 and 200 stars respectively, using equidistant
binning. The highest likelihood is denoted by a dot in the respective color.
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Chapter 4

Schwarzschild modeling of the

Draco dSph galaxy

In the previous chapter I explained the Schwarzschild method and tested it with the help of

a Sculptor-like mock dSph galaxy. In the following I present the results from modeling the

Draco dSph using the spectroscopic data presented in Chapter 2, including observations

from WOM15.

4.1 Setting up the modeling

4.1.1 Model parameters

The stellar component of the model is a Plummer sphere governed by the observed prop-

erties of Draco, namely the stellar mass M? = 2.6 × 105M� (Mateo, 1998) and the scale

length b = 0.24 kpc (Ségall et al., 2007). The ellipticity is 0.29 and the corresponding

position angle 82.1◦ (Mateo, 1998). As described in the previous section, we model two

different dark matter halos, a cored profile and a NFW profile. For the latter, we explore

two sets of free parameters: the scale radius rs and the DM mass enclosed at 1 kpc, M1kpc,

and the logarithmic slope κ−3 and the mass M−3, both evaluated at radius r−3. For a

Plummer profile governed by the given parameters, this radius can be calculated using

equation (3.11) and is at 0.30 kpc.

In the following figures and tables, we denote our dataset with WHT and the data

from WOM15 by the author abbreviation. We introduce the following nomenclature for

the models:

• nfw NFW profile with free parameters rs and M1kpc

• nfw slope NFW profile with free parameters κ−3 and M−3

• core13 Cored profile with free parameters κ−3 and M−3 and fixed parameters β = 3

and γ = 1
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4.1.2 Binning

Breddels et al. (2013) suggest that at least 250 stars per bin are required to obtain accurate

estimates of the fourth moment of the LOSVD. Given the limited size of our dataset,

we restrict ourselves to only determining the likelihood from the second moment, which

requires about 50 stars per bin. Our own observations consist of 99 velocity members and

we obtain additional 560 from WOM15. We compare different binning techniques. We

bin the data into

1. equidistant bins,

2. bins covering the same area,

3. and bins containing the same number of stars.

Figure 4.1: Spatial distribution of stars in Draco observed by us (WHT) Shown in red are the two
radial bins for (from left to right) equidistant binning, bins containing the same number of stars,
and bins covering the same area.

Figure 4.2: Histograms of the star counts of the bins presented in Figure 4.1. Shown from left
to right are the two radial bins for equidistant binning, bins containing the same number of stars,
and bins covering the same area.

The three different binnings for the WHT data are shown in Figure 4.1 and the corre-

sponding star counts per bin are shown in Figure 4.2. The number of stars allows no more

than two bins, which is in fact the minimal number of bins required by the modeling. From

the star-count histograms, it can be seen that the results from equidistant and equal-area
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Figure 4.3: Spatial distribution of stars in Draco observed by WOM15. The top row shows the
bins which cover the data in the same radial range as ours and the bottom row the full data range.
Shown from left to right are the two radial bins for equidistant binning, bins containing the same
number of stars, and bins covering the same area.

binning have to be interpreted with caution, since number of stars in the outer bins is

significantly smaller than 50.

Since the WOM15 data contains roughly five times more stars, we can use a larger

number of bins. In order to better compare the results from modeling our own observations

to those obtained from modeling the data of WOM15, we also model only the stars which

fall into the bins we use for modeling our own data. Since there is some doubt about the

membership of stars beyond the tidal radius, regardless of the binning, the outer bin always

consists of the stars beyond the tidal radius. This is shown in Figure 4.3. Figure 4.4 shows

histograms of the number of stars contained in each bin for the different datasets. When

using equidistant bins or bins which cover the same area, there are significantly fewer

stars in the outer bins compared to the inner ones. Again, this needs to be kept in mind

when analyzing the resulting LOSVD profiles for the binned data and the corresponding

modeling results.
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Figure 4.4: Histograms of the radius versus the number of stars in each bin. From top left to
bottom right: Our data with equidistant bins, WOM15 data in the same radial range and the same
bins, WOM15’s data in the same radial range with bins containing ∼ 50 stars, and Walker’s data
in the full radial range with bins containing ∼ 50 stars.
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4.2 Results

We model the two datasets independently. Since the origin of the clear discrepancy be-

tween the velocity measurements of a number of stars is still unclear, but likely due to

data reduction issues in our data (cf. Section 2.3), we refrain from modeling the com-

bined dataset until our data has been reprocessed. In the following section, I present and

compare the results from modeling the WHT and WOM15 datasets.

4.2.1 WHT data

We use the three different binning techniques described in Section 4.1.2 to model the WHT

data. Figure 4.5 shows the likelihood contours and best-fit parameter values of the DM

halo profiles obtained using Schwarzschild modeling. The best-fit values are presented in

Table 4.1. Using equations (3.13) and (3.14), we can relate the logarithmic slopes κ−3 to

the respective scale radii of the profiles, which are also stated in Table 4.1. The elongated

contours in Figure 4.5 indicate that the DM halo’s scale radius is much less constrained

than the halo mass for both the NFW and the cored profile. The shape and extend of the

likelihood contours is similar to the ones obtained for a Sculptor-like test galaxy using a

random sample of 200 stars (Figure 3.1).

We obtain the velocity dispersion profiles from modeling the second moment of the

LOSVD. Figure 4.6 shows the LOS velocity dispersion profiles corresponding to the best-

fit values along with the velocity dispersion profiles of the binned data for the different DM

halo profiles and binning techniques. The binned velocity dispersion profiles are flat within

the errors. The modeled velocity dispersion profiles agree well with the observed ones and

there are no qualitative differences between the modeled velocity dispersion profiles of

different DM halos.

It is apparent from Figure 4.5 and Table 4.1 that the best-fit parameters of both

the NFW and the cored profile are quite similar when using equidistant bins or bins

containing an equal number of stars (blue and black dots), while a much lower slope

κ−3 and scale radius rs are recovered when using bins covering the same area (red dots).

The 1σ confidence contours overlap, however, the overlapping region does not enclose the

best-fit parameter values.

This discrepancy can be explained looking at the binned LOS velocity dispersion pro-

files in Figure 4.6. The modeling results in a decreasing velocity dispersion when using

bins covering the same area. However, we do not attribute this decrease to physical prop-

erties of the dSph, but rather due to the fact that the outer bin only contains 10 stars.

Recalling that 50 stars per bin are recommended, this result should be interpreted with

caution. Nonetheless, it indicates that a small change in the velocity dispersion profile

results in a shift in the recovered logslope or scale radius, while the mass is not affected

strongly. Ultimately, we expect that the “true” values lie in the regions in which the

contours overlap.
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(a) NFW profile (b) NFW profile

(c) Cored profile

Figure 4.5: Relative likelhood contours for the two parameters κ−3 and M−3 characterizing the
NFW profile (a) and the cored profile (b) for WHT data. Shown in black (red, blue) are the 1- and
2σ contours for data using equidistant bins (an equal area per bin, an equal number of stars per
bin). The highest likelihood is denoted by a dot in the respective color.

We find that the recovered masses at r−3 are quite similar for the NFW and the cored

profiles, ranging from 2.21 × 107 to 2.89 × 107 M�, while the recovered scale radii of the

cored profile are an order of magnitude smaller than the recovered scale radii of the NFW

profile (Table 4.1). This, again, is similar to the results we found using a Sculptor-like test

galaxy and agrees with the relation between slope κ and scale radius rs of the two profiles

in equation (3.33).

4.2.2 WOM15 data

Since WOM15’s data cover a larger area on the sky, in order to facilitate comparison, we

first model data which cover the same radial range as our data. Figure 4.7 shows the

likelihood contours and best-fit parameter values of the DM halo profiles. The best-fit

values are presented in the top half of Table 4.2. Again, we use equations (3.13) and

(3.14) to can relate the logarithmic slopes κ−3 to the respective scale radii of the profiles.

The contours are again elongated in the radial direction.
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(a) NFW profile

(b) NFW profile

(c) Cored profile

Figure 4.6: Modeled LOS velocity dispersion profiles NFW profile (a, b) and the cored profile (c)
for WHT data. The colors correspond to the color scheme in Figure 4.5. The errorbars are the
binned velocity dispersion profiles obtained from the data. The width of the error bar indicates the
radial bin width.
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Model nfw nfw slope core13

Parameters M1kpc rs M−3 κ−3 rs M−3 κ−3 rs
Data [M�] [kpc] [M�] [kpc] [M�] [kpc]

WHT (1) 2.05× 108 13.3 2.21× 107 -1.10 5.89 2.33× 107 -1.13 0.491
WHT (2) 2.37× 108 0.365 2.27× 107 -1.07 7.82 2.46× 107 -1.17 0.460
WHT (3) 1.15× 108 3.35 2.89× 107 -1.96 0.32 2.89× 107 -1.97 0.155

Table 4.1: Best-fit results for the free parameters of the NFW and cored profiles. The left column
indicates which dataset was used. The number in brackets behind WHT corresponds to the binning
routine used (cf. Section 4.1.2).

Model nfw nfw slope core13

Parameters M1kpc rs M−3 κ−3 rs M−3 κ−3 rs
Data [M�] [kpc] [M�] [kpc] [M�] [kpc]

WOM15 (1) 1.65× 108 31.6 1.68× 107 -1.05 11.5 1.55× 107 -0.797 0.815
WOM15 (2) 1.71× 108 31.6 1.55× 107 -1.05 11.5 1.39× 107 -0.719 0.936
WOM15 (3) 1.65× 108 31.6 1.51× 107 -1.05 11.5 1.29× 107 -0.609 1.16

WOM15 (2) 1.65× 108 31.6 1.55× 107 -1.05 11.5 1.21× 107 -0.516 1.42
WOM15 (3) 1.65× 108 31.6 1.55× 107 -1.05 11.5 1.25× 107 -0.562 1.27

Table 4.2: Best-fit results for the free parameters of the NFW and cored profiles. The left column
indicates which dataset was used. The number in brackets behind WOM15 corresponds to the
binning routine used (cf. Section 4.1.2). The results in the top half of the table were obtained using
data within a radius of 0.6 degrees and the results in the bottom half using the full dataset.

The velocity dispersion profiles obtained from modeling the second moment of the

LOSVD are shown in Figure 4.8. The observed velocity dispersion profiles all show a slight

increase of velocity dispersion with increasing radius for all three binning techniques. A

similar trend has been observed by Walker et al. (2009) based on MMT/Hectochelle data

extending out to 0.55 degrees. The modeled dispersion profiles follow the same trend for

all DM halo profiles.

We then model the full dataset. As we already explained in Section 4.1.2, the outermost

bin consists of stars beyond a radius of 0.6 deg. Figure 4.9 shows the likelihood contours

and best-fit parameter values for the different DM profiles. The corresponding best-fit

values are presented in the bottom half of Table 4.2. The inclusion of data beyond a

radius of 0.6 degrees results in much smaller and less elongated confidence contours, while

the recovered best-fit parameters are similar. Figure 4.10 shows a further increase of

the velocity dispersion in the outermost bin. Since there is still some doubt about the

membership of stars beyond the tidal radius, this might not be due to an intrinsic cause,

but to contamination of the data by non-member stars.

4.2.3 Comparison

I presented the results from individually modelling the WHT and WOM15 datasets in

the previous two sections. Figure 4.11 facilitates the comparison of the results, showing

the likelihood contours of the recovered parameters using the same equidistant bins. For
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(a) NFW profile (b) NFW profile

(c) Cored profile

Figure 4.7: Relative likelhood contours for the two parameters κ−3 and M−3 characterizing the
NFW profile (a, b) and the cored profile (c) for WOM15 data within a radius of 0.6 degrees. Shown
in black (red, blue) are the 1- and 2σ contours for data using equidistant bins (an equal area per
bin, an equal number of stars per bin). The highest likelihood is denoted by a dot in the respective
color.
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(a) NFW profile

(b) Cored profile

Figure 4.8: Modeled LOS velocity dispersion profiles NFW profile (a) and the cored profile (b) for
WOM15 data within a radius of 0.6 degrees. The colors correspond to the color scheme in Figure
4.7, shown in black (red, blue) are the profiles and data calculated using equidistant bins (an equal
area per bin, an equal number of stars per bin).

all models and parameters chosen, the 2σ-confidence contours overlap. As expected from

a larger dataset, the contours on the best-fit values modeled using WOM15 data are

smaller. As we have already explained in the previous two sections, a mere comparison of

the best-fit parameters, especially for the scale radius, is difficult due to the large likelihood

contours. However, the DM halo mass at r−3 is better constrained. Using the WHT data,

we recover a mass of 2.21× 107 M� for the NFW profile and a mass of 2.33× 107M� for

the cored profile, while the NFW halo mass is 1.68× 107 M� and the cored halo mass is

1.55× 107 M�, using the same equidistant bins both time. Comparing Tables 4.1 and 4.2,

we find that the recovered mass is always smaller for data from WOM15.

While we observe a velocity dispersion profile that is flat within the error bars (Figure

4.6), the data of WOM15 shows a slight increase of the velocity dispersion with radius,

even if we exclude stars beyond the tidal radius (Figures 4.8 and 4.10). The difference in

the velocity dispersion profiles explains why the recovered DM halo masses are different.
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(a) NFW profile (b) NFW profile

(c) Cored profile

Figure 4.9: Relative likelhood contours for the two parameters κ−3 and M−3 characterizing the
NFW profile (a, b) and the cored profile (c) for WOM15 data including stars beyond a radius of
0.6 degrees. Shown in red and blue are the 1- and 2σ contours for data using an equal area per bin
and an equal number of stars per bin. The highest likelihood is denoted by a dot in the respective
color.
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(a) NFW profile

(b) Cored profile

Figure 4.10: Modeled LOS velocity dispersion profiles NFW profile (a) and the cored profile (b)
for WOM15 data including stars beyond a radius of 0.6 degrees. The colors correspond to the color
scheme in Figure 4.7, shown in red and blue are the profiles and data calculated using an equal
area per bin and an equal number of stars per bin.
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(a) NFW profile (b) NFW profile

(c) Cored profile

Figure 4.11: Relative likelihood from modeling the WHT (red) and the WOM15 (black) datasets.
Shown are the 1 and 2σ confidence contours and the best-fit parameter values with the highest
likelihood for a NFW (a, b) and a cored profile (c).
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Chapter 5

Discussion and Conclusion

The aim of this thesis was to use Schwarzschild modeling to model the Local Group dSph

galaxy Draco in order to obtain constraints on the nature of its mass profile.

We model data observed by us using the AF2-WYFFOS at the WHT in May 2014

and MMT/Hectochelle data from WOM15, which were described in Chapter 2. Our data

shows evidence for a metallicity gradient in Draco, while no such trend could be found

in Ursa Minor. The observation of a metallicity gradient has already been reported in

previous publications (e.g. Winnick, 2003; Faria et al., 2007). The absence of a gradient

in Ursa Minor might be due to its tidal interaction with the MW. Our observed velocites

and metallicities are in general in good agreement with those observed by WOM15, how-

ever there are still few discrepancies. We suspect that they might be due to faulty sky

subtraction in our data reduction.

In Chapter 3 we describe the Schwarzschild method and the main steps of the modeling

code developed by Breddels (2013). The dSph galaxies are described using a Plummer

profile embedded in a DM halo. We model two parameters describing DM halo profile. We

make use of the finding, that there is a radius at which the profile’s mass is constrained best.

At this radius, all the DM density profiles have a similar logarithmic slope (Breddels et al.,

2013). We test the modeling using a Sculptor-like mock galaxy, which has already been

used by Breddels (2013) when initially testing the code. We correctly recover the NFW

input parameters when using 2000 stars. Since our own datasets are by no means that

large, we also randomly select 200 stars to be modeled. This results in elongated contours

for the profiles scale parameter (scale radius or logslope). We furthermore corroborate

with these tests that there is a radius r−3 at which the the best-fit DM profiles have a

similar logarithmic slope (Breddels et al., 2013).

In Chapter 4 we describe the results from modeling the two datasets. For both datasets,

we find that the stellar component is embedded in an extended DM halo. We recover the

mass enclosed within r−3 = 300 pc. Our best-fit values for the mass agree with findings

from Walker et al. (2009), who used Jeans modeling and determined the mass at a similar

radius. Their claim, that all dSphs have a similar mass at r300pc is similar to the proposition

of Breddels et al. (2013). From the modeling results of the dSph galaxies Carina, Draco,
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Fornax, Leo I, Leo II, Sculptor, Sextans and Ursa Minor, they claim that dSph follow a

universal mass profile of the form of a power law.

We furthermore compare the NFW with a cored profile. We find that recovered scale

radius of the cored profile is always smaller, which has also been found by Breddels et

al. (2013) and Walker et al. (2009), while the enclosed mass is similar, since that leads

to a similar slope at r−3. We do not find evidence whether a cored model or a NFW

profile is favored. For both models, the recovered velocity dispersion profiles agree with

the observed ones and are relatively flat (WHT data) or show an increasing dispersion

with radius (WOM15 data).

This thesis is yet another example that the Schwarzschild method is a powerful tool

to derive the mass distribution of (dSph) galaxies. Even with our own dataset consisting

of 100 stars only, we are able to constrain the mass of the DM halo. With the inclusion

of roughly 500 stars from WOM15 stars, we are able to constrain the slope of the dark

matter profile much better. The uncertainty of this parameter is driven by the sample

size. Eventually, a sample of at least 1000 stars would be desirable. The fact that our

best-fit masses agree with the results from Walker et al. (2009), who used a completely

different model and a different dataset, provides confidence that the method is working

well in our context. It has already been successfully used to derive the mass distribution

of four southern dSphs: Fornax, Sculptor, Carina, and Sextans (Breddels et al., 2013).

5.1 Outlook

The data described in this thesis will be re-processed with the improved WEAVE prototype

pipeline along with the new observations we took in May 2015. With the re-processed data

and a better understanding of the measurement errors, it will be possible to combine our

data with the data of WOM15. The observations from May 2015 will provide a number

of additional RGB stars that have not been previously observed by us or by WOM15

and a number of stars that are likely LOS-velocity members according to their velocity

measurements (WOM15). Furthermore we observed HB stars in Draco, which cover the

Mg b region. The increase in the number of observed LOS-velocity members will allow

modeling the higher moments of the LOSVD.

To date, the is no spectroscopic survey of the Ursa Minor dSph including LOS ve-

locities, which is available to the public and Ursa Minor has only been modeled using

spherical Jeans modeling (Gilmore et al., 2007; Walker et al., 2009). Including the ob-

servations from May 2015, the number of stars will be large enough to use Schwarzschild

modeling, potentially even using the higher moments of the LOSVD. Further work could

also include the use of a Schwarzschild method allowing for axisymmetric or triaxial DM

halo potentials.
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Appendix A

Jeans modeling

In a collisionless system, stars can be treated as tracer objects moving on orbits in a

potential field due to a smooth mass distribution. If that was not the case, we would have

to treat the stars as a collection of massive points. A dSph galaxy can be treated as a

collisionless system, since its relaxation time is much larger than the crossing time, which

is is the time needed for a typical star to cross the galaxy. The relaxation time is the time

after which the many encounters with other stars have changed the star’s orbit so much

that its initial conditions cannot be recovered assuming a smooth mass distribution.

The system can be described by a distribution function (DF) f(x,v, t). The probability

of finding a star in the 6D phase-space volume d3x d3v at time t is f(x,v, t) d3x d3v. Since

it is a probability, f is normalized as follows:∫
f(x,v, t) d3x d3v = 1 (A.1)

Similar to the conservation of mass in a fluid flow, which is described by the continuity

equation

∂ρ

∂t
+

∂

∂x
· (ρẋ) = 0, (A.2)

the probability in phase space w = (q,p) has to be conserved as the DF f evolves:

∂f

∂t
+

∂

∂w
· (fẇ) = 0 (A.3)

Using Hamilton’s equations q̇ = ∂H/∂p and ṗ = −∂H/∂q, ẇ = (q̇, ṗ) can be eliminated

and the collisionless Boltzmann equation (CBE) is obtained:

∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
= 0 (A.4)
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In inertial Cartesian coordinates (x,v), the Hamiltonian is H = v2/2 + Φ(x, t), and the

CBE becomes

∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0. (A.5)

The CBE describes the flow of a probability “fluid” through phase space. The flow is

incompressible, since the phase-space density f around a given star is constant. This,

however, does not imply that the phase-space density around all stars is the same.

Integrating equation (A.5) over all velocities gives∫
d3v

∂f

∂t
+

∫
d3v vi

∂f

∂xi
− ∂Φ

∂xi

∫
d3v

∂f

∂vi
= 0 (A.6)

using the summation convention, summing over i. In the following, we use the density,

defined as

ν(x) ≡
∫

d3v f(x,v), (A.7)

and the mean velocity, defined as

v̄ ≡ 1

ν(x)

∫
d3v vf(x,v). (A.8)

The last term of equation (A.6) can be dropped since

∂Φ

∂xi

∫
d3v

∂f

∂vi
=
∑
i

∫
d3v

∂f

∂vi

∂Φ

∂xi

∫
d3v

∂f

∂vi
=

∫
d3v∇xΦ · ∇vf

=

∫
fdS · ∇xΦ−

∫
d3v f∇x · ∇vΦ = 0. (A.9)

first applying the divergence theorem. The first term is zero under the assumption that

f(x,v, t) = 0 for large |v|. Due to the choice of coordinate system, ∇x · ∇v = 0. Thus

equation (A.6) simplifies to

∂ν

∂t
+
∂(νv̄i)

∂xi
= 0, (A.10)

which is the continuity equation for stellar systems.

Equation (A.5) is multiplied by the velocity moment vj and integrated over all velocities

again: ∫
d3v vj

∂f

∂t
+

∫
d3v vivj

∂f

∂xi
− ∂Φ

∂xi

∫
d3v vj

∂f

∂vi
= 0 (A.11)

Using partial integration and equations (A.7) and (A.8), the equation above simplifies to

∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0. (A.12)
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After subtracting equation (A.10) multiplied by vj from the equation above, an analog of

Euler’s equation of fluid flow is obtained

ν
∂v̄j
∂t

+ νv̄i
∂v̄j
∂vi

= −ν ∂Φ

∂xj
−
∂(νσ2ij)

∂xi
, (A.13)

where σ2ij is the velocity dispersion tensor defined as

σ2ij ≡
1

ν(x)

∫
d3v(vi − v̄i)(vj − v̄j)f(x,v)

= vivj − v̄iv̄j . (A.14)

Equations (A.10) and (A.13) are known as Jeans equations, since they were first

applied to stellar dynamics by Jeans in 1919.
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