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Abstract

This study consists of a thorough application of a new mathe-
matical formalism to analyse the topological and morphological nature
of the cosmic matter distribution: homological discrete topology. As
an illustration of its potential, we apply it to a set of simulations in
different dark energy cosmologies. The analysis reveals that the topol-
ogy of cosmic structure is not influenced intrinsically by dark energy.
However, various dark energy models have different rates ofstructure
evolution. We show that the topology of cosmic structure at aspecific
redshift value depends on the dark energy content. For low redshifts
(z . 1) this effect can be used to differentiate between various dark
energy models both in real and in redshift space. This paves the way
for future constraints on dark energy based on the topology of the cos-
mic web.

Homological discrete topology has been introduced in topology
only very recently. Here, we provide a reference model with an ex-
tensive description of its topology. We show that (i) the method is ro-
bust under perturbations and (ii) the topological variant of smoothing,
called simplification, is a natural and better equivalent toconventional
smoothing.

Finally, we provide a detailed description of both discretetopolog-
ical theory within an astrophysical context and its algorithmic imple-
mentation.

PACS: 98.65.Dx and 07.05.Kf.
MSC: 57Q15, 85-08 and 85A40.
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CHAPTER 1

Introduction

”Far out in the uncharted backwaters of the unfashionable end of the Western Spiral Arm of the
Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly ninety-eight
million miles is an utterly insignificant little blue-green planet whose ape-descended lifeforms
are so amazingly primitive they still think digital watches are a pretty neat idea.” , or so at least
Adam Douglas described the position Earth in the Milky Way. Put in this way ourplanet already
sounds quite irrelevant, perhaps justified by the knowledge there are hundreds of billions of stars
in our galaxy and there are good chances most of them have (several) planets [Petigura et al.,
2013]. But even this description makes our planet, our sun and our entiregalaxy inconceivable
more important than they are. Our Galaxy is just another spiral galaxy somewhere in the out-
skirts of the Virgo cluster, in itself only a small part of the Virgo supercluster[Tully, 1982] - one
of the many superclusters in the visible part of our universe. . .

On these largest scales of the universe every galaxy can just be represented by a dot and all
these dots together form an intricate structure called theLarge Scale Structure of the Universe
(LSS). More poetically it is sometimes also called thecosmic web, as it visually resembles a
spider’s web. Figure 1.1 shows an image of the cosmic web based on the Sloan Digital Sky Sur-
vey. It shows intricate structures throughout the universe: large filaments connecting enormous
clusters and surrounding large empty voids. It is here, on the largests scales of the universe,
where our story begins in chapter 2 with an overview of cosmology and the cosmic web.

As marvellous as the cosmic web may be, even more stunning is the realization thatits
visible components (like galaxies, gas, et cetera, in general called baryonic matter) represent
only a fraction of the total energy content of the universe. On the universal stage, baryonic
matter is just a side-actress lighting up the play but only marginally influencing thestory. The
main actors are the mysterious dark matter and dark energy, whose cosmic duet will determine
the future and fate of the universe. In general, dark matter arranges the ‘local’ affairs: it is
the main constituent of the cosmic web, whose structure and shape is stronglydependent on
it. Dark energy on the contrary, is spreaded too thinly to exert local influence directly. But it
is everywhere and rules the universe on global scales. However, perhaps dark energy subtly
mingles locally as well. If so, it will give a distinct imprint on the detailed shape and structure of
the cosmic web. Conversely, the detailed shape and structure of the cosmic web may shed some
light on the mysterious nature of dark energy.

Every story is written in a language. According to thelinguistic relativity hypothesisof
cognitive linguistics, the use of a particular language influences thought and non-linguistic be-
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Figure 1.1: Illustration of the cosmic web [Subbarao et al., 2005].Based inside a filament, we look back to our galaxy and see
the majestic cosmic web unfolding. Image data is from the Sloan Digital Sky Survey.

haviour (weak version) or even determines it (strong version) [Brown, 1976]. I.e. language
might not just neutrally express thought, it might influence or even define it.The strong version
of linguistic relativity has an acquisition problem: in order to learn a language some cognition
(thoughts) are needed, so language cannot determine thought completely. The weak version is
an area of active empirical research [Lucy, 1997], in general providing support for the hypoth-
esis. Some of the most recent developments attempt to tie in the weak variant with neurology
[Gilbert et al., 2006].

Nature is written in the language of mathematics. Just as the use of a certain language directs
our thoughts and questions we can ask to other persons, the type of mathematics used determines
the type of questions we “can ask” nature. Since the discovery of the cosmic web, many analyti-
cal and statistical methods have been employed to describe its structure. Themethods employed
are often genial and have a sound physical foundation but they also have a major disadvantage:
they are ill-equipped to reallydescribestructures and shapes. They only provide handles to work
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with it. A branch of mathematics perfectly suited for describing structure and shape is topology,
a generalization of geometry letting go of exact distances. Chapter 3 provides an introduction of
this branch of mathematics and how it can be applied to cosmology.

One of the first applications of topology to the study of the cosmic web is by [Schaap and Weygaert,
2000] in the form of the Delaunay triangulation, which also plays a role in various stages of this
thesis. Only very recent developments within topology itself allow its utilization by cosmol-
ogy in full rigour and detail. As cosmological datasets are very large, manual processing of the
data is unfeasible and theoretical topology needs to be translated into computational topology.
Chapter 4 describes the full data pipeline.

This is one of the first times topology is applied to cosmology and as such, besides a few
mathematical results for individual cases, the stability of the data pipeline of theprevious chapter
has not been proven for real datasets. Furthermore, the topological effects of elementary oper-
ations like smoothing the dataset is yet unknown. Chapter 5 provides this basis experimentally,
showing (i) that topological measures employed are robust and (ii) smoothing has an excellent
topological analogue called manifold simplification.

Having established the stability of the method, we study the topology of the cosmic web
under the standard form of dark energy extensively in chapter 6. Subsequently, we do the same
for several other forms of dark energy and compare the results in chapter 7. We find that at
equal (and low) redshifts, the dark energy models considered here are distinguishable in real and
redshift space! However, at equalσ8 this does not seem to be the case. This suggests that dark
energy does influence the shape of cosmic structure but only indirectly viaits influence on the
expansion of the universe.

These discoveries pave the way to put constraints on dark energy based on the shape of
cosmic structure. These and other future directions of research, together with a discussion and
conclusions are presented in chapter 8.

9



CHAPTER 2

Cosmology and the Cosmic Web

Since the dawn of mankind, in all cultures at all times, fundamental questions arise likeWhere
does everything come from?, What is our place in the universe?andHow do we and everything
around us come to an end?. These kind of questions are studied bycosmology: the study of
the universe as a whole. Though such questions are seemingly remote from everyday life, the
organisation of many societies ultimately depends on supposed answers to these questions and
throughout history many wars have been fought over them.

The stage for modern physical cosmology was set with Copernicus’ heliocentric model in
1543 [Copernicus] and Kepler’s discovery of the ellipticity of planetary orbits at the first half
of the 17th century [der Wissenschaften]. In the decades that followedthe idea that stars might
actually be other suns developed. It was around 1750 when the British astronomer Wright
proposed that these stars might be ordered in a thin planar region arounda centre [Hoskin,
1970]1, i.e. in a structure we call agalaxy today. For a long time it was unclear whether
our galaxy the Milky Way constituted the entire universe or is just of many galaxies or ‘island
universes’ within the universe. The excellent observations of Hubble[Hubble, 1929] and later
by Baade [Baade, 1952] provided empirical evidence that our galaxy isjust one of many, settling
the issue. The realization that there are numerous galaxies in the visible universe and that our
galaxy doesn’t occupy a spcial position in any way heralded the birth ofphysical cosmology.
One of its cornerstones is thecosmological principle, which states that on large scales (& 100
Mpc) the universe is spatially homogeneous and isotropic, i.e. it looks the same everywhere and
in all directions.

Besides showing the existence of other galaxies, Hubble had shown as well that they are
moving away from each other with a ‘velocity’ proportional to their distance.The Belgian
astrophysicist and priest Lemaı̂tre interpreted this correctly as meaning not that the galaxies ac-
tually moved, but that the universe is expanding. If the universe is expanding now, than it must
have been smaller in the future and further backwards infinitely small, which let Lemâıtre to
theBig Bang cosmological model[Lemaitre, 1931]. In this model the universe originated from
a Big Bang. Several mainly agnostic scientists ridiculed the idea that the universe was created
with a Big Bang2 and proposed theSteady State cosmological modelas alternative. The Steady

1More accurately, Wright proposed a thin shell or an annulus around thegalactic centre, partly for religious
purposes. Based on only a summary of his ideas, the famous philosopher Kant interpreted and extended Wright’s
ideas to a plane around the galactic centre [Hoskin, 1970].

2Actually the nameBig Bangwas coined by an opponent of the theory.

10



CHAPTER 2. COSMOLOGY AND THE COSMIC WEB Keimpe Nevenzeel

State model asserts theperfect cosmological principle: homogeneity and isotropy in space and
time, but at a price. The only way to reconcile homogeneity and isotropy in time withan ex-
panding universe is to let go energy conservation and embrace spontaneous generation of matter.
The principle observation confirming the Big Bang model was the discovery of the Cosmic Mi-
crowave Background (CMB): highly uniform microwave radiation coming from every point
on the sky. It was theorized by Alpher, Herman and Gamov [Alpher et al., 1948] and discov-
ered by Penzias and Wilson [Dicke et al., 1965; Penzias and Wilson, 1965], which earned them
the Nobel Prize of Physics in 1978 [Nobelprize.org, 2013a]. Within the BigBang model, the
existence of the CMB is naturally explained: when the universe is very smalland dense aver-
age temperatures will be very high. Consequently, photons will continuously ionize hydrogen
atoms and the universe will be filled with a photon-matter fluid. When the universe expands
the average temperature decreases and at a certain moment becomes so lowthat photons cannot
longer ionize hydrogen. Photons decouple from matter and commence a longjourney through
the universe. The photons which decouple at this moment form the CMB. For billions of years
they travel uninterruptedly through an effectively transparent universe, carrying with them an
imprint of these early moments of the cosmos. When their journey ends at a telescope detector,
they reveal that early state. The Steady State model doesn’t offer any reasonable explanation
to account for the CMB. With the manifest victory of the Big Bang model, physical cosmology
outgrew its infancy and defined thestandard cosmological model3. We note that besides the
expansion of the universe and the presence of the CMB the standard cosmological model also
explains the chemical abundances of light elements, the formation of structure in the universe,
Olber’s paradox and a host of smaller observations, making it a full-fledged scientific paradigm.

Based on this model, the first part of this chapter considers the geometry ofthe universe
(section 2.1), its laws of physics (section 2.2) and a general overview ofits ingredients (section
2.3). The main references for this part are [Weygaert, 2010], [Ryden, 2003] and [Liddle, 2009].
The second part of this chapter focusses more in detail on the cosmic ingredients with as basic
references [Weygaert, 2012] and [Peacock, 2005]. We shed somelight on the mysterious dark
energy in section 2.4 and describe how matter forms the cosmic structures in our universe in
section 2.5. In section 2.6 we consider several formalisms to describe the morphology of cosmic
structure. Many of these formalisms excellently partition space in its morphological components
and a few even provide some aggregate measures. But non reallydescribeits morphology. It
is here that discrete topology enters the stage, as it describes the cosmic web directly in its
components. A general introduction to topology follows in chapter 3.

2.1 The geometry of the Universe

In a flat three dimensional space with Cartesian coordinates(a, b, c) or spherical coordinates
(x, θ, φ) the standard Pythagorean distance metricds (cf. definition A.1) is:

ds2 = da2 + db2 + dc2 = dx2 + x2
(

dθ2 + sin2 θdφ2
)

(2.1)

There is no a priori reason to assume we live in a flat universe. Introducing an arbitrary irregular
curvature is very difficult but under the assumption of the cosmological principle only three
universal curvatures need to be considered: a positive (spherical)curvature, zero (flat) curvature
or negative (hyperbolic) curvature. The type of curvature is indicatedby κ, which is +1, 0 and
-1 for positive, zero and negative curvature respectively. For the non-zero case, the radius of

3A well known specific version of this model is the Concordance Model [Ostriker and Steinhart, 1995].
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curvature is written asR. To generalize the metric above to include such curvatures, we have to
replace thex2 in the equation above byR2 sin2(x/R) for a positively or byR2 sinh2(x/R) for
a negatively curved universe. Combining the three possible curvature options we get:

ds2 = dx2 + Sκ(x)2dΩ2 (2.2)

with

Sκ =











R sin(x/R) κ = +1

x κ = 0

R sinh(x/R) κ = −1

dΩ2 = dθ2 + sin2(θ)dφ2

Performing the coordinate transformx → y = Sκ(x) we can equivalently write equation 2.2 as:

ds2 =
dy2

1 − κy2/R2
+ y2dΩ2 (2.3)

To go from a metric for space to metric for spacetime we should take time into account, adding
an extra term−c2dt2 to equations 2.2 and 2.3. In time, the universe expands. Because the
expansion is uniform, we can describe it with theexpansion factora(t), normalized such that
a(ttoday) = a(t0) = 1. Taking time and universal expansion in time into account turns equations
2.2 and 2.3 in the:

Definition 2.1 (Robertson-Walker metric).

ds2 = −c2dt2 + a(t)2
(

dx2 + Sκ(x)2dΩ2
)

(2.4)

= −c2dt2 + a(t)2
(

dy2

1 − κy2/R2
0

+ y2dΩ2

)

Here,x andy are called thecomoving coordinateas they ‘move along’ with the expansion of
the universe. Thephysical coordinatesr can be found by multiplying the comoving coordinates
with the expansion factor, i.e.r = a(t)x. We note that this metric is only valid under assumption
of the cosmological principle. More subtle is thet in previous equation; which reference frame
do we take to measure cosmic time? HereWeyl’s postulatehelps us out:

Postulate 2.1(Weyl’s postulate). The geodesics of all observers meet at one point in the past:
cosmic time can be measured from that point.

Due to Weyl’s postulate, we can simply use a ‘universal time’ within our calculations. Contrary
to the classical Newtonian view, the curvature of the universe and thereby its geometry are not
just a passive stage on which the grand play of the universe develops.Rather, the geometry is
intimately linked to the content of the universe. This link is provided by the laws governing the
universe, which we will consider now.

2.2 The Laws of the Universe

Ordered from strong to weak, the four fundamental forces of the universe are (i) the strong force,
(ii) the weak force, (iii) the electro-magnetic force and (iv) the gravitational force. The strong
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and the weak force work on microscopic distances while the electro-magneticand gravitational
force act on macroscopic distances. On large distances the universe iselectrically neutral. So
slightly ironically it is the weakest force of all, gravity, which rules the universe on the largest
scales. The gravitational field is described by general relativity with the gravitational field equa-
tions orEinstein equations:

Gµν + Λgµν = −8πG

c4
Tµν (2.5)

with Gµν the Einstein tensor describing curvature,Tµν the energy-momentum tensor describing
the energy-content of the universe andΛ the cosmological constant. In a Robertson-Walker
metric,gµν becomes:

gµν = diag

(

1,− a2(t)

1 − ky2
,−a2y2,−a2y2 sin2(θ)

)

It is from the Einstein equations that we see the intimate link between geometry (theleft side of
the equation) and the energy-content (the right side of the equation). The geometry determines
how the energy-content is distributed but in turn the energy-content determines the geometry.

On cosmological scales potentials are weak (φ/c2 ≪ 1) and so contraction forG0
0 andG1

1

gives the:

Definition 2.2 (Friedman-Robertson-Walker-Lemaı̂tre (FRWL) equations).

ȧ2 =
8πG

3
ρa2 − κc2 +

1

3
Λa2 (2.6)

ä = −4πG

3

(

ρ +
3p

c2

)

a +
Λ

3
a (2.7)

with ρ the density,p the pressure andκ the curvature constant.

Note that in the Einstein equations, the cosmological constant term can be brought from the left
to the right side. Then instead of being part of the curvature side it becomes part of the energy
content of the universe and is renameddark energy. Defining the density of dark energy as
ρΛ = Λ

8πG , it can be absorbed in the density term of the FRWL equations.
Multiplication of equation 2.6 with2ȧ and taking the time derivative of equation 2.7 we can

equate both, giving the:

Definition 2.3 (Fluid Equation).

ρ̇ + 3
(

ρ + p/c2
) ȧ

a
= 0 (2.8)

Essentially, this equation states the universe expands adiabatically.

The FRWL equations and the fluid equations can be obtained in an insightful quasi-Newtonian
way as well [see Ryden, 2003, chap. 4]:

1. Integrate Newton’s law of gravity over the surface of a sphere and equate the integration
constant with the curvature term. This gives the first FRWL equation.

2. The fluid equation can be derived by applying the first law of thermodynamics on an
adiabatically expanding sphere.
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3. Combining the time derivative of the first FRWL equation with the fluid equationequation
gives the second FRWL equation.

As becomes clear from the derivations above (both the relativistic and Newtonian version), the
FRWL equations and the fluid equation are only two independent equations.As they contain
three variables,a, ρ andp, another independent equation is required. Here the equation of state
comes in, which for a given cosmic ingredient relates its density and pressure:

Definition 2.4 (Cosmic equation of state).

p(ρ) = ω(a)ρc2 (2.9)

with ω(a) a parameter determined by the cosmic ingredient under consideration.

Plugging the equation of state in the fluid equation gives:

ρ̇ + 3ρ (1 + ωDE)
ȧ

a
= 0 (2.10)

After integration this becomes:
ρ(a) = ρ0a

−3(1+ωDE) (2.11)

Equations 2.10 and 2.11 show that the rate of density decrease as functionof a is determined by
the parameterω, i.e. by the cosmic ingredient under consideration. The next section considers
these ingredients in more detail.

2.3 Universal ingredients

So far we spoke about density without actually specifying a density of what. Globally, our
universe has four main ingredients: (i) matter, (ii) radation, (iii) dark energy and (iv) curvature.
We shortly discuss each of these in more detail below, for a complete and thorough overview of
all ingredients we refer to [Fukugita and Peebles, 2004].

Matter is often subdivided in two types. Baryonic matter is the stuff humans, stars and inter-
stellar gas is made of. But baryonic matter is only like the lights in a Christmas tree: clearly
visible but almost negligible in terms of total mass. A far greater mass contributioncomes from
dark matte: a pressureless form of matter which doesn’t interact with radiation. We refer to
[Bertone et al., 2005] for a recent review on candidate species. Galaxies consist largely of dark
matter and therefore the N-body simulation we use later on (cf. section 4.1) use only dark matter
to describe large scale structure. In good approximation, for near pressureless baryonic matter
and pressureless dark matter we haveω(a) = 0. Plugging this in equation 2.11 shows that matter
density decreases proportionally to the increase of volume:

ρm(a) ∝ a−3

Radiation consists of two types as well: photons and neutrino’s. Although radiation particles
outnumber matter particles by orders of magnitude, their current contributionto the total energy
budget of the universe is near negligible. This can be understood by considering their equation
of state. Thermodynamics givesωrad(a) = 1/3. Plugging this in equation 2.11 results in:

ρrad(a) ∝ a−4

14



CHAPTER 2. COSMOLOGY AND THE COSMIC WEB Keimpe Nevenzeel

We see that radiation density decreases a factora faster than matter density. Intuitively, this
additional factora can be understood from stretching of light waves due to expansion of the
universe.

Dark energy (DE) is responsible for the largest contribution to the energy budget of the uni-
verse. Despite abundant experimental evidence for its existence it’s exact nature remains a mys-
tery. Many models have been proposed, we will review the most important classes in section 2.4.
The idea of dark energy originated from Einstein, who introduced theΛ term is his equations
(cf. equation 2.5). Einstein was a firm believer of the Steady State cosmological model and
theΛ term was meant to prevent such a model to collapse under its own gravity. When Hubble
showed the universe expanded, Einstein withdrew the term and named it hisbiggest blunder.

The famous discovery of an accelerated expansion of the universe bytwo independent su-
pernova redshift surveys [Perlmutter et al., 1999; Riess et al., 1998]heralded the return of theΛ
term, as it can provide the required negative pressure to explain the acceleration. The Nobel Prize
of Physics 2011 was awarded to the lead scientists of previous papers for this unexpected and
ground-breaking discovery [Nobelprize.org, 2013b]. Later observations based on amongst oth-
ers the CMB [Collaboration, 2013; Komatsu et al., 2011], large scale structure [Dodelson et al.,
2002; Percival et al., 2001] and the Hubble constant [Freedman et al.,2001] confirmed their
findings.

Although the equation of state of dark energy is unknown, the fact that dark energy exerts
negative pressure can be used to obtain some general constraints. Consider the second FRWL-
equation 2.7 with the equation of state 2.9 plugged in:

ä

a
= −4πG

3

(

ρDE +
3pDE

c2

)

= −4πG

3
ρDE (1 + 3ω)

To create negative pressure the term between brackets on the right hand side should change
sign. This gives the restrictionωDE < −1

3 . Furthermore, it follows from the equation of state
2.9 thatωDE < −1 implies the DE density increases when the universe expands, an highly
unlikely (although not completely disproved [Caldwell et al., 2003]) scenario. Thus, reasonable
constraints forωDE are−1 ≤ ωDE < −1

3 .

Curvature can also be seen as a contribution to the total energy budget of the universe, as
according to the Einstein equations 2.5 the geometry and energy content of the universe are inti-
mately linked. Detailed measurements of the CMB [Collaboration, 2013; Komatsu et al., 2011]
show the curvature parameterΩκ = −κc2/ȧ2 = 0 within one percent, indicating the universe is
(nearly) flat.

The exact energy density value required to obtain a flat universe can be found by setting
κ = 0 in the first FRWL equation 2.6, defining thecritical density

ρc =
3

8πG

(

ȧ

a

)2

(2.12)

Evaluated at today, we getρc,0 = (9.2 ± 1.8) · 10−27kg m−3 [see Ryden, 2003, chap. 4]. As
the universe is nearly flat, densities are often expressed in terms of the dimensionless density
parameterΩ(t) = ρ(t)/ρc(t). A graphical illustration of the density contributions of matter,
radiation and DE is shown in figure 2.1.
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Figure 2.1: The cosmic energy inventory. The values shown are from [Komatsu et al., 2011]. Very recent measurements
[Collaboration, 2013] suggestΩDE = 0.6825 andΩDM + Ωb = 0.3175 instead, nonetheless the general pictures remains
the same.

2.4 Dark energy in more detail

Figure 2.1 clearly shows that today, DE provides by far the largest contribution to the energy
budget. Furthermore, it plays a vital role in the standard cosmological model.Many ideas on
the nature of dark energy have been put forward. Here, we give a short overview of the most
important classes. More extensive reviews can be found in [Caldwell and Kamionkowski, 2009;
Frieman et al., 2008].

The cosmological constantΛ as introduced by Einstein was a constant meant to keep the
universe from collapsing under its own gravity. As mentioned in section 2.2,we can associate
theΛ component with a densityρΛ = Λ

8πG . To keep the density constant, the fluid equation 2.8

tells us that we than havepΛ = − Λc2

8πG and consequentlyωΛ = −1. Although observed values
converge in this direction, the cosmological constant has one problem: it has no theoretical
underpinning.

Vacuum energy attempts to provide such an underpinning by bringing theΛ term from the
geometrical to the energy-momentum side and relating it with vacuum energy from quantum
mechanics. According to quantum field theory empty space is filled with virtual particles have
been measured in the shifts of atomic lines and particle masses. Consequently,the vacuum
adds a term to the energy-momentum tensor. As the density of this effect is constant, we again
getω(a) = −1. Unfortunately, attempts to calculate the resulting vacuum energy density fail
dramatically: they require the vacuum energy density to be 120 orders of magnitude larger
than the critical densityρc! This very large discrepancy is known as the cosmological constant
problem [Weinberg, 1989]. Supersymmetry helps to reduce this to 60 orders of magnitude due
to partial cancelling of zero-point energy contributions of fermions and bosons, but 60 orders of
magnitude is still a lot.

Quintessence hypothesises the existence of a yet unmeasured scalar fieldφ that permeates the
universe. Introducing such a scalar field makes vacuum energy effectively dynamical, allowing
it to vary in time4. In its standard form, the scalar field has LagrangianL = 1

2∂µφ∂µφ − V (φ),

4Technically the scalar field can also vary in space, but often it is chosen tokeep it spatially homogeneous.
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resulting in:

ρ = φ̇2/2 + V (φ)

p/c2 = φ̇2/2 − V (φ)

⇔ (2.13)

ω =
φ̇2/2 − V (φ)

φ̇2/2 + V (φ)
=

−1 + φ̇2/2V

1 + φ̇2/2V

For slowly evolving scalar fields, i.e.̇φ2/2V ≪ 1 we getω ≈ −1 and the scalar field behaves
like a slowly changing vacuum energy withρV AC(t) ≃ V [φ(t)]. A visual illustration of the
scalar field potential and how it gives rise to dark energy is illustrated in figure 2.2. Scalar fields
are interesting because they offer degrees of freedom, contrary to vacuum energy. Furthermore,
it might an explanation for dark energy and inflation in one go. They have some downsides
as well: (i) the cosmological constant problem isn’t addressed and (ii) theintroduction of new
forces may be necessary.

Figure 2.2: Generic scalar field potential [Frieman et al., 2008].The scalar field rolls down the potential and settles eventually
in a minimum, corresponding to the vacuum.

Modified gravity changes the left hand side of the Einstein equations instead of the right hand
side. If 4D spacetime can still be described by a metric, such a theory needsto change two
things: (i) the FRWL equations 2.6 and 2.7; (ii) the equations that describe thegrowth of density
perturbations in the early universe that evolved into the cosmic structure wesee today. Different
authors have different starting points to modify gravity, some originating from higher dimen-
sional theories, some from string theories and some are purely phenomenological. Changing
the laws of gravity is an attractive approach as it doesn’t require new scalar fields. However, no
consistent theory has been put forward so far.

Inhomogeneous cosmologiessuggest the universe is inhomogeneous up to far larger scales
than normally assumed. For example, if our galaxy resides near the middle of avery large
underdense region, the acceleration effects of DE could be mimicked. To be in agreement with
the isotropy of the CMB, this region would have to be nearly spherical as well. Although the
idea is interesting, it requires quite some coincidences. Furthermore, it is unknown whether such
cosmologies can be made consistent with all cosmological observations.

In this thesis, we will consider and compare the following dark energy models:
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• LCDM assumes the classicalω(a) = −1, i.e. the cosmological constant or vacuum
energy5.

• RP is a classical quintessence model [Ratra and Peebles, 1988] and has a scalar field po-
tentialVRP (φ) = Λ4+α

φα .

• SUGRA extends the RP model by including supergravity corrections [Brax and Martin,
2000; Freedman et al., 1976], which extends the potential toVSUGRA(φ) = Λ4+α

φα exp(4φGφ2).

The DE models above are relatively uncomplicated. Much more complicated models exist, each
with their own set of parameters. That many models have their own set of parameters makes
it rather difficult to compare them directly. Therefore, it has become customary in literature to
parametrize the DE equation of state as:

ω(a) = ω0 + ωa(1 − a) (2.14)

This parametrization allows good comparison of many different models [Linder, 2003] up to
observing accuracy [Linder, 2010]. For the three models under consideration here, the values of
ω0 were set atz = 0 and theirωa values determined by aχ2 fit. These values are tabulated in
table 4.1 and the resultingω-evolution is shown in figure 2.3.

Figure 2.3: ω evolution as function of z [Bos et al., 2012] (adapted).By definition LCDM’s equation of state parameterω
remains constant. RP’s and SUGRA’sω value increases slightly respectively significantly in time.

The rich variety of DE models stands in sharp contrast with their spatial behaviour, which
is very monotone. Due to its negative pressure any density difference is directly washed out and
consequently its density is the same everywhere. Matter on the contrary canform structures.
Exactly how is discussed in the next section.

2.5 Cosmic structure

The magnificent cosmic web we see today developed from the very earliestmoments; its im-
print can already be found in the CMB. No formalism exists which describesthe cosmic web
from its very earliest moments to nowadays, but especially for the earlier stages of structure
development some excellent models have been developed. By the cosmological principle, the
universe is homogeneous and isotropic on large scales (& 100 Mpc), giving rise to a universal
background densityρu, background potentialΦu and background gravitational forcegu. Fur-
thermore, expansion of the universe causes all galaxies to ‘move away’from each other with

5It can be either, as fro the point of view of particle simulations, the exact cause ofω(a) = −1 doesn’t change
any outcomes.
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‘velocity’ vH(r, t). For structure formation, it is more useful to describe physical quantities in
terms of their perturbations with respect to the background. These quantities are called the den-
sity perturbationδ(x), peculiar potentialφ(x, t), peculiar gravitational forceg(x, t) and peculiar
velocityv(x, t) and are defined as:

δ(x, t) =
ρ(x, t) − ρu(t)

ρu(t)

φ(x, t) = Φu(r, t) − 1
2aäx2 (2.15)

g(x, t) = −∇φ(x, t)/a(t)

v(x, t) = u(r, t) − vH(r, t) = a(t)ẋ

with u(r, t) the physical velocity.
Structure is formed by dark and baryonic matter under influence of radiation. On the Mega-

parsec scales of the universe we study here, matter and radiation may be seen as a continuous
fluid [Weygaert, 2012]. Consequently, we can use fluid dynamics6 to describe the cosmic evo-
lution of matter and radiation. For each cosmic ingredientj (matter, radiation or dark energy7)
the three main equations, rewritten in terms of the general relativistic comoving perturbation
quantities are the:

• Continuity equation formalizes mass conservation: the amount of mass flowing in a
volume equals the increase in mass within that volume:

∂δj

∂t
= −1 + ωj

a
∇x · (1 + δj)v (2.16)

• Euler equation describe the forces on the mass which result into mass flows:

∂v

∂t
= −1

a
(v · ∇x)v − ȧ

a
v − 1

a
∇xφ (2.17)

• Poisson equationspecifies the gravitational potential from which the sources originate:

∇2
xφ = 4πGa2





∑

j

(1 + 3ωj)ρj,cδj



 (2.18)

These equations will play a pivotal role in analysing the development of large scale structure,
which we will do in three stages: (i) the initial conditions; (ii) the linear phase and (iii) the
non-linear phase.

2.5.1 The seeds of cosmic structure

The seeds of cosmic structure can already be found in the CMB in the form of small temper-
ature perturbations, see figure 2.4. For larger angular scales8 these temperature perturbations
correspond inversely to density fluctuations: at places the density was higher, photons required

6Familiarity with fluid dynamics is assumed. The reader who requires additional background is referred to the
excellent treatise [Veldman and Velicka, 2010].

7Although for dark energy the perturbation quantities are zero.
8For smaller angular scales the relation between photon temperature and underlying density is more complex, we

refer to [Hu and Dodelson, 2002] for an overview.
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more energy to escape the gravitational pull, hence lowering their temperature. In the CMB
the temperature differences are very small:∆T/T ≈ 10−5 and analogous figures are true for
the density differences. Under these circumstances structure formation can excellently be ap-
proximated linearly, as we will see in the next section. In this section we will seehow these
density perturbations came into being. Within standard theory, the density perturbations visible

Figure 2.4: The CMB [Team], based on 9 years of data from the Wilkinson Microwave Anisotropy Probe (WMAP). The fluctua-
tions are extremely small:∆T/T ≈ 10−5, showing that the universe was already isotropic at its infancy.

in the CMB actually come from the earliest moments after the Big Bang, when the universe was
incredibly small. Because the universe was so small it was in thermal equilibrium, which ex-
plains the near equilibrium of temperature and density. That there are differences at all is due to
Heisenberg’s Uncertainty Principle. Around10−36 seconds after the Big Bang the universe ex-
panded with the extraordinary factor factore100. This expansion is calledinflation [Guth, 1981;
Linde, 1990] and it blew up the Heisenberg’s microscopic energy fluctuations to macroscopic
scale. The power spectrum of the CMB supports this hypothesis: it is (nearly) perfectly Gaus-
sian [Collaboration, 2013; Komatsu et al., 2011], exactly as one would expect from quantum
fluctuations.

Besides sowing the seeds of structure, inflation also solves several other problems in cos-
mology, most notably the:

1. The flatness problem: as we saw in section 2.3 the curvature of the universe is (almost)
zero. Inflation explains why: even if the universe was curved, the extreme expansion
would reduce this curvature to nearly zero.

2. The horizon problem: the CMB shows the matter-radation soup at its time of last scattering
was nearly isotropic, even between regions which couldn’t have been incausal contact.
Causal contact can be reestablished if the universe expanded fast from a much smaller
state.

3. The monopole problem: we don’t observe magnetic monopoles, whereas Grand Unified
Theories predict they should be formed around the moment of inflation. Blowing up
the universe by a factor ofe100 descreases the monopole density to 1 in our observable
universe.
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Although the exact physical mechanism giving rise to inflation has yet to be determined, it
is expected that inflation arises from the breaking of symmetry between the strong force and
electro-magnetic & weak forces.

With the seeds of structured sowed, the next subsection describes their development.

2.5.2 Linear structure formation

In the first epochs of real structure formation, density and velocity perturbations are small so
structure formation can be described with a linear approximation. Concretely, the linear regime
is valid whenδ ≪ 1 and(vtexp/d)2 ≪ δ with d the coherence length for spatial variations ofδ
andtexp the expansion time. In the linear regime higher order terms are negligible and the fluid
equations 2.16, 2.17 and 2.18 simplify to:

∂δj

∂t
= −1 + ωj

a
∇x · v

∂v

∂t
= − ȧ

a
v − 1

a
∇φ (2.19)

∇2φ = 4πGa2
∑

j

(1 + ωj)ρj,uδj

The stage of linear structure formation takes place at redshifts at which theuniverse hasn’t
reached the DE dominated epoch yet. Furthermore, as most of the matter in the universe consists
of collisionless dark matter, in good approximation pressure effects can beneglected. This gives
us the linearised fluid equations for matter perturbations:

∂δ

∂t
= −1

a
∇x · v

∂v

∂t
= − ȧ

a
v − 1

a
∇φ (2.20)

∇2φ = 4πGa2ρuδ

Taking the divergence of the Euler equation, substituting thev-terms byδ-terms using the con-
tinuity equation and substituting theφ-term by aδ-term using the Poisson equation we obtain a
second order partial differential equation forδ:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3

2
Ω0ȧ

2
0

1

a3
δ (2.21)

This equations allows us to draw two conclusions regarding the linear stage of structure forma-
tion: (i) as second order partial differential equation it has two independent solutions and (ii) the
time and space variables can be separated, i.e.δ(x, t) = D(t)∆(x). We can write the general
solution as:

δ(x, t) = D+(t)∆+(x) + D−(t)∆−(x) (2.22)

In general, the growing mode solutionD+ will become stronger in time whereas the decreas-
ing modeD− will decrease in time. Quite fast, theD− solution will become negligible and
we only need to consider theD+ solution to describe linear structure evolution. A general an-
alytic formulaD+(a) is not available, but for spatially flat models a good fitting formula is
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[Lahav and Suto, 2004]:

D(a) =
5aλm(a)/2

λ
4/7
m (a) − λDE(a) + [1 + λm(a)/2][1 + λDE/70]

λm(a) =
Ωm,0

Ωm,0 + ΩDE,0a3
(2.23)

λDE(a) =
ΩDE,0a

3

Ωm,0 + ΩDE,0a3

Although the above formula could be used directly to study the evolution of structure formation,
usually the evolution ofD(a) is expressed in terms of thedimensionless linear velocity growth
factorf , defined as:

f ≡ d ln(D)

d ln(a)
=

a

D

dD

da
(2.24)

The following approximation turns out to be extremely accurate [Linder, 2005]:

f(Ωm) = Ωγ
m (2.25)

γ = 0.55 + 0.05[1 + ω(z = 1)]

Both formulae 2.23 and 2.25 for the growing mode of the density perturbation term δ(x, t) show
that structure evolution mainly depends on matter, but a subtle influence of DEis visible as well.
The second of these equations also shows that the magnitude of the DE influence depends on its
equation of state. To illustrate the dependence of structure formation on DE,figure 2.5 shows
the evolution ofδ for −1 ≤ ωDE < −1/3. Under the influence of gravity, density perturbations

Figure 2.5: The influence of dark energy on structure formation [Friemanet al., 2008].

grow. Whenδ(x, t) ≈ 1 linear theory is not longer an appropriate description of structure
evolution and we will need to resort to non-linear theory.

2.5.3 Non-linear structure formation: Zel’dovich

Whereas the linear stage of structure formation has been completely workedout analytically,
no complete analytic theory is available for the non-linear case. The most straightforward ap-
proach is to take the non-linearised fluid equations 2.16, 2.17 and 2.18 and continue from there.
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Extensive amounts of literature exist in this direction and complicated higher-order perturba-
tion analyses has been done [Bernardeau et al., 2002]. However, increasing the order of the
approximation quickly leads to a drastic increase in complexity, resulting swiftly inthe loss of
structural insight and computational achievability. Fluid dynamics as described so far uses a
metric fixed in space over which the fluid moves, called theEulerian approach. Alternatively,
fluid dynamics can also be described on a metric that moves along with the fluid, called the
Lagrangian approach. As example, the simplest Eulerian approach uses a coordinate system
with equidistant points in terms of space whereas the simplest Langrangian approach uses a co-
ordinate system with equidistant points in terms of mass. A transformation from Eulerian to
Lagrangian comoving coordinates is achieved with:

d

dt
≡ ∂

∂t
+

1

a
v · ∇ (2.26)

Thereby the Lagrangian fluid equations (in terms of general relativistic comoving perturbation
quantities) become:

v = a
dx

dt
dv

dt
= − ȧ

a
v − 1

a
∇φ (2.27)

∇2φ = 4πGa2ρcδ

TheZel’dovich approximation[Zel’dovich, 1970] is a first order approximation of the inverse
of mapping 2.26 to describe density evolution. Consider a mapping from initial Langrangian
coordinateq to its Eulerian coordinatex(q, t), i.e. q → x(q, t). If we consider the perturbation
quantitys(q, t) = x(q, t) − q, previous mapping becomesq → s(q, t).

The mass originally contained in the infinitesimal volumedq is transported to the infinites-
imal volumedx. Naturally, the density in Lagrangian spaceq(t) is simply the average cosmic
densityρc(t), giving us:

ρ(x, t)dx = ρc(t)dq

⇒ (2.28)

1 + δ(x, t) =
ρ(x, t)

ρc(x, t)
= ‖∂x

∂q
‖−1

with ‖ . . . ‖ the Jacobian determinant. To evaluate the Jacobian determinant, note that we can
write x(q, t) in terms of an ordered sequence of moments of displacement:

x(q, t) = q + x(1)(q, t) + x(2)(q, t) + O(h.o.t.)

wherex(m) corresponds to the them-term of the relative displacement|∂(x − q)/∂q|. Taking
the derivative toq and limiting ourselves to first order terms only we obtain:

‖∂x

∂q
‖ = 1 + ∇q · x + O(h.o.t.) (2.29)

Combining equations 2.28 and 2.29 gives:

δ(x, t) = −∇q · x (2.30)
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Analogously with the linear case above, plugging the Poisson and continuity equation in the
Euler equation (restricting ourselves to first order terms and assuming onlylongitudinal contri-
butions) we get:

d2x

dt2
+ 2

ȧ

a

dx

dt
= 4πGρcx (2.31)

Again a growing and decaying mode exist and solutions forx(q, t) can be found, allowing to
compute particle displacement as function from its initial position and time.

Using the Zel’dovich approximation, we can also derive another feature of the cosmic web:
its anisotropic collapse. Consider again equation 2.28. The Zel’dovich approximation computes
how the mass in the infinitesimal volumedq is transported to the infinitesimal volumedx(q, t).
During this transport the volume can be deformed, allowing ut to write:

1 + δ(x, t) = ‖∂x

∂q
‖−1 = ‖δmn − a(t)ψmn‖−1 (2.32)

=
1

[1 − a(t)λ1][1 − a(t)λ2][1 − a(t)λ3]

with ψmn the Zel’dovich deformation tensor andλi its eigenvalues. Note that whena(t) → λi

we getδ → ∞, implying gravitational collapse in one of the dimensions. Here we see the
anisotropic nature of the cosmic web. Assumeλ1 < λ2 < λ3, than with increasing expansion
factora(t) the following happens:

• While a(t) < λ1 none of the dimensions has collapsed and the structure under considera-
tion is a 3D space, avoid.

• While λ1 < a(t) < λ2 one dimension collapsed. The resulting 2D structure is called a
wall.

• While λ2 < a(t) < λ3 two dimensions collapsed, giving us a 1Dfilament.

• After λ3 < a(t) all dimensions collapsed, resulting in a 0Dnodeor cluster.

The resulting weblike pattern forms the cosmic web and is illustrated in figure 2.6 below. Writ-
ing out equation 2.32 explicitly leads to a second order partial differential equation in terms of
δ(x, t), analogously to the linear case. The Zel’dovich approximation remains valid up to sur-
prisingly highδ(x, t) values, but when sheets start to cross the approximation breaks down. Up
to that point, the Zel’dovich approximation provides valuable physical insights and explains the
anisotropic nature of the cosmic web. If we could prevent sheets from crossing the Zel’dovich
approximation remains valid into even stronger non-linear regimes. The adhesion approach does
so by introducing an artificial viscosity that models the self-gravity of boundstructures. Due to
that, structures stick together instead of cross. An extensive discussionof adhesion is beyond
the scope of this thesis, we refer the interested reader to [Hidding, 2010;Shandarin, 2009] for
an overview. Although the adhesion approach brings us even further inthe non-linear regime
than Zel’dovich did, so far strongly non-linear regimes are still out of reach. Several approaches
exist to continue from here, each with their own merits and shortcomings:

• The classical Press-Schechter formalism [Press and Schechter, 1974] describes the for-
mation of objects out of the perturbed density fieldδ(x, t). It assumes isolated spherical
densities and provides support for thehierachical buildupof the cosmic web: small struc-
tures form first and larger structures form later. The excursion set formalism [Bond et al.,
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1991] improves upon the Press-Schechter formalism by filtering over variance of the den-
sity field. It is more physically intuitive than Press-Schechter and deals with the cloud-in-
cloud problem (smaller objects which form in larger objects). However, both approaches
give only a local description of overdensities. In reality the overdensitiesaren’t isolated
but part of the global density field.

• Amongst others the spherical model or the homogeneous ellipsoidal model [Weygaert,
2012; Peacock, 2005] assume a special simple configuration and attempt to follow its full
non-linear evolution. Although such models provide insight in the mechanisms inplay,
they only work for the idealized cases.

• N-body codes (cf. section 4.1) allow simulation of structure formation all the way in
general configurations. The results are impressive, see for example the snapshot of an
N-body code in figure 2.6. But contrary to the formalisms above, they don’t provide any
physical insight.

When gas falls in the highly non-linear potential wells, dissipative effects kick in, resulting in
energy loss due to cooling. The pressure drops and further infall andcompression of baryons
follows. In time this leads to the formation of galaxies and stars, a fascinating process with many
open questions. We refer to the classic [Formation] for details. Ultimately, galaxies form the
cosmic web [Bond et al., 1996].

Figure 2.6: Snapshot of the Millennium Simulation [consortium]. The Millennium Simulation is one of the largest cosmological
simulations done to date. It involved over 10 billion particles distributed in a cubic universe of2 ·109 light-years in each dimension.
The weblike pattern is clearly visible.
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As N-body codes are the only means to evolve a general density field in the strongly non-
linear regime, they are frequently used and we will use them in this thesis. Butas they don’t pro-
vide any physical insights, how to check what comes out is what should come out and whether it
makes sense? An intuitive way is to compare the shape and connectedness,i.e. the morphology,
of the structure formed in a simulation with the structure observed in the real universe. Visual
inspection is capable of detecting large deviations but is not precise enough to find more subtle
differences. Therefore, several attempts have been undertaken to describe the morphology of the
cosmic web. We will review them in the next section.

2.6 Cosmic web morphology

The cosmic web consists of very dense nodes or clusters, connected to each other by an intricate
network of filaments. Filaments in turn are bounded by walls, large sheets whosurround the
gigantic empty large regions called cosmic voids. Several of these morphological components
can be readily appreciated from figure 2.6. Yet although these componentsfollow directly from
the Zel’dovich formalism and are recognizable by the human mind directly, mathematical iden-
tification and handling is a challenge. Several approaches in this direction exist, we discuss the
most important classes below.

2.6.1 Numerical morphology identification

For each of these components and in particular nodes and voids, many methods exist to identify
them in simulations or observations. Examples of node finders are SUBFIND [Springel et al.,
2001] and VOBOZ [Neyrinck et al., 2005] and some excellent void finders are the (MULTI -
SCALE) WATERSHED TRANSFORM [Dries, 2013; Platen et al., 2007] or ZOBOV [Neyrinck,
2008]. Some outstanding methods like NEXUS [Cautun et al., 2013] even present a coherent
framework to identify all morphological components. Besides the insights such component
identifiers give in the structure of the cosmic web, they are also a valuable tool for cosmolo-
gists in general. For example [E.G.P., 2010] uses void ellipticity in to distinguish different DE
models. But identification and numerically designating a part of space as being part of a certain
component is something else then reallydescribing the morphologyof the cosmic web.

2.6.2 Statistics

Another approach to get a handle on the morphology of the LSS is providedby statistics. The
most basic approach in this direction is perhaps measuring the amount of clustering. Tradition-
ally, this is done by measuringσ8: the rms-density variantion averaged over 8h−1 Mpc spheres.
If we ‘fill space’ with a set of spheresSi with massesmSi

, than:

σ8 =

∑

i (mSi
− m̄S)2

m̄S
(2.33)

with m̄S the average mass contained in a sphere.σ8 is one of the basic parameters of the stan-
dard cosmological model. A more elaborated statistical approach is thetwo point correlation
function [Peacock, 2005; Martinez and Saar, 2001]. It gives the joint probability that both in-
finitesimal volumesdV1 anddV2 at distancer contain a galaxy:

dP (r) = n̄2dV1dV2 (1 + ξ(r12)) (2.34)
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with n̄ the number density of galaxies andξ(r12) the auto-correlation function. Variations like a
continuous and angular two-point correlation function exist. However, ingeneral their approxi-
mations are crude: they don’t contain the information provided by the phases of the Fourier field
and completely different spatial patterns could display the same two-point correlation function
[Martinez et al., 1990]. Extensions to higher order correlation functionsexist but in the back-
ground a problem remains: a set numbers fromn-point correlation functions might describe the
general galaxy distibution, they still don’tdescribe the morphology.

2.6.3 Minkowski functionals

Major progress in handeling cosmic morphology mathematically was made with the introduc-
tion of Minkowski functionals[Kerscher et al., 1997; Mecke, 1994; Schmalzing et al., 1995].
Minkowski integrals give a full morphological description in terms of both topological and geo-
metrical descriptors. Ind-dimensional space there ared + 1 Minkowski functionals, thus in 3D
Euclidean space there are four, being:

1. the volumeV =
∫

dV ;

2. the surface areaS =
∮

dS;

3. the integrated mean curvatureCm = 1
2

∮

(R−1
1 + R−1

2 );

4. the integrated Gaussian curvatureCG = (1/2π)
∮

(1/R1R2)dS.

These integrals can be computed using the following formalism: consider a point set{xi, i =
1, ..., N} of galaxies in 3D Euclidean space and introduce a set of closed 3D balls{Br(xi), i =
1, , , .N} with radiusr around these points, where in this context a closed ball is defined as (cf.
definition A.3):

Br(a) = {x ∈ R
3|‖x − a‖ ≤ r}

We start with a very low value forr, such that all balls are disjoint. Whenr is increased, the
balls grow and balls close to another connect. Figure 2.7 shows a set of balls for three different
radia, showing a clear difference in connectivity. The Minkowski formalism studies how the
four Minkowski functionals on the structure of balls changes as functionof r. Such a formalism
has several nice properties, like robustness and invariance under translation and rotation.

Minkowski functionals turn out to be good descriptors of different (idealized) structures, see
figure 2.8. Furthermore, they really give a description of the geometry under consideration. But
they have limitations as well. First, their topological characterization of structures (in essence
the fourth integral) is limited. Second, although the formalism can discriminate between differ-
ent structures, it doesn’t really capture the essence of cosmic structure in terms of anisotropic
structures. A formalism that goes beyond these limitations is discrete topology.

2.6.4 Homological discrete topology

A mathematical language that describes the morphology of the cosmic structurein the way
humans do intuitively, in terms of nodes, filaments, walls and voids, is homological discrete
topology. Although the fundaments are around since the beginning of the 20th century, only
very recent developments both theoretically and algorithmically makes the formalism usable for
large cosmological datasets. An introduction to the this field of mathematics is given in chapter
3 and its algorithmic implementation is discussed in chapter 4. Here we will use this formalism
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Figure 2.7: Minkowski analysis of a point set with growing balls [Parker et al., 2013]. A set of points inR
2 with balls of

increasing radius (top left). The resulting structure (bottom left) is analysed using Minkowski functionals (right),which in 2D are
the areaa(r) (solid curve), the perimeterp(r) (dashed curve) and the Euler characteristicχ.

Figure 2.8: Morphology discrimination via Minkowski functionals [Schmalzing et al., 1995].Minkowski functionals for ide-
alized structures are good discriminators, as is shown by comparing a Poisson process on a filament (dashed curve), a wall (dotted
curve) and a cubic void (solid curve). The division of the geometric quantities by constants is due to normalization, etc.

to distinguish between the three DE models described in section 2.4. As closing note we remark
that the seeds of homological topology are already present in the fourth Minkowski functional
CG. Betti numbersβ0, β1 andβ2 are the ranks of homology classes (cf. definition A.25 and
will be defined in chapter 3. It turns out they give the number of components, tunnels and shells
of a structure. Writingχ for the Euler characteristic and using subsequently the Gauss-Bonnet
theorem and the Euler-Poincare formula, we can write:

CG = χ = β0 − β1 + β2 (2.35)

I.e. the Minkowski functionals gave a taste of what is to come!
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CHAPTER 3

An introduction to topology

Mathematics forms an integral part of natural sciences for several reasons. First, mathematically
formulated natural laws allow deeper understanding of phenomena. Second, in absence of such
laws mathematics can help data analysis by indentifying relevant features andsurpress others.
But what exactly qualifies as ‘a feature’ and what as ‘relevant’? Consider the slightly ominous
looking mountains on the photo below. With the misty clouds hiding most of the valleys, the
mountain peaks feature prominently on the picture. With a bit of fantasy some ofthe mountains
contain large hollow caves in which dragons live. . . Suppose the mountain landscape to be a hol-
iday picture, how would you describe the landscape to friends and family back home? Probably
you would describe the whimsicality of the landscape, the central peak in the middle and the
large peaks on the background. Just as some of the most prominent caves. If the clouds would
hang a bit lower and some of the mountain passes or valleys would be revealed, you might have
described some of these as well. The smaller peaks surrounding the central one are already less
relevant. The irregular structure on the peaks themselves is hardly worth mentioning in detail.
Not so important as well are the exact locations of the peaks or their exactheight. The last of
which is even impossible to say as the mountain roots are hidden deep beneath the cloud layer.
What is true for the ominous mountains above is true for many scientific ‘mountainlandscapes’
as well: to describe their structure, the exact location or height of features is not always very im-
portant. It is more their shape, the type of feature (peaks, caves, valleys) and the amount of them
what matters. Unfortunately, the normally used mathematical field of analysis is very good in
describing analytical measures like location or height but is ill-equiped to describe shapes. The
mathematical field oftopology, more or less a generalization of geometry letting go of exact
distance measures, is much more suited for the latter. This chapter gives a short introduction in
topology and its application to cosmological density fields. One of the most important concepts
we need from general topology is the concept of a smooth manifold: a topological object which
is everywhere locally equivalent with simple Euclidean space. As such it combines the gener-
ality of topology and the exactness of regular calculus. Readers less familiar with topology can
consult appendix A.1 for a quick overview of the most important concepts.Consider a function
describing a manifold. Starting from its largest value, we slowly decrease the function value and
so reveal more and more of the manifold. Much like descending clouds wouldreveal more and
more of the mountain landscape above. First, only the highest peaks are visible, but slowly more
and more peaks emerge and later mountain passes will connect the peaks. In essence, the appear-
ance of new features means the manifold changes topologically. We begin thischapter with an
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introduction to Morse Theory in section 3.1, which describes in detail how a manifold changes
when new features emerge. Many astronomical datasets and in particular galaxy catalogues
contain discrete data. Sections 3.2 introduces simplices, the basic building blocks of discrete
topological space. Using simplices a manifold can be triangulated and as suchtheir shapes can
be described in a both concise and computable manner. An instructive example of a triangulation
is the Delaunay triangulation. It is based on the Voronoi diagram and will beused extensively in
the next chapters. We describe the Delaunay triangulation in detail in section3.3. By defining
functions over simplices Morse Theory can be extended to discrete topology, which is done in
section 3.4. Previous sections are combined and some issues regarding practical implementa-
tion are given in section 3.5. Triangulated spaces describe manifolds verywell but for scientific
analysis some aggregated measures are useful. How many features like separate components or
mountain peaks does a manifold have, how many tunnels and how many caverns where dragons
can hide? By defining equivalence relations on groups of simplices, thesefeatures can be ex-
tracted from the triangulated topological space in the form of cycles. This allows us to answer
the first question posed in the beginning of this section: what is a feature? The details of these
equivalence relations is relatively involved, we give their mathematical background in appendix
A.2. As we saw in the picture of the mountain landscape, not all cycles are equally important:
some are main features but other are just small ripples on the waves of larger structures. How to
distinguish? Suppose we have a descending cloud layer. In essence a feature is important if it
remains a separate feature for a long time after its peak was revealed by the clouds, whereas it
is not so signficant if it melts with another feature fast. The previous is captured mathematically
in the concept of persistence. Using persistence, we can concretely answer which features are
relevant and which not. Cycles and persistence will be defined in section 3.6, the culmination of
this chapter.

The material discussed in this chapter encompasses substantial material from a wide range in
mathematics, but throughout this chapter two sources will be used repeatedly: [Edelsbrunner and Harer,
2010] conceived the idea of homological persistence and persistence diagrams, the summit
of this chapter. [Sousbie, 2011] was the first to translate and apply [Edelsbrunner and Harer,
2010]’s ideas fully to astrophysics. We cite them here as major references for this entire chap-
ter. Although most of the topological theory expounded below is applicable toa wide range of
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manifolds, for ease of exposition and because we don’t require more in several cases we restrict
ourselves toR3. A note will be made wherever this is done.

Let no one unversed in geometry enter here.
Entrance words of Plato’s academy

3.1 Describing topological changes: continuous Morse Theory

The most important topological space we will encounter in this thesis is a (smooth) manifold.
Critical points of a function defined over a manifold allow us to analyze the manifold’s topology.
Exactly how is excellently described by Morse Theory [Milnor, 1973; Morse, 1960] developed
by the famous Marston Morse. By some Morse Theory is calledperhaps the single greatest
contribution of American mathematics[O’Connor and Robertson, 2003]. To understand the ra-
tionale behind Morse theory, let’s look at a simple and classical example in mathematics, a torus
M tangent to the planeV as shown in figure 3.1. Analogously to the mountains above, suppose

Figure 3.1: Torus M tangent to the planeV [Edelsbrunner and Harer, 2010].

the torus is completely covered in clouds up to the groundV . Instead of standing above the
clouds, we go stand below it and while the clouds rise to a certain heighta, a part of the torus
Ma is revealed. The part of the torus becoming visible is defined as the:

Definition 3.1 (Sublevel set). A sublevel setMa of functionf : M → R is the subsetMa =
M |f−1(−∞, a].

We definef : M → R as the height aboveV and consider the topology ofMa:

1. If a < 0 = f(u) ⇒ Ma = ∅.

2. If f(u) < a < f(v) ⇒ Ma is topologically equivalent to a 2-ball, see figure 3.2 left.

3. If f(v) < a < f(w) ⇒ Ma is topologically equivalent to a cylinder, see figure 3.2
middle.

4. If f(w) < a < f(z) ⇒ Ma is topologically equivalent to a torus with a disc removed, see
figure 3.2 right.

5. If f(z) < a ⇒ Ma is topologically equivalent to a full torus.
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(a) A 2-ball. (b) A cylinder. (c) A torus with a
circle missing.

Figure 3.2: Ma with increasing level ofa [Edelsbrunner and Harer, 2010].

Figure 3.3: ‘Constructing’ Ma from bottom to top, based on [Edelsbrunner and Harer, 2010] .

As we saw above the topology ofMa changes at the pointsu, v, w andz, i.e. the critical points
of f . This is intuitively understandable: the shape ofMa only ‘really’ changes when the rising
clouds reveal a new structure (1 → 2), a “mountain pass” (2 → 3 and3 → 4) or rise above the
complete structure (4 → 5). What is true in this specific example of a height function on a torus
is true in general, bringing us to:

Theorem 3.1(Classical Morse Theory, part I). Let f : M → R be smooth and leta < b such
thatf−1[a, b] is compact and contains no critical points off . ThenMa is diffeomorphic toMb.

What happens at the critical pointsf(u), f(v), f(w) andf(z)? As visualized in figure 3.3, this
depends on the critical point in question:

1 → 2 : ‘attaching’ a 0-ball to the (till than empty)Ma.

2 → 3 : attaching a 1-ball toMa.

3 → 4 : attaching a 1-ball toMa.

4 → 5 : attaching a 2-ball toMa.

For simplicity of exposition and because we don’t need more we confine ourselves toM = Rd.
The ‘type’ of critical point influences how the topology changes. A firststep in formalizing this
is explicitely defining a:

Definition 3.2 (Critical point). For function f over Rd and pointp ∈ Rd, p is critical if
∇xf(p) = 0.

Remembering that theHessian matrixHf is the matrix of second derivatesHf (x) = d2f/dxidxj(x),
we can write:

Definition 3.3 (Order of a critical point). Critical point p has orderk if Hf (p) has exactlyk
negative eigenvalues. This means intuitively that there arek directions to go from the critical
point in descending direction.
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Example 3.1. for ann-dimensional space minima have order 0, saddle points order 1 tilln− 1
and maxima ordern.

In 2D, like the surface of our torus, there is one saddle of order 1. Look again at the list
of changes when the critical point of our example torus was encountered. It seems that when
the rising cloud level meets a critical point of orderk, a k-ball is added to the topological
structure. But this rule is too simple, consider for example the continuously deformed torus
shown in figure 3.4. Near the critical pointw′ the torus is locally approximated byf(x, y) ∼
(x − w′

x)3 + (y − w′
y)

2. From the figure we can already see that the topology doesn’t change,
which is confirmed by a completely zero Hessian determinant. Of course this is independent of
coordinates used, as elementary matrix operations on the Hessian can’t change the determinant
value. A zero Hessian can also occur when critical points aren’t isolatedfrom each other. This

Figure 3.4: Continuously deformed torus, based on [Edelsbrunner and Harer, 2010].

happens for example if we give the torus above a slight push such that it falls on its side. On this
fallen torus there is an entire circle of minima and maxima with zero Hessian. This can be seen
by changing to polar coordinates and noting that∂f(r, θ)/∂θ = 0 ∀ θ, creating a zero column in
the determinant and thus a zero Hessian. Although the topology changes it isimpossible to say at
which point. Therefore, it makes sense to look only atnon-degeneratecritical points, meaning
thatdet(Hf (p)) 6= 0. Later on, also another property will be required: all critical points needto
have distinct function values. Functions with these desirable properties are called:

Definition 3.4 (Morse functions). A Morse function is a smooth function on a manifold,f :
M → R such that (i) all critical points are non-degenerate and (ii) the critical points have
distinct function values1.

Morse functions have several nice properties:

1. they lead to the complete classical Morse Theory (part II follows shortly);

2. they form an open dense set in the space of all proper smooth functions with appropriate
topology, so any proper smooth function can be approximated by a Morse function;

3. if a functionf ′ is close enough tof is some topology, thanf andf ′ have the same smooth
topological type.

1Sometimes the second condition is dropped but in this thesis it will always be required.
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Critical values obtained by Morse functions describe or and how the topology of a manifold
changes:

Theorem 3.2(Classical Morse Theory, part II). Letf be a Morse function witha < b such that
f−1[a, b] is compact and contains one critical pointp of f with orderk. ThenMb is homotopy
equivalent toMa with ak-ball attached along its boundary.

Let us pause here for a moment and realize the importance of Morse Theory: for a very
general class of functionsf it describes precisely when the topology is constant as well as when
and how it changes. In the context of large scale structure the cosmological densityρ is (certainly
for all practical purposes) a Morse Function. Consequently, Morse Theory describes exactly its
topology i.e. the shape of cosmological structure! For the rest of this section we assumef to be
Morse. At any non-critical point the gradient defines a preferred direction and by following this
direction we can define:

Definition 3.5 (Integration lines (or field lines)). An integral line (or field line) is a curveL(t) ∈
Rd such that

dL

dt
= ∇xf (3.1)

Integral lines are defined for allt and their origin and destination are written aslimt→−∞ L(t)
andlimt→+∞ L(t).

Example 3.2. The integral lines of the torus are shown in figure 3.5.

Figure 3.5: [Edelsbrunner and Harer, 2010] Our torus with the four integral lines that end at the two saddles.

For the application of our thesis, we are interested in astronomical density fields and not
so much in a torus. Therefore, the top-left panel of figure 3.6 shows theintegral lines on an
astronomical density field. Integral lines have several convenient properties:

Properties 3.1(Integral lines of Morse functions).

1. The origin and destination of integral lines are critical points.

2. Integral lines are ordinary differential equations. From their existence and uniqueness
theorems it follows that two integral lines passing through different pointsp and q are
either the same of fully disjunct, except perhaps at their origin and destination.
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3. It follows from previous properties thatRd is completely covered by distinct integral lines,
except perhaps at critical points.

These properties allow us to divide space in regions whose integral lines have the same origin
or destination:

Definition 3.6 (Ascending/descendingk-manifold). The stable manifold of a critical pointp off
is the point together with all non-critical points whose integral lines end atp. Asf(p) ≥ f(x)∀x
in the stable manifold, it is often called the descending manifold. Analogously, theunstable
manifold of a critical pointp of f is the point together with all non-critical points whose integral
lines originate atp. Asf(p) ≤ f(x)∀x in the unstable manifold, it is often called the ascending
manifold.

If f is defined overRd and it has critical pointp of orderk, than the Hessian hask negative
andd−k positive eigenvalues thus the descending manifold has dimensionk and the ascending
manifold dimensiond − k.

Example 3.3. Consider a Morse functionf defined overR3 and a critical pointp of orderk,
than:

• If k = 0, an ascending manifold ofp consist of a 3D space (a ‘void’), whereas a descend-
ing manifold ofp only consists of the 0D point itself (a ‘node’).

• If k = 1, an ascending manifold ofp consist of a 2D subspace (a ‘walls’), whereas a
descending manifolds ofp consist of 1D subspaces (a ‘filament’).

• k = 2 resembles thek = 1 case with the dimensions of the ascending and descending
manifolds interchanged.

• k = 3 resembles thek = 0 case with the dimensions of the ascending and descending
manifolds interchanged.

The set of ascending or descending manifolds together divide the entired-dimensional man-
ifold in 0 till d-dimensional regions called the:

Definition 3.7 (Morse complex). The Morse complex of Morse functionf is the set of ascending
or descending manifolds.

The top-right and bottom-left part of figure 3.6 show the descending respectively ascending
2-manifolds of the 2D density field. Here we see how Morse Theory appliesto cosmology. The
Morse complex of the ascending manifolds naturally divides space in large voidy 2D regions,
which intersect at the 1D medium density filaments, which in turn connect 0D high density
nodes. The extension to 3D space is straight forward. Thus, if the cosmological density field
would be a Morse function the morphological division in voids, walls, filamentsand nodes
follows automatically. Of course there is no guarantee the cosmological density function is
Morse, but as the set of Morse functions is dense we know for sure it can be approximated
arbitrarily well by a Morse function.

It should be noted that the Morse complex in some exceptional cases behaves bad. A math-
ematical complex2 must satisfy that every subspace of an element is contained in the complex.
For Morse functions this doesn’t necessarily have to be the case. Consider for example the de-
scending 1-manifold of the upper saddlew in figure 3.5. It reaches down to the lower saddlev

2Formally defined in definition 3.15.
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Figure 3.6: From density field to its Morse complex [Sousbie, 2011].A 2D density field with its gradient (top left), its descending
2-manifolds (top right), its ascending 2-manifolds (bottom left) and its Morse-Smale complex (bottom right). Critical points are
indiceated by red (maxima), green (saddle points) or blue (minima). The three pink lines on the top left are three integral lines.
On the bottom right the descending/ascending 2-manifolds are bounded the white/black lines. The intersection between ared
descending and blue ascending 2-manifold is a 2-cell shown inpurple and the intersection between the green descending 1-manifold
and previous blue ascending 2-manifold is a 1-cell shown in yellow.

but the latter in not a stable 0-manifold and thus (one) of its endpoints is not part of the set of
descending manifolds. The problem is caused by a degeneracy in the gradient flow: an integral
line both begins and ends at a saddle of the same order or equivalently, theintegral line between
v andw belongs both to the descending 1-manifold ofw and the ascending 1-manifold ofv.
To avoid these situations, integral lines of ascending and descending manifolds should only in-
tersect transversely, where ‘transverse’ is the opposite of ‘tangent’. I.e. when two transverse
lines cross each other they penetrate and do not only touch, making clear for both lines in which
direction they continue. Adding this conditions to Morse functions, we get:

Definition 3.8 (Morse-Smale functions). A Morse-Smale function is a Morse function whose
ascending and descending manifolds intersect only transversely.

Under the assumption of transversality, the intersection of an ascendingp-manifold and a de-
scendingq-manifold has dimensionmin(p, q) or is void and we can define a:

Definition 3.9 (Morse-Smalek-cell). A Morse-Smalek-cell is the non-void intersection of ap-
ascending manifold with aq-descending manifold with dimensionk = min(p, q). Integral lines
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from descending/ascending manifolds all have the same origin/destination, thus integral lines of
a Morse-Smalek-cell have all the same origin and destination.

The set of allk-cells together defines the:

Definition 3.10 (Morse-Smale complex). The Morse-Smale complex of Morse-Smale function
f is the set of allk-cells off .

A Morse-Smale complex is a proper mathematical complex and solves the problemwe en-
countered in the torus above: the boundary of every descending manifold is a union of stable
manifolds of lower dimension. The Morse-Smale complex of a slightly perturbedtorus is shown
in figure 3.7 and the Morse-Smale complex of the density field is displayed in the bottom-right
of figure 3.6.

Figure 3.7: The Morse-Smale complex of our slightly disturbed torus[Edelsbrunner and Harer, 2010].

3.2 Discretization: simplicial complexes

Many datasets in astrophysics, under which galaxy catalogues studied here, are not continuous
but discrete data sets. The simplest way to transform the ideas developed above for the con-
tinuous case to the discrete case is to switch from continuous to discrete topology. There are
many ways to represent discrete topological spaces, an intuitive one is a simple decomposition
in pieces which form asimplicial complex, the main object of study in this section. On simplicial
complexes a discrete version of Morse Theory can be defined, which can be used analogously
with continuous Morse Theory and will be developed in the next section.

We begin where we should begin: with a set of discrete pointsu0, u1, ..., uk ∈ Rd, each
with weight λ0, λ1, ..., λk ∈ R. Combining the set of discrete points with weights gives a
point x =

∑k
i=0 λiui, which is called anaffine combinationof u if

∑

i λi = 1. The set of all
affine combinations is theaffine hull. Depending on the choices of the coefficients, some affine
combinations might be analogous whereas other might really differ. To make this more specific
we define:

Definition 3.11 (Affine independence). Consider two affine combinationsx =
∑

λiuu and
y =

∑

µiui. Two affine combinationsx =
∑

λiuu andy =
∑

µiui are the same⇔ λi = µi

for all i. Thek+1 pointsui are affinely independent⇔ thek vectorsuj −u0 with j ∈ {1, ..., k}
are linearly independent.
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In Rd we have at mostd linearly independent vectors so at mostd + 1 affinely independent
points. An affine combination is called aconvex combinationif all λi ≥ 0. Theconvex hull
(conv) is the set of all convex combinations. We use the convex hull to define the basic elements
of this section, the:

Definition 3.12(k-simplex). A k-simplex is the convex hull ofk + 1 affinely independent points
σ = conv{u0, u1, ..., uk}. In other words, ak-simplexσ is the convex hull spanned byui.

Just as in linear algebra a set of vectors spans up a vector space, a set of affinely independent
points spans up simplex. Consequently, simplices can be seen as the elementary building blocks
of topological structure. Some important properties of simplices are:

Properties 3.2(Simplex related definitions).

1. A non-empty subset of vectors spans a subspace and analogouslya subset of pointsτ span
an subsimplex called a face. A face is proper is the subset isn’t the entire set. Conversely
σ is the (proper) coface ofτ , sometimes denoted asτ ≤ σ with a strict inequality in case
of a proper (co)face.

2. As we will need them often, faces and cofaces of one dimension lower or higher have
obtained their own name: facets respectively cofacets.

3. A set ofk + 1 elements has2k+1 subsets including the empty set (all elements can be
switched on or off) thusσ has2k+1 − 1 faces. It is said thatσ has dimensionk.

4. The boundary ofσ, bd(σ), is the union of all proper faces. The interior ofσ, int(σ), is
everything else, i.e. int(σ) = σ − bd(σ).

Example 3.4(Basic simplices). Figure 3.8 shows some basick-simplices. From left to right: a
vertex (k = 0), a line (k = 1), triangle (k = 2) and a tetrahedron (k = 3). Clearly, a line has
22−1 proper faces (its vertices and∅), a triangle23−1 (three vertices, three lines and∅), etc.
The boundary of a tetrahedron consists of all the vertices, lines and triangles. The remaining
‘inside’ is its interior.

Figure 3.8: Basic simplices.

A set of simplices can form a:

Definition 3.13(Simplicial complex). A simplifical complex is a finite collection of simplicesK
such that:
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1. if σ ∈ K andτ ≤ σ ⇒ τ ∈ K;

2. if σ0, σ1 ∈ K ⇒ σ0 ∩ σ1 is either empty or a face of both.

Example 3.5. Figure 3.9 shows some valid and invalid simplicial complexes. The invalid com-
plexes have either incorrect intersections or missing faces.

Figure 3.9: Example of valid (left) and invalid (right) simplicial comp lexes [Sousbie, 2011].

Some important properties of a simplicial complex are:

Properties 3.3(Simplicial complex related definitions).

1. A subcomplexL is a simplicial complexL ⊆ K. Three specially named subcomplexes
are:

• A full subcomplex: all simplices inK spanned by vertices inL.

• A j-skeleton: all simplices of dimensionj or less, i.e.K(j) = {σ ∈ K|dim ≤ j}.
The 0-skeleton is sometimes named a vertex set.

• A star subset of simplexτ is its set of all cofaces, Stτ = {σ ∈ K|τ ≤ σ}. The
closed star ofτ is the smallest subcomplex that contains the star, which is obtained
by adding all missing faces from the star.

2. The dimension ofK is the maximum dimension of any of its simplices

3. The underlying space ofK, denoted with|K|, is the union of its simplices together with
topology inherited from the ambient Euclidean space.

This can give us a:

Definition 3.14(Triangulation of topological spaceX). A simplicial complexK together with a
homeomorphism betweenX and |K|. A topological space is triangulable if it has a triangula-
tion.

For mathematical purposes it is sometimes easier first to construct a complex abstractly and
consider how to put it in Euclidean space later, if at all. This warrants the following definition:

Definition 3.15 (Abstract simplifical complex). An abstract simplicial complex is a finite col-
lection of setsA such thatα ∈ A andβ ⊆ α ⇒ β ∈ A.
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TheGeometric Realization Theorem[Edelsbrunner and Harer, 2010] guarantees that every
abstract simplicial complex of dimensiond can be realized inR2d+1. A nice example of a
simplicial complex is the Delaunay triangulation, often constructed via the Voronoi diagram.
Both to illustrate the concept of triangulations and given their importance later on in this thesis,
the next section is devoted to them.

3.3 Voronoi diagrams and Delaunay triangulations

Suppose we have a set of points and we want to know the region closest toit. In 2D these regions
can be obtained by first connecting all points and subsequently drawing the perpendicular bisec-
tors of these lines, stopping at the intersection with another perpendicular bisector. This gives us
a diagram as shown in figure 3.10. This process can be generalized to higher dimensions, giving
us a:

Definition 3.16(Voronoi diagram [Okabe et al., 2000; Voronoi, 1907, 1908]). Letu0, ...un be a
finite set of pointsS ⊆ Rd. Each pointui has a Voronoi cellVui

associated with it, defined as
that part of the space which is closest to it, i.e.Vui

= {x ∈ Rd|‖x − u‖ ≤ ‖x − v‖, v ∈ S}.
The set of all Voronoi cells associated with the pointsui, i ∈ {1, n} is the Voronoi diagram.

Figure 3.10: Example of a 2D Voronoi diagram [Edelsbrunner and Harer, 2010]. The area inside each cell is by definition
closest to its center point.

The above can be generalized by giving each pointui a real weightwui
and defining a dis-

tance functionπu(x). For example, when the points represent galaxies their weight can represent
their mass and the distance function their domain of strongest gravitational attraction. These can
be used to define theweighted Voronoi diagram, whose cells are defined as the regions of space
closest to aui ∈ S using the distance function instead of Euclidian distance. Some useful
properties of weighted Voronoi diagrams are:

Properties 3.4.

1. Every point inRd lies closest to some point inS, thus the Voronoi diagram covers the
entire space.
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2. Thed-dimensional inside of a Voronoi cell is defined by the region closest to one of the
pointsui ∈ S. The(d − 1)-dimensional boundary of two cells is equally close to two
pointsui anduj ∈ S. Two boundaries intersect at a(d − 2)-dimensional region closest
to three pointsui, uj anduk ∈ S, etc. In case of the 2D example of figure 3.10, two cells
define a Voronoi segment at their intersection and three cells a Voronoivertex.

The last of the properties above states that ad-dimensional Voronoi region lies closest to 1
point, a(d−1) dimensional Voronoi region lies closest to 2 points, and so on till a 0-dimensional
region is defined by(d+1) points. Consequently, in general no(d+2) or more Voronoi regions
have non-empty intersection; it only happens when(d + 2) or more points lie on a common
(d − 1)-sphere. In this case the point set is calleddegenerate. Probabilistically, the change of
this happening is zero, as a(d − 1)-sphere has measure zero ind-dimensional space. When a
point set is non-degenerate the points are said to lay ingeneral position, which we will assume
for the remainder of the section unless mentioned otherwise.

A dual triangulation can be obtained by connecting alld-dimensional points whose Voronoi
cells meet along a(d − 1)-dimensional boundary, giving us the:

Definition 3.17 (Delaunay triangulation [Okabe et al., 2000; Delone, 1934]). Let u0, ...un be a
finite set of pointsS ⊆ Rd in general position with associated Voronoi cellsVui

. Connecting all
thed-dimensional points whose Voronoi cells meet along a(d− 1)-dimensional boundary gives
the Delaunay triangulation. This triangulation is the dual of Voronoi diagram.

The Delaunay triangulation for the Voronoi diagram above is shown in figure 3.11. Named after

Figure 3.11: Example of a Delaunay triangulation [Edelsbrunner and Harer, 2010]. The triangulation is the dual of the
Voronoi diagram of figure 3.10.

its inventor, the Russian mathematician Delone, the triangulation has some usefulproperties:

Properties 3.5.

1. Delaunay cells are clearly a convex combination of points and thus a simplex, thus the
Delaunay triangulation is a simplicial complex.
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2. Even stronger, amongst all possible triangulations, the Delaunay cells have minimal size
and elongation.

3. It follows directly from the definition that the circumcircle of the Delaunay cell doesn’t
contain any other points besides its vertices. The center of the circumcircleis a vertex of
the Voronoi diagram.

Here, it is important that the point set is non-degenerate. To understandwhy, consider the
2D figure 3.12. On the left(d + 2) = 4 dotted Voronoi segments meet at a common vertex,
resulting in an ambiguity in the definition of the Delaunay triangulation. An arbitrary small
perturbation of any of the points brings the point set in general position and solve the issue. Just
as the Voronoi diagram, the Delaunay triangulation can be generalized to a weighted variant.

3.4 Discrete Morse Theory

Figure 3.12: The importance of a non-degenerate point set
[Vegter, 2012].The degenerate point set (left) results in a degen-
erate Delaunay triangulation. A non-degenerate point set (right)
results in a valid Delaunay triangulation. The dotted linesare
Voronoi segments.

In previous sections we developed and ex-
amplified discrete topology, we now continue
with discretizing Morse Theory. A funda-
mental part of continuous Morse theory are
continuous Morse functions, so our first dis-
cretization step is discretizing them:

Definition 3.18 (Discrete Morse Function).
Let K be a simplicial complex defined over
R. A discrete functionf : K → R assigns
a real valuef(σk) to each simplexσk ∈ K.
The functionf is a discrete Morse function if
and only if for allσk ∈ K:

1. there exists at most one facetαk−1 of
σk such thatf(σk) ≤ f(αk−1);

2. there exists at most one cofacetβk+1 of
σk such thatf(σk) ≥ f(βk+1);

3. all critical points have distinct function
values3.

Example 3.6. Figure 3.13 shows a simple example of a Morse and not-Morse function.

In words, the non-zero Hessian conditions is replaced with a condition on the value of the
simplices: a simplex has a higher value than its facets and a lower values than its cofacets. Only
one exception is allowed in each case. [Forman, 1998] showed that only condition 1 or condition
2 of discrete Morse functions can be satisfied for a given simplex. I.e. actually condition 1 and 2
can be seen as a single condition with an ‘either-or’ construction. Although perhaps not directly
obvious, these conditions assure a preferential discrete gradient flow(to be defined shortly), just
as the non-zero Hessian did in the continuous case. Clearly, when no preferential direction can
be defined the simplex is critical:

3Sometimes the third condition is dropped but in this thesis it will always be required.
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Figure 3.13: Two discrete functions [Forman, 1998].The left function is not Morse asf−1(0) violates rule 2f−1(3) violates
rule 1. The right function is Morse.

Definition 3.19 (Critical k-simplex). A k-simplexσk is a critical k-simplex of discrete Morse
functionf if:

1. there exists no facetαk−1 of σk such thatf(σk) ≤ f(αk−1); and

2. there exists no cofacetβk+1 of σk such thatf(σ) ≥ f(βk+1).

A critical k-simplex hasorderk.

Note that this definition introduces an asymmetry not existing in the continuous case. In the
continuous case a minimum and a maximum are both points in space. Here in the discrete case,
a minimum is a critical vertex (0-simplex) whereas in 3D a maximum is critical tetrahedron
(3-simplex). As a direct consequence, whenf is a discrete Morse function it doesn’t follow
automatically that−f is a discrete Morse function as well. However,−f over the dual complex
is Morse and defines the same topology.

If a Morse function isn’t critical, there are two possibilities left: simplexσk has (i) a facet
with a larger value or (ii) a cofacet with a smaller value. In either case, a preferential relation is
established. Using this, we define a:

Definition 3.20(Discrete gradient vector field). Letf be a discrete Morse function of simplicial
complexK. Then a discrete gradient vector field is defined by coupling simplexes in gradient
arrows (also called gradient pairs) in the following way:

1. If simplexσk has a lower valued cofacetαk+1, then[σk, αk+1] form a gradient arrow.

2. If simplexσk has a higher valued facetβk−1, then[σk, βk−1] form a gradient arrow.

By convention the lowest-valued simplex is the tail and the highest-valued simplex is the head.
Therefore, a discrete gradient actually point in opposite direction of its continuous counterpart.

Example 3.7. An uncomplicated example of a discrete gradient is shown in figure 3.14 and a
more elaborate example is shown on the top of figure 3.16.

To define discrete Morse theory in analogy with its continuous counterpartwe still need the
discrete equivalence of a sublevel set:

Definition 3.21(Discrete sublevel set). LetK be a simplicial complex with discrete morse func-
tion f and denote for simplexσk its facets withβk−1. Consider a threshold levela ∈ R, then
the discrete sublevel set is defined as:

K(c) =
⋃

σk∈K,f(σk)≤c

⋃

βk−1≤σk

βk−1 (3.2)
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Figure 3.14: An example of a discrete gradient [Forman, 1998].An uncomplicated density field over a simplicial comples (left)
and its discrete gradient (right).

In words:K(c) is the set of all simplices on whichf ≤ c, as well as all of their faces.K(c) is a
full subcomplex ofK.

Nicely, [Forman, 1998] showed that to check whether a simplexβ with f(β) > c might be
in K(c) because there is a simplexα with β < α, it is enough to consider all facets ofα.

The first part of continuous Morse theory states when the manifolds of rising sublevel sets
are diffeomorphic, i.e. ‘not essentially different’. For an equivalent discrete notion we require:

Definition 3.22 (Simplicial collapse). Let K be a simplicial complex with simplexσk and one
of its cofacetsαk+1 in K. If σk is not the face of any other cell besidesαk+1 and simplicial
complexL = K − (σk ∪ αk+1), we sayK can be collapsed ontoL. If K can be transformed
into L by a finite sequence of such operations, we writeK ց L.

In essence, simplicial collapse allows simplices to be reduced to their most essential com-
ponents. Figure 3.15 illustrates simplicial collapse: on the left the simplex consisting of triangle
with boundary is collapsed to a point. By analogous operatios, the figure onthe right can col-
lapsed to a circle.

(a) Stepwise simplicial collapse from triangle to point. (b) This complex can be collapsed to a cir-
cle.

Figure 3.15: Illustrations of simplicial collapse [Forman, 1998].

Using, simplicial collapse, we can state the main theorems of discrete classical Morse The-
ory:

Theorem 3.3 (Discrete classical Morse Theory, part I). Let K be a simplicial complex and
a < b ∈ R in the range of a discrete Morse functionf(K). If [a, b] contains no critical values
of f , thenM(a) ց M(b).

Theorem 3.4 (Discrete classical Morse Theory, part II). Consider the same setup as in part
1 and letσk be a critical simplex of orderk with f(σk) = c. If a < c < b and f−1([a, b])
contains no other critical simplicies besidesσk, than M(b) is homotopy equivalent toM(a)
with ak-simplex attached to its boundary.
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Analogously with the continuous case, at every non-critical simplex the discrete gradient
describes a preferred direction. By following this direction, we obtain the discrete variant of the
integral line:

Definition 3.23 (Discrete integral line or V-path). A discrete integral line, in literature called a
V-path, is a strictly decreasing alternative sequence of(k + 1)-simplicesai

k+i andk-simplices

βj
k of the form:

α0
k, β

0
k+1, α

1
k, β

1
k+1, ..., α

n
k , βn

k+1

where each pair{αi
k, β

i
k+1} form a gradient pair andαi+1

k is a facet ofβi
k+1.

Intuitively, a V-path just consists is following the arrows of the discrete gradient, see figure 3.16
bottom left. This allows us to divide discrete space in regions which have the same origin or
destination:

Definition 3.24 (Discrete ascending/descendingk-manifold). The discrete stable or ascending
manifold of criticalk-simplexσk of discrete Morse functionf over simplicial complexK is the
set ofk-simplices that belong to at least one V-path with destinationσk. The discrete unstable
or descending manifold is the set ofk-simplices reached by at least one V-path with originσk.

Note that a discretek-manifold only containsk-simplices, which leaves holes between them and
makes it to define manifold intersections. Therefore, the following definition isof more practical
use:

Definition 3.25(Extended discrete ascending/descendingk-manifold). An extended discrete as-
cending/descendingk-manifold discrete is an ascending/descendingk-manifold together with its
cofacets/facets and their extended discrete ascending/descendingk-manifolds.

The bottom right of figure 3.16 shows an (extended) ascending manifold for our example gradi-
ent field. The set of ascending/descending manifolds forms the:

Definition 3.26 (Discrete Morse complex (DMC)). The discrete Morse complex (DMC) of
Morse functionf is the set of its extended ascending/descending manifolds.

Contrary to the continuous case no transversality conditions need to be imposed, as this is au-
tomatically taken care of by the tessellation itself. This allows us to define directly the discrete
Morsek-cell and makes the introduction of a discrete ‘Morse-Smale’ complex superfluous.

Definition 3.27 (Discrete Morsek-cell). A discrete Morsek-cell is the intersection of two ex-
tended ascending and descending discrete manifolds.

3.5 Practical implementation

How to use the above practically? The point set of a N-body simulation or of adensity data cube
can be triangulated with a Delaunay triangulation, giving a simplicial complex. For N-body
simulations the density at each point can be computed using a scheme like DTFE (cf. section
4.2). In the density case the density at each point is already given. In thissection we will discuss
how to go from a density at each point to a discrete Morse density function over the whole
complex. And how to go from there to a valid discrete gradient.

Discrete Morse functions have three restricting properties (cf. definition3.18). (i+ii) for each
simplex at most one facet may have a higher function value or at most one cofacet may have a
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Figure 3.16: Example of a discrete simplicial complex with discrete gradients and extended manifolds [Sousbie, 2011].A
2D simplicial complex with a Morse function (top left) and its corresponding discrete gradient (top right), with the critical simplices
color coded red (triangles), green (segments) and blue (vertices). The gradient results in two V-paths, two of them are shown in
pink (bottom left). A corresponding ascending 2-manifold isformed by the blue vertices (bottom right), combined with the green
segments and red triangles it becomes an extended ascending 2-manifold.

lower function value and (iii): all critical simplices should have different function values. Note
that the last constraint is in practise always satisfied for cosmological density fuctions. Even if
the function itself doesn’t satisfy the constraint, an infinitesimal change in density values will
make it satisfy the constraints without affecting the physics. To satisfy the first constraint, the
easiest and surest way to implement a discrete Morse function is to assure all facets have a lower
value and all cofacets a higher value. I.e. to make all simplices critical. To do so we start with
known densities at the vertices (ρ(σ0)) and extend the discrete function to higher simplices by
giving it the density value of its highest valued face plus a little bit extra. To stillqualify as a
Morse function the exact value of a little bit extra is not even important, it can simply be an
infinitesimal amountǫ. Concretely, this gives us the following receipt to build a discrete Morse
functionρD:

ρD(σk) =

{

ρ(σk) for k = 0

max (ρD(facet[σk])) + ǫk
∑

ρD(vertex[σk]) for k > 0
(3.3)

46



CHAPTER 3. TOPOLOGY Keimpe Nevenzeel

Note that the receipt guarantees that if every vertex has a different density, the same holds for all
higher dimensional simplices in the triangulation.

A discrete Morse function built by the definition above can be said to be strictlyincreasing
along increasing chains of cofaces. Under this assumption, the definition of a discrete sublevel
set (cf. definition 3.21) can be simplified: when a simplex is in the discrete sublevel set its faces
are in automatically as well. This simplified discrete sublevel set is called a:

Definition 3.28 (Filtration). Letf be a strictly increasing Morse function on simplexK with m
simplices. Starting with an empty set, we add the simplices ofK one by one in order increasing
function value. This gives the following chain of nested subcomplexes:

∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K (3.4)

where due to the condition that the Morse function is increasing, eachKi is a full subcomplex
of Ki+1. Such a chain of subcomplexes is called a filtration.

A filtration will play an important role in building the DMC as we will see in section 3.6.For
the moment, we set the filtration aside and continue with defining a suitable discretegradient.
Actually, from the function definition above a discrete gradient follows quitenaturally: many
simplices have facets or cofacets which differ only by an arbitrarily small amount ǫ. As this is
an arbitrarily small amount, the function values at such a facet-cofacet pair can be interchanged
without changing the physics. Interchanging the density values automaticallymakes the pair
non-critical and allows them to be combined by a gradient pair. Doing so forall simplices in
the triangulation gives (quite probably) many gradient pairs, of which someof them will form
V-paths. The procedure above is illustrated in figure 3.17. It should be noted that there are many
ways to implement a discrete Morse function and gradient field [Lewiner, 2002; Ni et al., 2004].
Although the method explained here is not necessarily mathematically optimal, it does agree
rather well with the physics and is computationally achievable.

3.6 Towards the persistence diagram

3.6.1 Cycles and persistence

The DMC provides us with a natural way to divide a point set (of galaxies)in a cosmic structure
of voids, walls, filaments and nodes; providing us with a mathematical handle onthese mor-
phological components. Large galaxy catalogues contain millions of galaxiesand their Morse
complexes will be enormous. For such large complexes, a simple description of the DMC is
not very insightful and a more systematic way to explore the structures of theDMC is required.
This section focusses on two topics: (i) identifying the relevant features within a DMC and (ii)
identifying their relevance. Regarding the first,homologyhelps out by defining equivalence
relations on chains of simplices. Homology is mathematically rather involved, therefore in this
section we will largely gloss over it. The reader who wants to know the details isreferred to
appendix A.2. Using homological equivalence relations, chains of simpliceswhich make up the
same structure in the DMC are identified. Such chains of simplices are named:

Definition 3.29 (k-cycles). Let K be a simplicial complex of dimensiond. A k-dimensional
feature within such a complex is called ak-cycle, with0 ≤ k < d. In particular a:

0-cycle is an independent component, i.e. a set of simplices not linked to the rest of the complex.
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Figure 3.17: An example of a discrete gradient [Sousbie, 2011].A simplex with values for the vertices (top left), the resulting
values for the higher dimensional simplices following the description of the discrete Morse function presented here (topright) and
its stepwise creation of a discrete gradient throughout thesimplex (bottom). Stepwise explanation of the discrete gradient creation:
(i) initial field; (ii) the low-valued not connected vertices 1 and 2 are initially critical (blue dots); (iii) these vertices differ anǫ
amount with vertices a and b and thus are paired, vertices 4 and4 don’t differ anǫ amount with any segment and thus remain
critical; (iv) vertices 5, 6, 7 and 8 are all paired with unpaired segments with which they differ the smallestǫ amount; (v) segments
a, b and c are already paired; (vi) of the segments d till h segments d, f and g turn out to be critical (green lines), the other were
already paired; (vii) from the segments i till o, those who weren’t paired yet are paired with the triangle with which they differ the
smallesetǫ amount; (viii) all triangles safe for D and H were already paired, whereas D and H turn out to be critical. The remaining
gradient field shows nice V-paths from triangle D to vertex 1 and from triangle H to vertex 2.

1-cycle is a tunnel, i.e. a set of simplices forming a loop with a hole in the middle.

2-cycle is a shell, i.e. a set of simplices bounding an emptier 3D volume.

Figure 3.18: Cycles, their creation and their destruction
[Sousbie, 2011].

An example of each of thek-cycles
named explicitly in the definition is shown
in figure 3.18. As this figure also shows,k-
cycles can be created and destroyed. To un-
derstand cycle creation and destruction, let’s
consider the simple 3D simplexK shown in
figure 3.19. It consists of verticess, t, u, v and
w together with some of its cofacets. Suppose
f is a Morse function defined overK follow-
ing the function prescription of section 3.5. In
this prescription, a given simplex has always a
higher value than its facets and a lower value
than its cofacets. Usingf we can build a fil-
tration in which the simplices enter one by
one as we take an increasing sublevel set of the function4. The figure shows tile by tile the

4This description is called theIncremental Betti algorithm, cf. [Delfinado and Edelsbrunner, 1993].
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Figure 3.19: Construction of a simplicial complex, based upon [Edelsbrunner et al., 2002]. Using the filtration of a Morse
function f defined over simplicial complexK, the complex is constructed simplex by simplex. The introduction of every new
simplex either creates a cycle or destroys it. The text below each tile states the index of the simplex entering the filtration and the
vertices of the simplex, followed by a plus for cycle creationor a minus for cycle destruction. The last step is the additionof triangle
tuv which is hidden from view by the other triangles.

construction of the simplex. The text below each tile states the index of the simplexentering the
filtration, the vertices of the simplex and a plus for cycle creation or a minus forcycle destruc-
tion. In the figure we observe the following:

1. Each vertex creates a new component (snapshots 0, 1, 3, 7 and 11)and thus increases the
number of 0-cycles.

2. Each segment either merges two components thus decreasing the number of 0-cycles (2,
4, 8 and 12)or creates a tunnel and thus increases the number of 1-cycles (snapshots5, 9,
13 and 15).

3. Each triangle either fills a tunnel and thus decreases the number of 1-cycles (snapshots 6,
10, 14 and 16)or creates a shell and thus increases the number of 2-cycles (snapshots 17).

4. And although not visible: each tetrahedron would fill a shell and thus decreases the num-
ber of 2-cycles.

A critical k-simplex has orderk (cf. definition 3.19), so the above can be summarized as follows.
When a simplex of orderk enters the filtration either (i) ak-cycle is born or (ii) a(k − 1)-cycle
is destroyed. Formulated inversely: eachm-cycle is created by am-simplex and destroyed by a
(m + 1)-simplex. Them-simplex which creates the component and the(m + 1)-simplex which
destroys it are together called apersistence pairand their difference in fuction value is their
persistence[Edelsbrunner et al., 2002]. We are now in a position to concretely answer the first
question posed in the introduction of this chapter:what is a feature?. A feature of a smooth
manifold is ak-cycle. To answer the second question,which features are relevant?, we need to
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take a closer look at the concept of persistence. We note that in the discussion above persistence
is defined in an intuitive manner. Using homology, persistence can be defined more rigorously.
We refer the reader interested in a more formal definition to appendix A.3. Anessential part of
persistence is pairing. Which(m + 1)-simplex destroyed a cycle is obvious but it is not directly
clear whichm-cycle gave birth to it. For example, when a segment merges two components
there are two vertices involved and when a triangle fills a tunnel it involves three segments, et
cetera. The most elementary rule is the:

Definition 3.30 (Elder Rule). Consider anm-cycle destroyed by an(m + 1)-simplex. The
(m+1)-simplex is paired with the cycle’s unpairedm-simplex which entered the filtration latest.
I.e. them-simplex which latest entered the filtration is paired first, thus the lowest (eldest)
simplices live longest.

Example 3.8.Using the Elder Rule, persistence has a very intuitive interpretation. Consider the
the 1D manifolds A and B and their discretizations A’ and B’ on the top of figure3.20, together
with a Morse density function defined on them. In 1D there are only two types of non-degenerate
critical points: minima and maxima. Their pairings via the Elder Rule are indicated at the top
of the bottom figure. The persistence of each pair is shown by the green arrows. We see that the
persistence of a pair clearly correlates with the relevance of a feature.

Figure 3.20: Visual illustration of persistence [Sousbie, 2011]. Top: 1D functions A and B with their discretizations A’ and B’.
Bottom: Their minima (blue) and maxima (red), paired via the ElderRule. The length of the green arrows indicates the persistence
of the feature.

The Elder Rule has one caveat: it allows pairing of completely disconnected simplices, one
on one side of the density field and one on the other. In physical scenarios often an additional
constraint is added: the simplices to be paired should be connected via a gradient path.

Now we can also answer the second question posed in the introduction:which features are
relevant?. The relevance of a feature is directly related with its persistence. Low persistent
features are not so relevant whereas high persistent features are very relevant.
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3.6.2 Simplification

To obtain a global view on the topology of the manifold less persistent features can be taken out
by cancelling low persistence pairs, a process calledsimplification. Persistence pairs are formed
by critical simplices with order difference 1. Thus in 3D three types of persistence pairs can
be found: (i) a minimum with a 1-saddle forms a 0-cycle; (ii) a 1-saddle with a 2-saddle forms
a 1-cycle and (iii) a 2-saddle with a maximum forms a 2-cycle. The three types of persistence
pairs require different cancellation procedures [Gyulassy and Natarajan, 2005; Gyulassy et al.,
2006], which we will discuss now.

Actually, the minimum-1-saddle and 2-saddle-maximum persistence pairs are symmetrical
to each other and they can be cancelled in an analogous way. Their cancellation procedure
is shown in figure 3.21. At image (a) the twelve 3-simplices of the complex affected by the
cancellation of the saddle-maximum pair are colored. Image (b) shows the 2-saddles with its
surrounding maximam andn, wheres andm are scheduled for cancellation. Effectively, the
cancellation process can be visualized as mergingm ands into n. The resulting complex is
shown in image (c). We see that the yellow cell died in the process. All arcs and discs that
originally flowed to maximumm are rerouted to maximumn. This is examplified by the arcs
a1, a2 anda3 in image (b) rerouted as arcsb1, b2 andb3 in image (c). Rerouting is practically
achieved by inversing the gradient flow betweenm ands. Image (d) shows that all other discs
and arcs of the original 12 cells are rerouted as well, making three more cellsto disappear.

Figure 3.21: A saddle-max cancellation [Gyulassy and Natarajan, 2005]. See text for explanation.

Saddle-saddle cancellations are a bit more cumbersome, we illustrate it using figure 3.22.
In analogy with the saddle-max case four regions are effected, but forclarity of presentation we
show only one in image (a). The other regions behave analogously.s1 ands2 are the two saddles
which are paired and simplified. This is achieved by rerouting all arcs and discs which flow tos2

to t1 and those flowing tos1 to t2. In the process some additional arcs are created, for example
the arcb betweent1 andt2. Due to simplification some existing cells are reshaped, as shown
in image (c) and (e) and (f). Due to the addition of new arcs, new cells are created: in image
(a) we had 3 cells but in image (b) we have 4 cells. Image (d) shows the newlycreated cell. In
principle, saddle-saddle cancellations can extend the number of cells in a complex significantly.
Nevertheless the manifold is simplified as the number of critical points decreases. Furthermore,
these newly created cells will be simplified out in a later stage, when their extremaare paired
with a saddle and cancelled.

It should be noted that not all persistence pairs can be cancelled. In thesaddle-extremum
case problems occur when two integral lines beginning at a 2-saddle flow tothe same maxi-
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Figure 3.22: A saddle-saddle cancellation [Gyulassy and Natarajan, 2005]. See text for explanation.

mum or two integral lines from a minimum flow to the same 1-saddle. Cancellation of the first
pair will leave the integral lines flowing to the 2-saddle without final destination. In the sec-
ond case integral lines flowing away from a 1-saddle won’t have an origin. Such impossible
cancellations are calledstrangulationsand an example is given in the left tile of figure 3.23.
In the saddle-saddle case another type of impossible cancellation might occur, see the right tile
of previous figure. Impossible saddle-saddle cancellations occur whena cell has exactly two
boundaries, one connecting the saddles to a minimum and the other connectingthe saddles to a
maximum. Cancellation of the saddles will directly connect the minimum with the maximum.
If it would be done a cell calledpouchesis created and such cells are not allowed by the DMC.
Persistence pairs with impossible cancellations do occur in practise, but theirnumber is quite

(a) Cancellation of the maximum 2-saddle pair will
lead to a strangulation [Gyulassy and Natarajan,
2005]

(b) Cancellation of a 1-
saddle 2-saddle pair
will lead to a pouch
[Gyulassy et al.,
2006].

Figure 3.23: Impossible cancellations.

limited. Forcing their cancellation and reconfiguring the manifold accordingly often works in
practise [Sousbie, 2011].

3.6.3 The persistence diagram

For a large simplicial complex like cosmic structure, many persistence pairs will be found. For
each cycle dimension, the persistence pairs indicating the birth and death of the cycle can be
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grouped together in a:

Definition 3.31 (Persistence diagram). Let K be a simplicial complex of dimensiond where
a strictly increasing Morse functionf has paired cycles in persistence pairs. Consider a 2D
diagram with on the horizontal axis the birth ofi-cycles and on its vertical axes the death of
i-cycles, with0 ≤ i ≤ d. Than each persistence pair related to ai-cycle can be represented by
a dot in the diagram with itsx-coordinate the cycle birth-value and itsy-coordinate the cycle
death-value.

Persistence diagrams have several interesting properties:

Properties 3.6.

1. As every cycle is born on a lower value than it dies, persistence diagrams have only dots
in the upper left half of the plane.

2. The diagonal is a birth=death diagonal: cycles born on their die at the same moment, i.e.
they actually don’t exist.

3. The orthogonal distance from a point to the diagonal corresponds withthe persistence of
the cycle.

Example 3.9. The left panel of figure 3.24 shows the persistence diagrams of discretized 1D
density functions A’ and B’ of figure 3.20. In a single glance it can be seenthat A’ has only one
relevant feature and B’ two.

A persistence diagram gives much information at a glance, but 2D diagramsare difficult to
compare visually. Therefore, sometimes a 1D summary can be very useful. Three 1D summaries
that will be often used are:

1. Betti numbers indicate the amount of cycles alive at a certain sublevel set. To be counted
as cycle living at a certain threshold levelα of Morse functionρ, it has to be born before
ρ = α and die after. In the persistence diagram, this corresponds exactly to the square
resting on the diagonal at the threshold level. In 3D space there are threecycles dimensions
thus three Betti numbers:β0, β1 andβ2. Physically, they give respectively the number of
components, tunnels and shells as function ofα.

2. Lifetimes are directly related to persistence. A curve showing the number of cycles as
function of their persistence provides relevant insight in the presence of long lived (im-
portant) and short lived (less important) features. Such a curve corresponds to considering
an axis orthogonal to the diagonal. Mathematically, if we have a cycleσk with birth
densityρb and death densityρd, its lifetimeL(ρb(σk), ρd(σk)) is given by:

L(ρb(σk), ρd(σk)) =
ρd − ρb√

2

Given the large range of density values we will usually work in log-log diagrams. In such
diagrams the distance to the diagonal corresponds with the birth-death fraction:

Llog(ρb(σk), ρd(σk)) =
log10(ρd) − log10(ρb)√

2
(3.5)

=
1√
2

log10

(

ρd

ρb

)
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3. (Product) mean density curvesare relevant in the context of structure formation and
show the number of cycles as function of their density. This provides information about
the number of low density and high density cycles. In the persistence diagram it corre-
sponds to considering an axis parallel to the diagonal. Mathematically, using the same
notation as with the lifetime curves, we get for the mean densityMD(ρb(σk), ρd(σk)):

MD(ρb(σk), ρd(σk)) = (ρb + ρd) /2

In the log-log diagrams we work with here, we use the product mean density instead:

MDlog(ρb(σk), ρd(σk)) = 1
2(log10(ρb) + log10(ρd))/2 (3.6)

= log10 (
√

ρb · ρd)

The three 1D summaries are visualized on the right panel of figure 3.24. Incosmological datasets

(a) (b)

Figure 3.24: A persistence diagram.Left the persistence diagram of figure 3.20 and right its three 1D persistence measures.

hundreds of thousands of cycles will be found. Putting them all in a diagram will give a compu-
tationally very demanding point set. Therefore, in many situations below persistence diagrams
will be transformed to 2D persistence histograms. We obtain histograms by putting a raster of
boxes over the diagram and place each persistence point in its corresponding box. Subsequently
the boxes are transformed to densities, i.e. to the number of cycles in each box per Mpc3. It
should be noted that the exact density depends on the chosen box-size.Changing from persis-
tence diagram to a persistence histogram has an additional advantage: persistence histograms
can be box-wise substracted from each other. This results in a persistence difference diagram,
showing where and how much two persistence diagrams differ. Physically,the power of such
diagrams is that it shows at a single glance which of the two density fields underlying the per-
sistence diagram has more persistent structure.

Persistence diagrams are the culmination of this chapter. Founded on a mathematically
sound basis, they show all physical features and their relevance in a single glance. Throughout
the rest of this thesis, we will use persistence diagrams and their 1D summary curves to analyse
the topology of cosmic structure.
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CHAPTER 4

Algorithms and software

Previous chapters described the cosmic web and a topological formalism to capture the mor-
phology of the web. Building on the concepts developed there, this chapterwill explain how the
topological formalism is technically implemented. The main output will be a Discrete Morse
Complex (DMC, cf. definition 3.26): a mathematical structure in which all the voids, walls,
filaments and nodes are identified in the form of simplices, the building blocks ofdiscrete topo-
logical space. The DMC simplices can be ordered based on density value,such an ordered
set is called a filtration (cf. definition 3.28). The filtration serves as basis to determine which
simplices form a persistence pair (cf. section 3.6), i.e. a feature like a component or tunnel. Per-
sistence pairs are the points of persistence diagrams, the main topological tool this thesis uses
for analysis.

In the end we are after the influence of DE on the morphology of cosmic structure. Therefore,
before topology comes into play, a first step is the creation of model universes which are ruled
by different forms of dark energy. Using the galaxy distributions (i.e. point sets) from such
simulations, two different approaches exist:

1. Based on the particle positions a DMC can be computed directly.

2. The particle positions can be used to compute the density field, which is sampled on a
regular grid. The DMC is computed on this regular grid.

The first method is fully adaptive to the density field: high density regions aresampled in more
detail. The second method samples space at regular intervals and thus has more samples in low
density regions. In general the output of both will be analogous, but not similar. Both methods
will be considered at various stages in this thesis but with a preference for the second, as low
density regions will show the largest difference between DE models.

The sequence of steps above, from data generation to persistence diagram, form a data
pipeline. A schematic illustration of the pipeline is shown in figure 4.1. In that figure from
left to right, the following algorithms and software packages are mentioned:

1. Physically realistic particle distributions are generated by V. Springel’s GADGET-2, with
dark energy models by P. Bos.

2. To generate a density field on a regular grid, we use DTFE version 1.2 by R. v.d. Weygaert,
W. Schaap and M. Cautun.
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Figure 4.1: Graphical overview of the data pipeline.

3. The DMC directly based on the particle positions is computed using P. Pranav adapted
version of D. Morozov’s Dionysus. The DMC of the density case followsfrom P. Pranav’s
implementation of P. Bendich’s ideas.

4. The persistence pairs are identified using U. Bauer’s PHAT, with adaptations of P. Pranav.

5. Data analysis is performed with custom methods or Matlab.

In the sections below, each element of the data pipeline is considered in more detail. For each
element we (i) explain the general idea behind the algorithm or software; (ii)give a description
of the specific implementation of these ideas in the algorithm and (iii) mention the settings or
input we used.

4.1 Gadet 2: model universes

Creation of model universes can be done in two ways: using a fluid approximation or with
N-body simulations. The first are computationally less demanding but loose their accuracy
in highly non-linear cases (cf. section 2.5). N-body simulations on the otherhand are much
more computationally demanding but retain their accuracy also in the non-lineardomain. At
low redshifts structure is highly non-linear. As differences between various DE models might
be small, we choose N-body simulations for optimal accuracy. Based on the disquisition of
[Hockney and Eastwood, 1981], the general ideas behind N-body simulations are set forth in
subsection 4.1.1. Subsection 4.1.2 explains how these ideas are implemented in the N-body
code Gadget 2. Finally, subsection 4.1.3 gives the details of the Gadget 2 settings used in this
thesis.

Within the data pipeline: the input of this step is (i) a law modeling gravitational effects of
some dark energy model and (ii) a random number as input for the initial conditions. The output
are data cubes at variousz. Each data cube contains the positions ofn particles who evolved
under the gravity of matter and the DE model assumed as input.

4.1.1 N-body algorithms

N-body simulations are used to solve the N-body problem. In a gravitational context the N-body
problem can be stated as: suppose we haven particles indexed byi with initial positionsxi,
initial velocitiesvi and massesmi, how do the positions and velocities of these particles evolve
in time? The simplest and most intuitive solution is theparticle-particle(PP) method. In this
method, time variable quantities are assumed constant on a small intervaldt. On each such
dt interval, the force of each particle on all other particles is computed. Although conceptually
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straightforward, computation of the force of every particle on every other particle requiresO(n2)
operations. This is very inefficient and consequently many alternatives have been developed.
The simplest of these is theparticle-mesh(PM) method. This method overlays space with an
array ofm mesh points, withm << n, and approximates the force or potential values with
the mesh values. Poisson’s equation is used to relate the force to the mass density of the mesh.
Interpolation of particle properties to mesh points goes asO(n) and solving Poisson’s equation
on the mesh goes asO(m log(m)). Thus for someα, β ∈ R the number of required operations
goes asαn + βmlog(m) ∝ n, asm << n. A huge improvement but at significant cost: for
nearby particles the mesh approximation results in very limited resolution and gives large errors.
For far away particles on the contrary the mesh approximation can be computed with Fourier
based methods, which are near exact.

An often used approach combines the PP and the PM method to aP3M method, whichs
splits the total forceFij in a short range component which uses the PP method and a long range
components which uses the PM method. Splitting is done by overlaying an additional coarse
mesh which determines which particles are closeby and which far away. Using linked lists, the
overhead of storing which particles are where is minimal.

The P3M method overcomes the inaccuracy of the PM method by splitting the simulation
box in a short range and long range part. Another way to deal with the relative inaccuracy of
the PM method is by making the grid finer on places where this is necessary. A finer grid is
obtained by dividing a cell in daughter cells, and these daughter cells where needed again in
daughter cells, and so forth. This is the basic idea behindTree algorithms[Barnes and Hut,
1986], which apply the following rules:

1. Every cell is considered a (pseudo-)particle with the mass of all particles inside located at
the centre-of-mass of these particles.

2. If a pseudo-cell is far away enough, it doesn’t need to be resolved.

A tree is constructed as follows:

1. Begin with an empty cubical root cell that contains the system. One by one,load the
particles in the root cell.

2. If any two particles fall in the same cell, divide that cell in 8 daughter cells.Continue until
all particles are loaded.

3. Each cell has a mass, a centre-of-mass coordinate and a link to its daughter cells.

A graphical illustration of a tree is shown in figure 4.2(a). Instead of placing all particles in
a different box, we can keep a few together if that grouping has only a small effect on the
accuracy. The accuracy is determined by a parameterθ, which determines or cellj is divided
in its daughter cells. Letl we the length of cellj andD the distance from its centre-of-mass to
particlei, than the cell is resolved in its daughters ifl/D < θ and used unresolved otherwise. A
graphical illustration is shown in figure 4.2(b).

The efficiency of Tree algorithms is determined by two things: (i) the tree and (ii) force
computations. Leth be the number of subdivisions required, i.e. the height of the tree, andB
the total box size. Than we can write two equations for the average size of aparticle bearing
cell:

• based on the number of divisions we can writel = (1
2)hB;
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(a) The Tree structure boxing of a 3D encounter of twoN = 64
systems.

(b) The Tree structure boxing of a 2D encounter (left) and theforce
computation on particlex (right). The number in the boxes
indicate the number of unresolved particles inside.

Figure 4.2: Three structures boxings [Barnes and Hut, 1986].

• using that the average size of a particle bearing cell is of the order of the interparticle
spacing we getl = N−1/3B.

Equating both gives:

(1
2)h ∝ N−1/3 ⇔ h ∝ log2(N

1/3)

This equation shows that tree construction as well as propagating mass andcentre-of-mass in-
formation through a tree of sizeh goes asN log(N).

To find how force computations depend onN , suppose we increase the number of particles
by a factor of 8. In essence this means we add 7 analogous trees to the current tree. The 7 new
trees will give a modest number∆j extra terms to the force computation. But very importantly,
∆j depends onθ and not onN or the size of the system. A linear increase in∆j while the
number of particles increased with a factor 8 corresponds with an efficiency ∝ log(N). Thus,
the total efficiency of a Tree algorithm goes asN log(N).

Tree methods can be very accurate. Furthermore, they have well understood errors in terms
of multipole moments of the mass distribution of the unresolved cells. Exactly that is whatmul-
tipole algorithms[Greengard and Rokhlin, 1997] use for an even more accurate and fast force
computations on special configurations. The essence of multipole algorithms isthat Poisson’s
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equation can be rewritten as a series expansion in complex space. Consider two groups of sep-
arated particles, for example two groups of galaxies with stars. Both creating and evaluating a
multipole expansion of the forces of one group on the other group are linear operations. Thus for
groups of separated particles the multipole method is linear. In the most modern N-body codes,
combinations of all methods described before are used to provide the optimaltradeoff between
accuracy and minimal system requirements.

So far we only discussed collisionless (dark matter) particles moving under the gravitational
force. Modern N-body software packages like Gadget 2 can also deal with gas particles, whose
motion is determined by hydrodynamics. Traditionally gas can be dealt with in two ways, as we
saw also in subsection 2.5.3. In the Eulerean method space is discretized andgas is represented
using hydrodynamics on a (possibly adaptive mesh). The Lagrangian method divides the gas
into a set of discrete elements, ‘particles’. These particles have a smoothinglength, over which
their properties are smoothed. Inversely, this means the properties of a particle can be found
by considering the properties of all other particles within the smoothing range. This gives us
Smoothed Particle Hydrodynamics (SPH) and allows relatively similar treatment between par-
ticles and the gas (particles). In the cosmic web simulations under study here,no gas is used.
Therefore, we refrain from an overview of computational hydrodynamics and refer the interested
reader to [Veldman and Velicka, 2010] for an excellent introducationarytreatise on the subject.

4.1.2 The Gadget 2 code

With the general ideas behind N-body simulations discussed in the previous subsection, we now
turn our attention to the details of the N-body code used in this thesis: Gadget 2[Springel,
2005]1. Gadget 2 is a Tree-SPH code and an upgrade of the earlier Gadget 1 code. The public
release of Gadget 2 contains two types of physics: (i) collisionless dynamics and (ii) hydrody-
namics.

The collisionless dynamics uses a multipole extended tree code, optionally with a fast PM
method approximation for large distances. The simulation space can both be a static Newtonian
space as an expanding space, in the last case comoving coordinates andthe peculiar potential
are used (cf. equation 2.15). Three important properties in which tree codes differ are (i) the tree
structure; (ii) which multipole moments are computed and (iii) the cell opening criterium used.

For grouping Gadget 2 uses the standard octonal tree structure as explained in above. Al-
though alternatives to octonal trees exist (amongst others binary trees), octonal trees have rela-
tively little internal cells and thus a low memory consumption. Also, octonal trees fit well with
the parallelization strategy employed in Gadget 2.

Memory consumption is further limited by only evaluating monopole moments, instead of
higher order multipoles. Besides the obvious advantage of reducing total memory it also makes
computations relatively fast: many nodes can be kept in the processor cache and as such are
quickly accessible.

Writing M andl for the mass respectively size of a cell a distancer away from a particle
whose force is computed, Gadget 2 uses the following opening angleθ:

GM

r2

l

r
≤ θ|a|

with a the size of the total acceleration obtained in the previous time step. Physically, this
criterium compares an estimate of the truncation error (left side of the equation) with the total

1Gadget 2 can be downloaded fromhttp://www.mpa-garching.mpg.de/gadget/ .
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expected acceleration (right side of the equation). In this way, a limit is set tothe absolute force
error introduced in each particle-node interaction. For the first time step, the ordinary opening
criterium is used. For very closeby nodes, the opening criteria above can give very large or even
unbounded errors. To prevent this from happening, an extra opening criterium of

|rj − cj | ≤ 0.6l

is implemented, withj ∈ {1, 2, 3}, rj the particle coordinates andcj the geometric centre of the
node.

Walking deeper in a tree requires more computational resources. To prevent deep walks,
space can be splitted in a closeby region, for which the tree is walked, and afar away region that
can be approximated by the PM-method. Not only does this decrease the totalcomputational
cost, it also increases the accuracy of very long-range force contributions as is shown in figure
4.3.

A SPH approach to hydrodynamics is taken, with two technical details. First, toassure
entropy conservation the internal state of each particle is defined in terms ofthe entropy per unit
mass instead of the ‘default’ thermal energy. Second, as usual with the Lagrangian approach
an artificial viscosity needs to be introduced to inject entropoy in shock fronts. Gadget 2 uses
the viscosity derived by [Monaghan, 1997], combined with an additional viscosity-limiter. The
last prevents unphysical viscosity induced excess acceleration and makes time integration more
stable.

4.1.3 This Gadget implementation

The astrophysical input of the Gadget 2 N-body simulation consists of two elements: (i) the
initial conditions and (ii) the DE models used. For the initial conditions, a primordial Gaussian
random field (cf. subsection 2.5.1) is used, evolved toz = 60 using the Zel’dovich approxima-
tion (cf. subsection 2.5.3). The three dark energy models used are LCDM, RP and SUGRA (cf.
section 2.4 for details). An overview of the DE model specific parameters is given in table 4.1.
The DE models are normalized at the cosmic microwave background using:

σ8,DE = σ8
DΛCDM(zCMB)

DDE(zCMB)
(4.1)

with D the linear growth factor (cf. subsection 2.5.2) andzCMB = 1089.
The simulations involve2563 dark matter particles (no other particles) with identical masses

of 0.443 · 1010h−1M⊙, living in a cubic box with axes of300h−1 Mpc and periodic boundary
conditions. The general cosmological parameters are from the WMAP 3 data: Ωm = 0.268,
ΩΛ = 0.732, Ωb = 0.044, h = 0.74, σ8 = 0.776 andn = 0.947. Snapshots are available at 8
redshifts:z = 3.80, z = 2.98, z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10 andz = 0.0.
For more details on the simulations, we refer to [Bos et al., 2012; E.G.P., 2010]. For each dark
energy model five different realizations are used, namend run 14 - 18.The different runs of the
same DE model differ in random seed number used for the primordial Gaussian field.

4.2 DTFE: from particles to densities

In many situations the density field underlying a particle distribution is needed. Based on the
exposition of [Schaap, 2007], subsection 4.2.1 explains how to obtain it. The Delaunay Tesse-
lation Field Estimator (DTFE) method [Schaap and Weygaert, 2000; Schaap, 2007] turns out
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Figure 4.3: Forcef decomposition (top) and relative force error∆f/f (bottom) of the Gadget 2 Tree-PM scheme [Springel,
2005].The plots are for several test particles as function of distancer from a unit mass particle in a box of sizeL. In the top panel,
the short range Tree force is shown as dotted-dashed line andthe long range PM force as solid line. As one can see, for spatial split
scalesrs (vertical dashed line) of the same order and slightly larger than the mesh size (vertical dotted line), the relative error is
only in the order of percents. The relative error can be descreased by increasingrs.

Model α w0 wa σ8

ΛCDM - -1.0 0.0 0.776

RP 0.347 -0.9 0.0564 0.746

SUGRA 2.259 -0.9 0.452 0.686

Table 4.1: DE models parameters used in the Gadget N-body simulationsσ8 is fixed atz = 0 and is the same for all models at
zCMB = 1089. w0 is also fixed atz = 0 andwa is determined using aχ2 fit. Cf. section 2.4 for a conceptual overview of the DE
models.

to be a natural choice for a density field reconstruction. The algorithmic implementation of the
DTFE method is dicussed in subsection 4.2.2. Subsection 4.2.3 elaborates on the specific DTFE
setting used within this thesis. The DTFE code used here returns the interpolated densities at
a regular grid. Compared with interpolation to the original particle positions, thisgives better
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sampling of low density regions.
Within the data pipeline: the input of this step is a data cube containing the positionsof n

particles. The output is a data cube with the interpolated density field values ona regular grid.

4.2.1 From particles to densities

Consider a continuous fieldf(x), observed at positionsxi with valuesf̃i, i{1, ..., N}. An often
used method to reconstructf(x) based on the observed{f̃i} is to smooth the observed values
out. Concretely, this is done by filtering the data with a filter fuctionW (x), giving the approxi-
mated field:

f̂(x) =

∑N
i=1 f̃iW (x − xi)

∑N
i=1 W (x − xi)

(4.2)

Often chosen filters are circular or spherical Gaussians. Although conceptually simple, both
from a practical as well as from a theoretical point of view the method is plagued with problems.
Practically, filtering removes features smaller than the filtering function used.Consequently,
the geometry of anisotropic features with length scales smaller than the filter mightchange
in some directions. Theoretically, applying a filter means implicitely using a mass-weighted
reconstruction, which is best appreciated by simply writing out formula 4.2:

f̂(x) =

∑N
i=1 f̃iW (x − xi)

∑N
i=1 W (x − xi)

=

∫

dyf(y)W (x − y)
∑N

i=1 δD(y − xi)
∫

dyW (x − y)
∑N

i=1 δD(y − xi)
(4.3)

=
dyf(y)W (x − y)ρ(y)

dyW (x − y)ρ(y)

with ρ(y) the volume density of the sampling points. I.e. the reconstructed fieldf̂(x) is the
real fieldf(x) filtered byW (x) and weighted by the mass of the sampling points. It can be
seen as a mass-weighted estimate off(x). Unfortunately analytical calculations mostly involve
a volume-weighted estimate because stochastic integrals are volume-weighted:

fvolume(x) =

∫

dyf(y)W (x − y)
∫

dyW (x − y)
(4.4)

The difference between equations 4.3 and 4.4 is due to fact we only have knowledge of the
field at the sampling points. In essence, using a filter to reconstruct the density field confuses a
mass-weighted with a volume-weighted estimate, disqualifying this approach.

Volume-weighted reconstruction is possible using interpolation. The interpolated field value
at any arbitrary point can be computed using a linear combination of field values at theN
sampling points. The linear coefficients have the two constraints: (i) they should sum up to one
and (ii) at the location of the sampling points the interpolated values should equal the measured
values.

A huge number of interpolation schemes are available. Conceptually the simplest is zeroth-
order interpolation: divide the space in regions closest to each sampling point, i.e. a Voronoi
diagram (cf. definition 3.16), and assume a constant density within each cell. Of course this
gives discontinuities at the boundaries, which can be avoided by using a first-order interpola-
tion scheme. An illustration of zero and first-order interpolation is shown in figure 4.4. In one
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dimension first-order interpolation is straightforward linear interpolation. Inmore dimensions
this approach can be generalized by covering the space with a triangulationwhich has the sam-
pling points as its vertices. Inside the hyper-triangles one can interpolate between the values
at the vertices: take an arbitrary pointx inside thed-dimensional hyper-trianglej with vertices
x0, ..., xd. Than the function valuef(x) can be approximated with:

f̄(x) = f̂(x0) + ∇f̂ |j · (x − x0) (4.5)

To solve this equation we still need the the gradient function∇f̂ . It can be found by solving
equation 4.5 at thed vertices, where all parts except the gradient function are known.

Figure 4.4: Visual illustration of interpolation schemes [see Schaap,2007, chap. 4].Overview of zeroth-order interpolation
(top row) and first-order interpolation (bottom row) in 1D (left) and 2D (right).

The choice of triangulation determines the accuracy of the triangulation. [Bernardeau and Weygaert,
1996], [Schaap and Weygaert, 2000] and [Pelupessy et al., 2003] have shown that a Delaunay
triangulation (cf. definition 3.17) is the preferred triangulation, because:

• It is fully adaptive, i.e. it automatically probes regions at maximum resolution.

• Delaunay triangles have minimal size and elongation, preferable propertiesfor a relatively
local field.

• Linear interpolation requires the definition of neighbor intervals. For the Delaunay trian-
gulation such a definition rols naturally out of its dual, the Voronoi diagram.

For fields of which the measurements directly provide field values, for example when measuring
velocities or temperatures, we are done: interpolation with a Delaunay triangulation provides
an optimal approximation of the underlying field. Things are more complicated when trying
to recover the density field (kg m−3) based on particle masses (kg). Then, using the particle
masses and the particle positions, density values have to be estimated. An intuitive choice for
the density estimate of particlei might beρ(xi) = m

VVor,i
with VVor the volume of the Voronoi cell

corresponding to the particle. Unfortunately, it turns out such a definitiondoesn’t conserve mass
[Schaap and Weygaert, 2000] and thecontinguous Voronoi cellshould be used instead. The
continguous Voronoi cell is defined as the agglomerate of allK Delaunay tetrahedra containing
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point i as one of its vertices. It has volumeWVor,i =
∑K

j=1 VVor,i and is usedd + 1 times in a
d-dimensional field, giving the density estimate:

ρ(xi) = m(d + 1)/WVor,i (4.6)

Figure 4.5 illustrates the difference between the volumes given by the Voronoi cell and by
the continguous Voronoi cell. Using the point sample as density estimator puts constraints
on the sampling process. The procedure is only valid if the points constitute a fair sample of
the underlying distribution, i.e. if the points form a Poisson point process ofthe density field
[Weygaert and Schaap, 2009]. Therefore, DTFE density estimates are quite sensitive to Poisson
noise.

Summarizing the above we obtain the DTFE method, which estimates the underlying (den-
sity) field of a set of discrete observations (of particle positions). Concretely, DTFE consists of
the following steps:

1. Construct the Delaunay triangulation corresponding to the particle distribution.

2. Use the Delaunay triangulation to estimate the density values at the particle positions.

3. With the previous two steps as input for linear interpolation, a representation of the under-
lying field can be computed.

4. The field can be outputted to a regular grid.

Figure 4.5: The Voronoi cell (left) and the continguous Voronoi cell (right) of a point [Schaap and Weygaert, 2000].

4.2.2 The DTFE algorithm

An excellent and efficient algorithm to obtain the DTFE field is the publicly available code of
[Cautun and Weygaert, 2011]2. The code is written in C++ using the CGAL (Computational
Geometry Algorithms Library) library for geometrical algorithms, OpenMP forparallelization,
the Boost C++ libraries and the GNU Scientific Library. The code allows periodic boundary
conditions and more detailed interpolations in interesting subregions. Input boxes can be square,
cubic, redshift cone and user defined. Many scalar and gradient scalar fields are available. The
output is a regular grid file with DTFE obtained field estimates at each grid point.

2Cautun et al’s DTFE code can be downloaded fromhttp://www.astro.rug.nl/ ˜ voronoi/DTFE/dtfe.html
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Interpolation to a regular grid can be done in two ways: (i) each grid cell gets the interpolated
density value of the grid-centre and (ii) a volume average is used. The second method is much
less affected by Poisson noise, especially in the high density regions. Butvolume averaging is
very computationally demanding. Therefore, volume averaging is implemented by random sam-
pling, using either Monte Carlo integration inside the Delaunay cells or Monte Carlo integration
inside the grid cells.

4.2.3 This DTFE implementation

For this thesis, we used DTFE version 1.2 with periodic boundary conditionsand interpolation
option (ii). A regular output grid with as many grid cells as particles was chosen.

4.3 DMC and filtration builders

Gadget gave us a particle distribution, which was possibly transformed in a regularly sampled
density field using DTFE. The first step in the topological part of the data pipeline is the com-
putation of the DMC and subsequently its filtration. For these steps the density and particle
scenarios use different algorithms. We will discuss both.

4.3.1 Density DMC’s and filtrations

The output of Cautun’s DTFE program is a regularly sampled grid, whereeach voxel has a den-
sity value associated to it. To build the DMC of a regular grid and compute its filtration, an algo-
rithm based on the ideas of [Bendich et al., 2010] and concretely implementedby [Pranav et al.,
2013a] is used. The algorithm consists of three steps:

1. By iterated division of the datacube in 8 smaller datacubes a tree is created, much akin
the procedure described in section 4.1.1 above. Although a stopping criterion can be set,
here subdivision continues until individual voxel level is reached. For the2563 = (28)3

datacubes considered here, this requires 8 subdivisions.

2. Each voxel of the tree can be seen as the set of points ‘closest’ to voxel center, much alike
Voronoi cells (cf. definition 3.16). Considering the set of voxel centers as vertices, its dual
Delaunay complex can be created. Note that doing this directly on the regulargrid runs
into problems because each vertex has six nearest neighbors. This makes it impossible to
unambigously define the correct trianguluation, much alike the situation sketched in figure
3.12. Therefore, all voxels are slightly perturbed in the direction of the maindiagonal,
transforming the cubic cells in simple polyhedra. Concretely, the voxel grid coordinates
(i, j, k) are shifted in the following way:(i, j, k) 7−→ (i − ǫm, j − ǫm, k − ǫm), with
ǫ > 0 but very small andm = i + j + k. The effect of such a transformation is shown in
the left panel of figure 4.6. The resulting triangulation looks the same at all voxels and is
illustrated in the right panel of figure 4.6. By assigning function values to edges, triangles
and tetrahedra as described in section 3.5, a DMC is obtained.

3. The last step is ordering all the simplices by function value. In terms of computing power
this is the most expensive step of the three. It can be simplified by first ordering only the
vertices. Than, for each vertexp the simplices who havep as its highest valued vertex can
be added. In the filtration, they come directly afterp.
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(a) Perturbed cubes of a regular grid. (b) The closed star (cf. properties 3.3) of a vertex.

Figure 4.6: Illustration of a perturbed regular grid complex [Bendich et al., 2010].

4.3.2 Particle DMC’s and filtrations

The particle case is analogous to the density case [Pranav et al., 2013b] but simpler. At the posi-
tion of each particle, the density is estimated by its continguous Voronoi cell (cf. figure 4.5). The
Delaunay triangulation of the particle positions gives rises to a simplicial complex. Extension of
the density function over the higher dimensional simplices can be done as described in section
3.5 and results in a DMC. Subsequently, all simplices can be ordered by function value.

The Gadget particle simulations had periodic boundary conditions. Therefore, the DMC and
the resulting filtration is computed assuming periodic boundary conditions as well. Computa-
tionally, this is achieved by glueing a copy of the data cube to all its 6 faces, 12edges and 8
vertices and performing computations on the triangulation on the 27 data cubestogether. Later
on, the triangulation is updated by identifying simplices from the opposite faces,after which the
26 copies are discarded.

We note that computation of the DMC and its filtration is the bottleneck of the data pipeline
is terms of hard disc memory. Although the exact size of a DMC/filtration file depends on the
data cube under consideration, for the2563 element data cubes considered here a single file can
exceed the 10 GB when stored as ASCII data, the default program output. For 8× 5 runs× 3
DE models this requires about 1.2 TB of data storage. In one of the earlier stages of this thesis
it was attempted to compute the DMC and filtration of uniform random noise distribution. This
attempted failed when the hard disc used got out of memory after 1.8 TB of datawas written to
it in a few hours. In the end, using excessive amounts of hard disc memorywas circumvented
by feeding the filtration files directly to PHAT without storing them.

4.4 PHAT: computing persistence pairs

In the previous section we obtained a filtration, here we use the filtration to compute the cycles
and Betti numbers. First, we give a general overview of computational persistent homology:
what is the general idea and which options are there? Subsequently we focus on the software
package PHAT (Persistent Homology Algorithm Toolbox) used here and describe it in detail.
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We end this section with a short note one some issues of the implementation of PHATused
within this thesis.

4.4.1 Persistent homology computation

Edelsbrunner [Edelsbrunner and Harer, 2010] more or less definedthe field of computational
persistent homology with the introduction of the first computational homology algorithm. Their
algorithm is based on matrix reduction and very illustrative. It is the first algorithm we de-
scribe. Unfortunately, its explanatory power goes at the cost of its efficiency, as forn simplices
it scales asO(n2). Consequently, several refinements or alternative approaches are developed,
we describe them afterwards.

The ‘standard’ algorithm [Edelsbrunner and Harer, 2010]

Let K be a simplicial complex withn simplices and suppose we have its filtration. We denote
the simplex on thei-th index in this filtration withσi. Than we define ann×n boundary matrix
δ which stores for all simplices its facets and cofacets in a very structured way:

δ[i, j] =

{

1 if σi is a facet ofσj

0 otherwise
(4.7)

Formulated in words: each colum indicates the facets ofσj and each row indicates the cofacets
of σi. A simple simplicial complex is shown in ifgure 4.7. Its filtration isσ1 < σ2 < ... < σ9,
giving the boundary matrix shown for clarity in table 4.2. Note that the boundary matrix is
an upper triangular matrix, as by construction the faces of a simplex are at lower indices than
the simplex itself. We definelow(j) as the row index of the lowest 1 in columnj. If the

Simplices σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

σ1 1 1 0 0

σ2 1 0 1 0 1

σ3 0 0 1

σ4 1 1 0

σ5 1

σ6 1

σ7

σ8 1

σ9

Table 4.2: Boundary matrix for the simplicial complex shown in figure 4.7. Empty matrix entries indicate zeros.

entire colum consists of zeroslow(j) is undefined. In our example, we directly see thatlow(1),
low(2), low(4) and low(8) are undefined andlow(3) = 2. The only operation allowed onδ
is subtraction of columns from left to right. Starting at the leftmost columnj1, we apply this
operation as often as necessary to make sure thatlow(j1) 6= low(j) for all j 6= j1. Previous is
repeated for the second columnj2, the third columnj3 up till the last columnjn, after which the
matrix δ is transformed to thereduced matrixR. In our example matrix reduction is very easy:
only column 6 can be reduced by subtracting columns 3 and 5. The reducedboundary matrix is
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Figure 4.7: A simplicial complex to illustrate the concept of boundary matrix. 0-simplices are indicated in black, 1-simplices
in green and the 2-simplex in blue. The boundary matrix is shownin table 4.2 and its reduced variant in table 4.3.

Simplices σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

σ1 1 1 0 0

σ2 1 0 0 0 1

σ3 0 0 1

σ4 1 0 0

σ5 1

σ6 1

σ7

σ8 1

σ9

Table 4.3: Reduced boundary matrix for the simplicial complex shown infigure 4.7. Empty matrix entries indicate zeros.

shown in table 4.3. Algorithmically, previous looks like:

Algorithm 1 Basic persistent homology computation algorithm.
R = δ
for c = 1 : n do

for i = c + 1 : n do
if low(ji) = low(jc) then

ji+ = jc

end if
end for

end for

Alternatively, if we let matrixC denote the column additions required to reduceδ to R, we
can write previous in matrix notation asR = δC. Reduced matrixR has a straightforward
interpetation:

1. If column j of R is zero, simplexσj has no boundary and thus represents a new cycle
which enters the filtration at indexj. Indeed, in our example columns 1, 2, 4 and 8
correspond to vertices and thus new 0-cycles and their columns are zerofrom the start. By
reduction column 6 became zero as well. A short look at its simplicial complex in figure
4.7 shows that when column 6 enters the filtration, a tunnel is created i.e. a newone-cycle
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is born.

2. If column j of R is non-zero simplexσj has facets and thus connects two components
or fills a hole. Either way, a cycle dies. Let rowi = low(j) indicate its highest valued
facet, than all other faces ofσj entered the filtration at an earlier stage thanσi. Then,
pairing via the Elder Rule (cf. definition 3.30) implies that simplicesσi andσj are paired.
Thus for non-zero columnj the cycle born ati = low(j) dies. In our example simplex
corresponding to the non-zero columnσ3 unites componentsσ1 andσ2 and is paired with
the latter. Analogously,σ5 unites{σ1, σ2σ3} with σ4 and is paired with the latter, etc.

Persistent homology (cf. appendix A.2) follows directly: the number of zero columns that corre-
spond tok-simplices gives the rank ofZk and the number of non-zero columns that correspond
to k-simplices gives the rank ofBk. Using equation A.5 their difference givesβk. The birth,
death and persistence of cycle-classes follows directly from the(low(j), j) pairs.

Although conceptually very simple, the double for-loop shows the algorithm isO(n2),
which is not very efficient. Furthermore, the memory requirements also scaleasO(n2). Both
become quickly prohibitive for large datasets. Some direct efficiency upgrades were provided
by [Edelsbrunner and Harer, 2010] themselves. For large datasetsδ contains many zeros. Thus
a sparse matrix representation in the form of an array of simplices with each element containing
linked lists to its facets saves both space and time. In some situations using specific knowledge
about the simplicial complex allows further simplifications. Nonetheless, for large general sim-
plices the effect of these upgrades is only marginal. For large datasets more efficient algorithms
are a necessity. So far, three such algorithms have been developed.

The ‘twist’ algorithm [Chen and Kerber, 2011]

The twist algorithm improves upon the standard algorithm by a key observation: if element
i = low(j) appears as pivot in a reduced column, simplexj is paired with simplexi < j. Thus,
simplex i creates a cycle and its column is zero. For example, in the simplicial complex of
figure 4.7 we have amongst otherslow(3) = 2 andlow(7) = 6 and indeed, 2 & 3 and 6 & 7 for
persistence pairs. Wee see in table 4.3 that columns 2 and 6 are zero.

In the standard algorithm this doesn’t save any operations because column i < j and thus
columni was already zero. Yet by changing the order of reduction such that higher dimensions
are reduced first (still from left to right) many operations can be saved.In large datasets, for
up to half of the columns reduction is avoided by this technique. However, in principle this
algorithm still scales asO(n2).

The ‘row’ algorithm [De Silva et al., 2011]

The basic operations above were column operations but in principle using row operations are
possible as well, resulting in the same output [De Silva et al., 2011]. Using rowoperations is
in particular efficient ifcohomologyinstead of homology is used. Cohomology is the dual of
homology and uses the maps on simplices instead of the simplices itself. For example, if c is
a chain of simplices andϕ(c) a function that mapsc to 0 or 1 (forc is not present respectively
present in a simplicial complex), thanϕ is a basic element of cohomology just as groups of
simplices are the basic elements of homology. Cohomology is homeomorphic (cf. definition
A.11) to homology, i.e. in the end they give rise to equivalent structure. Forsome datasets the
row algorithm is remarkably faster than the standard column variant. Why this isand whether it
can be predicted a priori is an area of active research [Chen and Kerber, 2011].
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The ‘chunck’ algorithm [Bauer et al., 2013]

The chunck algorithm is basically a parallelization of the twist algorithm. It consists of three
steps:

1. The matrix is divided in local blocks and these blocks are reduced.

2. The already reduced rows and columns are taken out.

3. The remaining (relatively small) matrix with global persistence pairs is reduced to its final
form.

The chunck algorithm incorporates the key idea of the twist algorithm. Furthermore, it imple-
ments another efficiency trick based on the following observation: if simplexj was paired with
simplex i < j, simplexj cannot be paired again thus the rest of the row can be set to zero
directly. An important choice within the chunck algorithm is which chunck size touse. Generi-
cally, for a dataset withn simplices the authors choose a chunck size of

√
n, giving

√
n separate

chuncks.
On multi-core computers, the chunck algorithm is orders of magnitude faster than the other

methods above.

4.4.2 Persistent homology with PHAT

All the methods above have been implemented in the publicly available library PHAT3. The
code is written in C++, requires a boundary matrix as input and gives the persistence pairs as
output. Which of the algorithms discussed above is used is up to the user. In case of the chunck
algorithm, the OpenMP library is used for parallelization.

4.4.3 This PHAT implementation

The dramatic increase in processing speed of the chunck algorithm compared with the standard
algorithm has been noted while processing the astronomical datacubes considered in this thesis.
For a 2563 particles or density gridpoints dataset, the standard algorithm required morethan a
month. (The exact time is unknown, as power failures, disc errors and network failures never
resulted in complete computation of a2563 data cube with the standard algorithm.) The chunck
algorithm used later computed the persistence pairs of the same datasets in lessthan three hours.

We note that the persistent homology computation is the bottleneck of the data pipeline in
terms of computational power and RAM. Although the chunck algorithm required less than three
hours, this was on a 160 hyperthreading CPU machine. The RAM requirements can exceed 150
GB.

4.5 Data analysis

The persistence diagrams obtained from PHAT are analysed using code written in C++ and
compiled with Unix Red Hat gcc version 4.4.7. Some code snippets from [Press et al., 2007]
were incorporated. On occasions, Matlab 2013 was used in addition. All software, algorithms
and code were run on Unix machines of the Kapteyn Astronomical Instite with Scientific Linux.
Data cube visualizations are generated with VisIt4.

3PHAT can be downloaded viahttps://code.google.com/p/phat/ .
4VisIt can be downloaded viahttps://wci.llnl.gov/codes/visit/ .
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CHAPTER 5

Stability of persistence diagrams

Experimental data contains measurement errors and simulations might also contain uncertain-
ties. For example, the Monte Carlo integration used at the DTFE implementation here introduces
small uncertainties. Homology and persistence are only useful if they are not influenced by these
kind of uncertainties too much. This chapter will look at the way persistence diagrams are in-
fluenced by small uncertainties in the input. Subsequently, various methods toget uncertainties
out will be compared. First, section 5.1 expounds the mathematical results obtained in this di-
rection. As this is a new field of mathematics the mathematical results are only quite general:
small perturbations result only in small perturbations of each point of the persistence diagram.
However, a persistence diagram consists of many points. How small perturbations of each point
will influence the diagram as a whole is unknown. Therefore, a perturbation analysis is carried
out: varying amounts of particles are perturbed by various distances andthe obtained persistence
diagrams are compared with the unperturbed case. The details of the analysis and the resulting
persistence diagrams are discussed in section 5.2.

Persistence diagrams have quite some low persistent features, either noiseor insignificant
ripples in the large density waves of the field. Several ways to take out these features thus
nicing1 the persistence diagram are explored in section 5.3. The results of previous sections are
combined in section 5.4 and a discussion and conclusions are presented in section 5.5.

5.1 Mathematical results

For persistence diagrams to be useful as analytical description of observational (and even sim-
ulated) data they have to bestable: small changes in input data should result in only small
changes in the persistence diagram. The concept of stability is visually illustrated in figure 5.1.
[Cohen-Steiner et al., 2007] showed stability for each point in persistence diagrams for a broad
class of tame functions (defined below). for each point in the persistencediagram the distance
the point is moved by a perturbation is bounded by a supremum-norm. In this section we work
towards their result following [Edelsbrunner and Harer, 2010, chap.VIII]. The material in the
sections uses quite some topology. For users less acquainted with topology we advise to read
the chapter 3 on topology first.

1Within this thesis, the termnicingwill be used as an aggregate term for various ways of smoothing or simplifying.
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Figure 5.1: Visual illustration of stability of persistence diagrams [Cohen-Steiner et al., 2007]. A small change in density (due
to a small change in particle positions, left) results in a small change in the corresponding persistence diagram (right).

To explore whether persistence diagrams are stable, we need a way to measure distances be-
tween two diagrams. LetX andY be two persistence diagrams with two pointsx = (x1, x2) ∈
X andy = (y1, y2) ∈ Y . In topology, a well known distance measure between two point sets is
the:

Definition 5.1 (Hausdorff distancedH ).

dH(x, y) = max{sup
x∈X

inf
y∈Y

‖x − y‖∞, sup
y∈Y

inf
x∈X

‖y − x‖∞} (5.1)

Informally, the Hausdorff distance is the largest distance from a point inX to the closest point
in Y . So, two persistence diagrams are close in Hausdorff space if for all points inX there is a
point inY closeby, and vice versa.

with ‖x − y‖ = max{x1 − y1, x2 − y2} the supremum-norm. Adding the restriction that we
only look at bijections between the persistence diagramsγ(x) : X → Y , the Hausdorff distance
can be refined to the:

Definition 5.2 (Bottleneck distance).

dB(X, Y ) = inf
γ

sup
x∈X

‖x − γ(x)‖∞ (5.2)

Essentially this is the Hausdorff distance with the additional constraint thaty = γ(x) ∈ Y for
somex ∈ X.

Example 5.1. Figure 5.2 shows a superposition of two persistence diagrams, one consisting of
white and the other of black points. The bottleneck distance is half the side length of the squares
illustrating the bijection.

We remark that by definition of the supremum-norm the bottleneck distance satisfies:

1. dB(X, Y ) ≥ 0

2. dB(X, Y ) = 0 ⇔ X = Y

3. dB(X, Y ) = dB(Y, X)

4. for another persistence diagramZ we can writedB(X, Y ) ≤ dB(X, Z) + dB(Z, Y )

Consequently, the Bottleneck distance defines a metric (cf. definition A.1) and thus really is a
distance.
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Figure 5.2: Visual illustration of the bottleneck distance
[Edelsbrunner and Harer, 2010]. A superposition of two per-
sistence diagrams, one with black and one with white pionts. The
bottleneck distance is half the side length of the squares illustrat-
ing the bijection. The maximum distance is given by the black
and white point top-left.

Suppose that our persistence diagram
comes from functionsf, g defined over a sim-
plicial complexK. We letf, g : K → R be
monotonicly increasing along the filtration of
K (cf. definition 3.28). This allows us to de-
fine the straight-line homotopy (cf. definition
A.10) F : K × [0, 1] → R by:

F (σ, t) = (1 − t)f(σ) + tg(σ) (5.3)

which interpolates betweenf and g. The
homotopy changes function values and thus
changes the values of critical points. Con-
sequently, it changes the persistence of per-
sistence pairs. With increasing time, a per-
sistence pair[σk, σk+1] will start to wander
around in the persistence diagram because its
birth and death value change. When the func-
tion values change enough, persistence pairs
might even be paired differently. Alternatively critical simplices might become non-critical, af-
ter which their persistence pairs disappear. The last happens easiest with points who are quickly
smoothed out, i.e. which have low persistence and are close to the diagonal.

Every timeti that the pairing is reordered or persistence pairs disappear, a new filtration
order can be established forF (σ, t). Furthermore, for a finite simplicial complexK there is
only a finite number of times0 = t0 ≤ t1 ≤ . . . ≤ tn ≤ tn+1 on which the filtration is reorderd.
Within each interval(ti, ti+1) the pairing is constant. Stacking persistence diagrams for each
new ordering on top of each other, we get a three dimensional persistence diagram with the third
axis corresponding to time. An illustration of such a persistence diagram is shown in figure 5.3.
For a given persistence pair, we can drawn lines between their values atti and ti+1. In case
the persistence pair changes partners with another persistence pair, a line ending atti+1 will
continue in a different direction but it will continue. In case the persistence pair ceases to exist,
it is connected with the diagonal. Diagonal points are not continued.

Figure 5.3: A vineyard [Edelsbrunner and Harer, 2010]. Two
paths of the straight-line homotopy between the monotonic func-
tion f andg. One vine lines the entire time, while another vine
dies att = 0.5.

Thus, each persistence pair gives rise to a
path monotonically increasing int. The path
is either born onX or on some interpolated
persistence diagramFti in betweenX andY .
Paths either survive toY or die on the diag-
onal at an earlier interpolated persistence dia-
gramFtj . Each path element is called avine
and a multiset of path elements avineyward.

The fact that the paths are connected from
birth to death is very important, as it allows us
to see how far points wander on the diagram.
To so exactly so, we quantify the path of a
persistence pair by:

p(t) = (1−t) (f(σk), f(σk+1), 0)+t (g(σk), g(σk+1), 0)
(5.4)
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Its change in time is given by:

∂p/∂t(t) = (g(σk) − f(σk), g(σk+1) − f(σk+1), 1) (5.5)

If we project the endpoints of each part of the path back onR2, we can measure how far the pair
has wandered off:

‖p(ti+1) − p(ti)‖ = (ti+1 − ti)max{g(σk) − f(σk), g(σk+1) − f(σk+1)} (5.6)

We use this to measure the distance between the functionsf andg using theL∞ norm:

‖f − g‖∞ = max
σ

|f(σ) − g(σ)| (5.7)

Clearly this is also an upper bound on the slope of any line segment in the vineyard and therefore
an upper bound on theL∞ norm between the end-points of any vine. This gives us the:

Theorem 5.1(Stability theorem for filtrations). LetK be a simplificial complex andf, g : K →
R two monotonic functions along the filtration ofK. LetX andY be two persistence diagrams.
For each dimensiond, the bottlenck distance between them is bounded above by theL∞-norm.
I.e. dB(X, Y ) ≤ ‖f − g‖∞.

Although for the purpose of this thesis the stability theorem for filtrations suffices, we shortly
continue with a generalization of theorem for a much broader class of functions defined as:

Definition 5.3 (Tame functions). Let X be a triangulable manifold. A functionf : X → R is
tame if it has a finite number of critical values2 and the homology groupsHk(f

−1(−∞, a]) are
finite-dimensional for allk ∈ Z anda ∈ R.

Example 5.2. Morse functions on compact manifolds and piece-wise functions on finite simpli-
cial complexes are both tame functions.

Consider a rising sublevel set of a tame functionf : X → R. Each critical value changes
the topology of the manifold. In analogy with filtrations of a complex, the increasing sublevel
sets of the manifold create a sequence of homology group connected by maps. Denote for each
dimensiond the mapfa,b

d : Hd(Xa) → Hd(Xb) as the map from thed-th homology group at
sublevel seta to sublevel setb > a. Than in a manner comparible with the construction of the
vineyards above we can create sequences of homology classes over increasing sublevel sets of
X. From there we can again relate back to theL∞ norm and obtain the:

Theorem 5.2(Stability theorem for tame functions). LetX be a triangulable topological space
with continuous tame functionsf, g : X → R. The functionsf andg define persistence diagrams
X respectivelyY . The persistence diagrams satisfydB(X, Y ) ≤ ‖f − g‖∞.

Basically, the proof follows the same lines as the exposition prior to the stability theorem for
filtrations. We don’t state the proof here as it is technically involved and notdirectly relevant for
this thesis. We refer the interested reader to [Cohen-Steiner et al., 2007].Both stability theorems
above are based on theL∞ norm. Stability results of persistence diagrams for generalLp norms
are found as well [Cohen-Steiner et al., 2010]. Unfortunately they require Lipschitz functions,

2Technically, a finite number ofhomologicalcritical values is required. For a Morse functionf on a smooth
manifold, as we consider here, the homological critical values off coincide with its classical critical values.
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i.e. functions that satisfy|f(x) − f)y)| ≤ C‖x − y‖ for some constantC ∈ R. In general
density fields don’t satisfy this condition, so we refrain from further investigation at this point.

When the stability theorems are applied to this thesis, we can state that uncertaintyin a
measurement value will have a bounded effect on the persistence diagram. The data pipeline
as such should be stable. However, previous doesn’t say anything about the group behaviour
of the thousands of points of which our persistence diagrams consist. As inthis direction no
mathematical results exist, we continue with an experimental perturbation analysis to identify
possible group behaviour.

5.2 Experimental stability - perturbation analysis

Previous section tells that uncertainties in galaxy positions, be it measurementor analysis in-
duced, will have a limited effect on each of the points in the persistence diagram. However, it
doesn’t tell how all these tiny uncertainties change the diagram as a whole.Therefore, a pertur-
bation analysis is performed. We take a density field and perturb a certain random fractionfp

of the particles by a predefined amount∆p in a random direction. We put the perturbed fields
through the data pipeline and compare the resulting persistence diagrams with each other and
the unperturbed case. To distinguish between variations due to intrinsic randomness and differ-
ence in(fp, ∆p) pair values, for each(fp, ∆p) pair the procedure is repeated several times. A
Mersenne Twister random number generator3 is used to determine which particles to move in
which direction.

Concretely, the following specific experimental values were chosen:

• The data pipeline is computationally very intensive, so instead of a full 300 Mpc3 density
field a 75 Mpc3 subbox is considered. As the influence of perturbations might depend on
density, we choose a high and a low density subbox. The high and low density subboxes
are selected by visual inspection from a Gadget LCDM simulation (run 14).

• The influence of perturbations might also depend on the density variance within the sub-
box. The density distribution variance is monotically increasing with time, thus forboth
density subboxes the earliest (z = 3.8) and latest (z = 0.0) available times are considered.
The resulting four density fields are shown in figure 5.4.

• Furthermore, there might (and is) a difference between the particle and density case, so
we analyse both.

• For all density fields we takefp ∈ {100, 100.5, 101, 101.5, 102} and for∆p the same values
times the interparticle distance withsipd.

• For each(fp, ∆p) pair ten realizations are computed.

Summarizing the variables above, we get a total of 2 density subboxes× 2 times× 2 for parti-
cles/DTFE× 5 fp’s × 5 ∆p’s × 10 repetitions = 2000 experiments. The resulting 2000 persis-
tence diagrams can be analysed in several ways. We use Betti curves as1D summaries because
they are both directly embedded in mathematical theory and represent physical features.

3The default C++ Mersenne Twister 19937 with a seed coming from the C++standard random number generator,
whose seed in turn came from the system time.
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(a) LCDM low d early time (b) LCDM highd early time

(c) LCDM low d late time (d) LCDM highd late time

Figure 5.4: 3D rendering of the LCDM subboxes.

5.2.1 Particle perturbation analysis

Figure 5.5 showsβ0, β1 andβ2 for LCDM at both times when all particles are perturbed. Inter-
estingly, increasing perturbation magnitude doesn’t increase the spreadaround the Betti curve
of the unperturbed case. Instead the curves are systematically shifted to adifferent position,
such that the difference between two highly perturbed curves is smaller than the difference of
either with the unperturbed case. With increasing perturbation magnitude, theearly time curves
increase at lower density regions and decrease at smaller density regions. Probably because par-
ticle spreading destroys dense structures but consequently creates structures at lower densities.
The later time curves also show the near disappearance of Betti curves atthe highest densities but
behaviour at lower densities depends on Betti number. Forβ0 (shown here) an overall decrease
is visible: apparently for more evolved density fields particle spreading doesn’t create additional
components at lower densities but the particles are just absorbed in the existing ones. β1 in-
creases for middle ranged densities andβ2 shows a drastic increase at middle ranged densities
for strong perturbations.
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Figure 5.5: Betti curves for particle perturbation analysis. In order of priority in case of overlapping points: Betti curves for
non-perturbed case (black) and perturbed cases, with perturbation magnitudes of1 ·sipd (dark blue),100.5 ·sipd (sky blue),101 ·sipd
(green),101.5 · sipd (yellow) and102 · sipd (red). For each of the Betti curves above, all ten realizations are shown for the high
density field. The Betti curves for the low density field aren’t show, as their behaviour is analogous to the high density case. Left to
right: increasing time and top to bottom: increasing Betti dimension.

5.2.2 DTFE perturbation analysis

The Betti curves of the density field are much less influenced by perturbations. Probably the
method which generates the density field absorbs quite some of the changes inindividual particle
position. Globally, where there is an effect it is analogous to the particle case, as can be seen in
figure 5.6. From these graphs we see that a perturbation up to around 10percent doesn’t visibly
perturb the diagram. Perturbations of 101.5 or larger do give a different curve. The influence
of the magnitude of the perturbation goes down with increasing Betti number. The increase
mentioned forβ1 andβ2 for middle ranged densities in the particle case disappears. Forβ0 and

77



December 2013 5.3. NICING PERSISTENCE DIAGRAMS

∆p < 1 ·sipd there is a high density knee, but this disappears for higher Betti numbers and larger
perturbations.
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(a) β0 atz = 3.8.
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Figure 5.6: Betti curves for density perturbation analysis. In order of priority in case of overlapping points: Betti curves for
non-perturbed case (black) and perturbed cases, with perturbation magnitudes of1 ·sipd (dark blue),100.5 ·sipd (sky blue),101 ·sipd
(green),101.5 · sipd (yellow) and102 · sipd (red). For each of the Betti curves above, all ten realizations are shown for the high
density field. The Betti curves for the low density field aren’t show, as their behaviour is analogous to the high density case. Left to
right: increasing time and top to bottom: increasing Betti dimension.

5.3 Nicing persistence diagrams

For modest perturbations the results of previous section are encouraging, such perturbations
don’t influence the Betti curves very much. For larger perturbations Betti curves systematically
shift to other positions. Furthermore, persistence diagrams or Betti curves count cycles, ‘but
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not all cycles are created equal’: some live very long whereas others are around just for a short
while. Short-lived cycles are not that relevant: they represent small features or noise and for
proper analysis can better be taken out. This section discusses severalways to do so, i.e. to
nicea persistence diagram. A classical way to take out small features issmoothingthe diagram.
Technically, this often means convolving diagram with an approriately chosen function. We
smooth the input field and discuss how this influences the topology in subsection 5.3.1. One
of the huge advantages of a persistence diagram is that the relevance ofa point can be inferred
directly from the diagram. A more topological approach ismanifold simplification, discarding
all points whose persistence pairqk = [σkσk+1] (cf. definition A.27) has a density ratio or
difference smaller than a certain threshold value and rearranging the manifold accordingly. We
consider this approach in subsection 5.3.2. Betti numbers are one of the most useful topology
measures. Their definition can be generalized topersistent Betti numbers, which also gives a
topological measure of importance of features. In subsection 5.3.3 we usethis definition to nice
the persistence diagrams.

5.3.1 Smoothing the input field

The classical way to nice a density field is by convolving it with a smoothing function. A natural
and often used smoothing function is a Gaussian, which we will use here as well. Naturally
particle positions can’t be smoothed, so this approach only works for the density case. If the
density field would be continuous, a Gaussian smoothing function has some unique and attractive
properties:

1. It is the solution of the diffusion equation∂f
∂d = 1

2
∂2L
∂x2 with initial condition L(x; 0) =

f(x).

2. Increment of scale space parameterσ will not lead to additional local extrema or additional
zero crossings.

3. Causality: forσ2 > σ1 thanL(x; σ2) depends only onL(x; σ1).

4. It is shift invariant and doesn’t depend on image values.

The numerical density field is computed on grid points. Although it is an approximation of
the continuous density field, it consists of a set of discrete values. An intuitive approach might
be to sample the Gaussian at grid point centres, but the attractive properties above won’t be
retained. To retain them, thediscrete Gaussian kernelhas to be used [Lindeberg, 1990], defined
as:

Definition 5.4 (Discrete Gaussian kernel). At indexn and scale space parameterσ, the discrete
Gaussian kernel is given by:

T (n, σ) = e−σIn(σ) (5.8)

with In(σ) the modified Bessel function of integer ordern.

Here, we use a 3D normalized discrete Gaussian filter to smooth the density field. The filter
is cut off in each dimension when the size of the filter reaches the limit of numerical accuracy.
Figure 5.7 shows the high density field for various values ofσ. The low density field is not
shown as it behaves analogously. Observing thatσ = 0.25 only marginally smooths the density
field and thatσ = 2.0 almost homogenizes it, we choose smoothσ ∈ {0.25, 0.50, 1.0}.
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(a) Unsmoothed. (b) Unsmoothed.

(c) Smoothingσ = 0.25. (d) Smoothingσ = 0.25.

(e) Smoothingσ = 0.50. (f) Smoothingσ = 0.50.

(g) Smoothingσ = 1.0. (h) Smoothingσ = 1.0.

(i) Smoothingσ = 2.0. (j) Smoothingσ = 2.0.

Figure 5.7: The effect of smoothing on the density field.The high density field smoothed with a discrete Gaussian with various
values forσ. Left: earliest available time (z = 3.8) and right: today (z = 0).
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In this subsection, we taken the LCDM 0-cycles for the high density field at the earliest
time as reference case. Figure 5.8 shows its Betti curves. Smoothing lowersthe top of the Betti
curve and decreases its range. Probably because a lot of smaller cycles are averaged out. The
difference between the non-perturbed and perturbed cases remains about the same for small and
moderate smoothingσ’s. Only for largeσ’s, the most perturbed Betti curves come closer to their
less perturbed brethren. The last could be explained by noting that increasingσ also increases
the ‘threshold level’ of persistence pairs being taken out. As increasing perturbation magnitude
generates more low persistence pairs (cf. section 5.2), highly perturbedfields will be stronger
influenced by smoothing. Interestingly, increased smoothed makes the Betti curves less smooth.

Compared with this reference case, 1-cycles and 2-cycles show the sameeffect although less
pronounced. The low density and later time Betti curves respond analogous to smoothing.
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Figure 5.8: The effect of smoothing on density Betti curves.Betti curves of the LCDM high density field atz = 3.8 for various
smoothingσ’s. Line colors as in figure 5.6.

5.3.2 Manifold simplification

In a persistence diagram a line perpendicular to the birth=death diagonal indicates the lifetime
of a feature (cf. section 3.6). An intuitively nice way to delete low-persistent features is simply
to remove all points in the persistence diagram closer to birth=death diagonal than a certain
minimumLp,min. This corresponds to simplifying the manifold such that all features whose
lifetime is smaller than this value are cancelled out. For a persistence pairqk = [σkσ+1],
in a loglog persistence diagram the distance from the birth=death diagonal corresponds to the
persistence ratio

r(qk) = ρD(σk+1)/ρD(σk) (5.9)
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In a ‘normal’ axes persistence diagram, the distance from the birth=death diagonal corresponds
to the persistence difference:

d(qk) = ρD(σk+1) − ρD(σk) (5.10)

Both might have their uses so we compute both, starting with the peristence ratio.

Ratio simplification

Cosmic structure has a large density range so within this thesis we mainly use a log-log represen-
tation of persistence diagrams. This makes ration simplification the most intuitive simplifcation
to consider. If we know the ratio distribution function ofr(qk), a certain significance-threshold
can be set and all points below this threshold ignored. In the particle case this is non-trivial from
the start. In the density case we might derive the ratio distribution function starting from the
DTFE density distribution, which is excellently approximated by [Schaap, 2007]:

dp(λ̃) = 1944
5 λ̃−8e−6/λ̃dλ̃ (5.11)

DefiningX andY as random DTFE density variables forσk andσk+1 respectively, we can write
for their their joint distributionf(x, y):

f(x, y) = P (X = x, Y = y) = P (X = x)
P (Y = y|X = x ≥ y)

∫ x
0 P (Z = z)dz

(5.12)

where in the second equality (i) we took into account that for a persistencepair qk we have
r(qk) ≥ 1; (ii) we assumed the amount of points is very large such that taking out one point
doesn’t change the distribution and (iii) the denominator is for normalization. Plugging in equa-
tion 5.11 multiple times gives:

f(x, y) = 1944
5 x−8e−6/x y−8e−6/y

∫ x
0 z−8e−6/zdz

(5.13)

with x ∈ [0,∞) andy ∈ [x,∞). Now we can define the ratio distributionR = Y/X with
cumulative distributionF (r):

F (r) = P (r ≤ R) = P (Y ≤ uX|X > 0)

=

∫ ∞

0

∫ ux

0
f(x, y)dxdy (5.14)

= 1944
5

∫ ∞

0

∫ ux

0
x−8e−6/x y−8e−6/y

∫ x
0 z−8e−6/zdz

dxdy

This is a very nasty expression and quite likely incorrect: the only assumptionwe took above was
r(qk) ≥ 1 but pairings are not that random. In general, very low density points aremore likely
to get paired with very high density points, and slightly low density points are more likely to
get paired with slightly high density points. The exact pairing, however, depends on the detailed
characteristics of the density field. There has been some preliminary research in this direction
in the case of Gaussian fields (cf. [Feldbrugge et al.]) but this has so far been inconclusive
and doesn’t apply to strongly nonlinear fields like we discuss here. Therefore, the best way to
procede might simply be obtainingF (r) from experiment.
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Removing small features actually serves two goals: (i) removing little persistentcycles from
the persistence diagram and (ii) get out noise. The DMC is based on Delaunay triangulations
and these are in particular sensitive to Poisson noise (cf. 4.2). Poisson noise will mainly have
low persistent features. Therefore, when we proceed with some consideration, manifold sim-
plification allows at the same time in an analytical way. First, we create a random Poisson
particle distribution, compute its persistence diagram and determine itsF (r) experimentally.
Then, we set a given small probability that a cycle is actually Poisson noise.The persistence
value corresponding to this probability can be found fromF (r) and all cycles with smaller a
smaller persistence value can be simplified out. Hence, we have simplified and de-noised the
persistence diagram in one go!

Following this route, we create mock Poisson distributions for 75 Mpc3 boxes with on
average 643 particles, determine their corresponding toF (r) and use this to set a simplification
threshold level. The mock catalogues are created in the following way:

1. Draw from the Poisson distribution withλ = 643 a random variable which determines the
number of particles in the box.

2. The particles are distributed within the box using a random uniform distribution.

Technically, the C++ Boost library Poisson distribution and uniform distribution are used, again
with a Mersenne Twister random number generator. Of course the persistence diagram with a
random amount of randomly placed particles is very random. To get an ideaof the intrinsic
variation 100 mock Poisson catalogues were made. Their cumulative ratio distributionsF (r)
are displayed in figure 5.9 showing the following features:

• There is huge difference between the density and particle case. The slope ofFparticle(r) is
much lower than the slope forFdtfe(r) and consequently the first reaches up to an order of
magnitude higher ratio’s. A probable cause is that the particle case is much moresensitive
in the high density regions and so several very high density peaks might exist. With DTFE
these tiny very high density patches are smeared out.

• In the density case the 1-cycle and 2-cycle curves cross whereas this doesn’t happen for
the particle case. We have no intuitive explanation to offer at this point.

• Although there is some spread inF (r), especially at larger values, the spread is modest.

• Differences aside, both the particle and density graphs clearly show a large excess of low
persistent points.

We set three significance values:F1(r) = 0.1, F2(r) = 0.01 andF3(r) = 0.001. The cor-
responding threshold values ofr are tabled in table 5.1. Using these thresholds, all persistence
pairs with a smaller ratio are cancelled. For completeness, we note that [Sousbie, 2011] followed
this approach as well and defines thresholds ‘in analogue with the Gaussian case’ by using an
inverse error function. However there is not a Gaussian anywhere in sight, so we refrain from
this approach. The resulting Betti curves for the particle and density caseare shown for a repre-
sentative case in figures 5.10 and 5.11 respectively. We directly see thatincreasing simplification
threshold lowers the Betti curves as many low-persistent cycles are takenout. Also directly vis-
ible is the changing difference between the non-perturbed and slightly perturbed cases and the
more perturbed cases with increasing simplification threshold levels. Both forthe particle and
density case highly perturbed fields are (much stronger) influenced by simplification than less
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(a) 643 particle case.
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Figure 5.9: Cumulative probability F (r). TheF (r) graphs show the probability of the existence of a persistence pair with ratio
equal or larger thanr. Mazarine: 0-cycles; sky-blue: 1-cycles and green: 2-cycles; for 100 mock Poisson distributions.

Sign. values density particles

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles

0.1 0.212 ± 0.002 0.156 ± 0.002 0.142 ± 0.002 0.628 ± 0.004 0.282 ± 0.002 0.202 ± 0.002

0.01 0.344 ± 0.004 0.252 ± 0.002 0.262 ± 0.004 1.08 ± 0.002 0.424 ± 0.002 0.320 ± 0.006

0.001 0.430 ± 0.010 0.286 ± 0.002 0.340 ± 0.010 1.50 ± 0.034 0.480 ± 0.002 0.396 ± 0.010

Table 5.1: r threshold values. Threshold values of persistence ratior for several cycle dimensions and both the particle and
density case at various significance values.

perturbed fields. As possible explanation we offer that increasing perturbation magnitude gen-
erates more low persistence pairs (cf. section 5.2). Thus highly perturbed fields will be stronger
influenced by simplification, analogously as with smoothing.β1 andβ2 show similar behaviour
asβ0. The increase ofβ1 andβ2 at middle ranged densities disappear at high simplification
thresholds.
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(c) Ratio simplified - top 1% of particles.
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(d) Ratio simplified - top 0.1% of particles.

Figure 5.10: The effect of ratio simplification on particle Betti curves. Betti curves of the LCDM high density field atz = 3.8
for various simplification ratios, particle case. Line colors as in figure 5.5.
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(c) Ratio simplified - top 1% of particles.
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Figure 5.11: The effect of ratio simplification on density Betti curves.Betti curves of the LCDM high density field atz = 3.8
for various simplification ratios, density case. Line colorsas in figure 5.6.
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Difference simplification

The persistence ratio follows swiftly from the log-log persistence diagram but in terms of physics
the difference instead of the ratio is more intuitive. Therefore, the analysisabove is repeated for
the cumulative difference distributionD(d), which is shown for the Poisson mock distributions
in figure 5.12. Compared withF (r) we see thatD(d) decreases much steeper and the graphs
for different cycles don’t cross. The values corresponding to the same thresholds as before are
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Figure 5.12: Cumulative probability D(d). TheD(d) graphs show the probability of the existence of a persistence pair with
difference equal or larger thand. Mazarine: 0-cycles; sky-blue: 1-cycles and green: 2-cycles; for 100 mock Poisson distributions.

tabled in table 5.2 and the corresponding Betti curves are shown in figures5.13 and 5.14. At
first glance the similarity with the ratio-simplified Betti curves is most striking. Considering the
graphs in more detail some differences emerge between both methods of simplification can be
found. Compared with ratio-simplification, difference-simplification:

• is ‘more effective’ on small densities and ‘less effective’ on high densities;

• consequently, spurious high density features are dealt with less effectively and inversely
for spurious low density features;

• is less sensitive to perturbations, i.e. the higher magnitude perturbation curves lie closer
to the smaller magnitude perturbation curves;

• lowers the Betti curve less with increasing simplification threshold forβ0, about the same
for β1 and much more forβ2.

Sign. value density particles

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles

0.1 −0.070 ± 0.004 −0.456 ± 0.004 −0.726 ± 0.004 −0.078 ± 0.005 −1.004 ± 0.002 −1.520 ± 0.004

0.01 0.202 ± 0.008 −0.252 ± 0.004 −0.510 ± 0.006 0.418 ± 0.002 −0.820 ± 0.002 −1.368 ± 0.006

0.001 0.350 ± 0.016 −0.194 ± 0.004 −0.428 ± 0.008 0.790 ± 0.026 −0.666 ± 0.012 −1.304 ± 0.008

Table 5.2: d threshold values.Threshold values of persistence differenced for several cycle dimensions and both the particle and
density case at various significance values.

For both simplification methods, compared with smoothing a few important things canbe no-
ticed:

• simplification increases the minimum density value of Betti curves, whereas smoothing
mainly decreases their maximum value;
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Figure 5.13: The effect of ratio simplification on particle Betti curves. Betti curves of the LCDM high density field atz = 3.8
for various simplification differences, particle case. Linecolors are as before. Line colors as in figure 5.5.

• simplification results in much smoother Betti curves than smoothing;

• especially difference simplification has a much stronger effect on higher Betti numbers.
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Figure 5.14: The effect of ratio simplification on density Betti curves.Betti curves of the LCDM high density field atz = 3.8
for various simplification differences, density case. Line colors are as before. Line colors as in figure 5.6.

5.3.3 Persistent Betti numbers

In a log-log persistence diagram ratio-simplification corresponds with ignoring all points whose
distance to the birth-death diagonal is smaller than some value. For Betti curves this corresponds
graphically to removal of the lowest persistent corner of a Betti square,see the green triangles
in figure 5.15. Specifically for Betti numbers, persistent Betti numbers (cf. definition A.26) give
another method to indicate their longevity. Graphically, persistent Betti numbers are obtained
by moving the Betti square left-upwards. To see how this subtle change in persistence measure
influences Betti curves the analysis above is repeated for persistent Betti curves. Given the
limited differences between ratio and difference simplification, we only consider the ratio case.
Using the threshold values found for ratio simplification we plot the persistentBetti curves in
figures 5.16 and 5.17 for the particle and density case respectively.

Look again at figure 5.15. In persistence diagrams the difference between ratio simpli-
fied Betti curves and persistent Betti curves are a horizontal and vertical ‘rectangular’ region.
The horizontal region corresponds with low-birth low-death points and thevertical region with
high-birth high-death points. That persistent Betti numbers leave these regions out is clearly
reflected in the persistent Betti curves. They resemble these of ratio simplification neatly for a
low simplification threshold but with increasing threshold ‘loose’ the low and high density tails.
Furthermore, the height of the Betti curves drops sharper. These effects become even stronger
for β1 andβ2, the last almost completely disappears for a high simplification threshold.
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Figure 5.15: Simplification vs persistent Betti numbers. Graphically, Betti numbers given by the number of points in the
Betti square in a persistence diagram. Simplification takes out the bottom-right corner of this square, here indicated withthe green
triangles. Considering persistent Betti numbers corresponds with moving the square upwards. The difference between simplification
and persistent Betti numbers are the colored ‘rectangles’ corresponding with low-birth low-death and high-birth high-death points.
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Figure 5.16: The effect of ratio simplification on particle Betti curves.Persistent Betti curves of the LCDM high density field at
z = 3.8 for various simplification ratios, particle case. Line colors as in figure 5.5.

5.4 Summary

Data used for persistence diagrams may contain errors, be it due to observational uncertainties or
due to data-processing methods. For tame mathematical functions it is known how uncertainties
will change individual points in the persistence diagram. Yet it is until now unknown how
systematic uncertainties in many or all data points will influence the persistence diagram as a
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Figure 5.17: The effect of ratio simplification on density Betti curves.Persistent Betti curves of the LCDM high density field at
z = 3.8 for various simplification ratios, density case. Line colorsas in figure 5.6.

whole. To get an handle on this both for the particle and density case a high-density and low-
density region were selected. At an early and late time the particles inside wereperturbed with
various magnitudes in arbitrary directions. The following observations canbe made:

1. The mathematical results of the influence of errors on individual points are valid for the
densities under consideration. (But these results don’t tell how the diagram as whole is
influenced.)

2. Betti curves are relatively robust against perturbations up to 10 %.

3. Perturbations of predefined magnitude in random directions don’t leadto a spread of the
Betti curves around the unperturbed case but to a systematic shift. In general this shift is
downwards for high densities and upwards for (very) low densities.

4. For the particle case, large perturbations can lead to irregular changes in the Betti curves.
The density case seems much more robust against irregularities.

5. Besides these irregularities, the effect of perturbations decreaseswith increasing Betti
number.

Persistence diagrams contain a wealth of information. Raw diagrams contain large amounts
of noise as well in the form of low persistent features and noise. Several methods are available to
nice the diagrams: (i) the classical method of smoothing; (ii) ratio-simplification; (iii) difference-
simplification; and in case of Betti curves (iv) persistent Betti curves. For each of these methods,
the persistence diagrams were niced and the analysis above was repeated. This shows us:
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1. All nicing methods have the same quantative effect: irrelevant featuresare cancelled,
lowering the height of the curve and influencing its lower and upper densityboundaries.

2. None of the nicing methods decreases the difference between the unperturbed and highly
perturbed cases systematically. Often, nicing the diagram even increasesthe difference.

3. Interesingly, nicing diagrams has the same quantative effect on perturbations as time evo-
lution: the Betti curves of highly perturbed cases are reduced much more than those of
little perturbed cases. This probably means that both have the same effect: strong structure
is enhanced and small structure surpressed.

4. Classical smoothing influences both the lower and upper densities boundaries, the latter
more than the first. Persistent Betti numbers also strongly influence both boundaries.
Ratio-simplification mainly influences the lower densities and difference simplification
even more.

5.5 Discussion and conclusions

From the summary observations above, two things need further attention. First, the choice of
perturbation type might influence the resulting changes in the persistence diagram. I.e. the ob-
served systematic shift of the Betti curves might be caused by the choice for perturbing particles
a set size in random direction. This type of perturbation will disperse closely clustered groups
of particles and thus mainly destroy structure. We’ve seen that persistence diagrams are very
sensitive to the amount of structure. Consequently, the systematic shift under increasing pertur-
bations might mainly reflect the loss of structure rather than anything else. Further support to
this idea is lended by the enhanced decrease under increasingly stringest nicing of large pertur-
bation magnitude Betti curves. For a general analysis as here the current type of perturbations
sufficies. It reflects where persistence is most senstive for (structure) and illustrates that up to
quite large perturbations the persistence diagrams are not much influenced. For specific and
strong observational biases in future applications, it might be worthwhile to repeat this analysis
perturbing the particles in specific way.

Second, which nicing method is to be used? The ideal nicing method will have the following
properties:

1. it cancels out the points corresponding to ‘irrelevant features’;

2. by doing so it enhances the differences between features we are interested in;

3. it decreases the effect of perturbations;

4. is not very computationally demanding.

Let’s consider these points one by one.

1. All methods cancel out ‘irrelevant features’ but each methods defines an irrelevant feature
in a different way. Simplification defines ‘relevant’ intuitively as having a birth/death ratio
or difference above a certain threshold. Persistent Betti numbers define ‘relevant’ based on
the density ratio after which a point seizes to be in the Betti square. In classical smoothing
‘relevant’ depends in a non-trivial way on the environment.
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2. Strikingly, these different definitions of relevant give analogous results but also some ma-
jor differences can be found. In particular, classical smoothing and persistent Betti num-
bers cancel out the low and high density tail of Betti curves quite fast. Later on, we will
see that it is especially this lower tail which is of interest.

3. Unfortunately none of the methods decrease the effect of perturbations. Mostly, nicing
even increases the effect of perturbations, as perturbations generate more low-persistent
structure which is easier niced out.

4. Smoothing is done on the density field and only afterwards the filtration can be computed
and the persistence diagram created. As particularly the last one is the computational
bottleneck, with smoothing it is difficult to ‘play around’ with various nicing thresholds.
The other nicing methods use the persistence diagram itself which makes playing around
easier. Furthermore, smoothing is only applicable to the density case.

Since simplification: (i) performs in general terms as good as the other methods; (ii) has an intu-
itive definition of ‘relevant’; (iii) doesn’t cancel out density tails too fast;(iv) is computationally
efficient and (v) is applicable to both the particle and density case, in the rest of this thesis sim-
plification will be used as the default nicing method. In this thesis we mainly consider log-log
persistence diagrams, making ratio simplification the logical choice.

Things brings us to the conclusions of this chapter:

1. Persistence diagrams (as represented by Betti curves) are - as expected - very sensitive to
the presence of structure.

2. Persistence diagrams are robust against uncertainties up to at least 10 %.

3. Persistence simplification is an excellent, intuitive and computationally efficient method
to take out irrelevant features and noise. Whether ratio or difference simplification is used
depends on the specifics of the situation under consideration. As we mainly consider
log-log persistence diagrams here, ratio simplification is the logical choice.
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CHAPTER 6

On the persistence of LCDM

In chapter 3 topology was introduced. Topology is an abstraction of geometry allowing us to
describe the cosmic web in terms of its morphological components: voids, walls,filaments and
nodes. The main tool introduced there for topological analysis is thepersistence diagram(cf.
definition 3.31). A persistence diagram is a set of points indicating the birth and death densities
of physical features in a density field. The difference between the birth and death density values
of a feature is a measure for its relevance and is called itspersistence(cf. section 3.6).

Chapter 4 explained the step from topology to computational topology and chapter 5 showed
that the data pipeline developed in chapter 4 is stable. Furthermore, chapter4 showed the well-
behaved-ness ofsimplification(cf. section 5.3): a topological analogue of smoothing that can-
cels low persistent features.

In this chapter we apply the topological machinery developed so far on a full LCDM simu-
lation (cf. subsection 4.1.3 for details). In section 6.1 we describe the results in the following
way:

1. a visual impression and interpretation of the persistence diagrams is given;

2. two 1D summary curves are parametrized;

3. the effects of simplification are considered.

Subsequently we investigate how the persistence diagram changes withz in section 6.2. We
do so by computing it at several other snapshots of the simulation, each at adifferentz value.
We results are described in the same way as above. We round up this chapter with summary
observations and conclusions in section 6.3.

6.1 The reference case: LCDM atz = 0(run 15).

In total this thesis uses 3 DE models× 5 realizations× 8 redshifts is 120 files. This large amount
of data precludes investigation of each individual file. Therefore we apply a different strategy
and compare all results with respect to a reference case. As reference case we choose LCDM
run 15 atz = 0 because:

• LCDM is the standard cosmological model (cf. the introduction of chapter 2);
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• computation of the structure clustering parameterσ8 (cf. equation 2.33) for LCDM shows
that run 15 has the medianσ8 of all runs. This holds for allz.

• at lowerz structure is more evolved and thus a possible dark energy imprint on cosmic
structure will be largest.

A visual impression

Figure 6.1 gives an impression of the cosmic structure in LCDM (run 15) atz = 0. Large
filaments connecting massive nodes are clearly visible, just as enormous empty regions devoid
of anything. Figure 6.2 shows the basic persistence measures for LCDM at z = 0 (run 15).
The persistence diagrams are displayed on the left. All diagrams show many short lived fea-
tures near the birth=death diagonal and more long lived features furtheraway. With increasing
dimension the cycle density shifts from late-born late-died to early-born andearly-died. This is
understandable: the 0-cycles are related with components whereas the 1-cycles and 2-cycles are
related with tunnels and shells, lower density regions inside components. Theextendedness of
the 0-cycle persistence diagram might incorrectly suggest there are more0-cycles, but this is not
the case. There are 288731 0-cycles, 587153 1-cycles and 2152412-cycles in the persistence
diagrams below. I.e. on average every component has around two tunnels and one shell.

On the right of figure 6.2 three 1D summary-graphs of the persistence diagrams (cf. figure
3.24 and the text above the figure) are shown:

1. The Betti curves (top) visualize the number of components, tunnels and shells alive at a
certain density threshold.

2. The lifetime ratio curves (middle) give the amount of cycles as function of their lifetime
ratio.

3. The product mean density curves (bottom) show the amount of cycles asfunction of mean
density.

The Betti curves behave qualitatively analogous to the Betti curves foundin previous chapter.
With increasing dimension the curves shift to lower densities and become shallower. Increasing
dimension shifts the lifetime curves strongly to lower rations and the mean density curves to
lower densities.

Parametrization of 1D summary curves

On the eye, the shape of the mean density curve of figure 6.2 resembles thatof a log-normal
distribution quite well. This can be connected with known properties of the cosmic density field.
[Coles and B., 1991] found that the large scale matter distribution is quite wellapproximated by
a lognormal distribution. Interestingly, the shape of the Betti curves resembles the shapes of the
mean density curves and are thus lognormally distributed as well. Betti curvesshow the amount
of cycles alive at a certain density threshold in the rising sublevel set. There is no fundamental
reason known to us why the amount of cycles should follow the same behaviour as the density
field.

A lognormal distribution is a distribution of a variable whose exponent is normally dis-
tributed. The lognormal probability density functionfln(x|µ, σ) can be obtained in a straight-
forward way from the normal distribution using variable transformation:

fln(x|µ, σ) =
1

xσ
√

2π
exp

(

−(lnx − µ)2

2σ2

)

(6.1)

95



December 2013 6.1. THE REFERENCE CASE: LCDM ATZ = 0

Figure 6.1: Density field of LCDM at z = 0 (run 15).

with µ the mean andσ the standard deviation. It has both mathematically and physically nice
properties: (i) for small fluctuations it approximates arbitrarily close a Gaussian distribution; (ii)
the density remains always positive; and (iii) many nice properties of the Gaussian distribution
can be computed analogously for the lognormal distribution. If the Betti curves and mean density
curves are resembling a lognormal distribution, than their exponents follow anormal distribu-
tion. To check how strong the lognormality is, we fit both exponents with a normal distribution.
The two panels of figure 6.3 show the Gaussian fits of the Betti curve and mean density curve
exponents. Although the Gaussian fits agree quite well, they seem a bit skewed with respect to
the Betti and mean density curves. This suggests to try a fit with a skewed normal distribution,
defined as:

f(x|µ, σ, α) = 2φ(x|µ, σ)

∫ αx

−∞
φ(t, |µ, σ)dt (6.2)

with φ(x|µ, σ) the normal distribution andα the skewness parameter. The skewed normal dis-
tribution gives a visibly better fit, see figure 6.4. For the Betti curves the fit iseven near exact.
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Figure 6.2: Persistence measures for LCDM atz = 0 (run 15). Left: persistence diagrams for various dimensions. Right: 1D
summaries of the previous. Colors indicate different cycle dimensions: red (0-cycles), yellow (1-cycles) and blue (2-cycles).

The effects of simplification

Many features close to the birth=death diagonal might be Poisson noise andif not, they are low
persistent features which are of limited relevance (cf. subsection 5.3.2).Often, density fields
are smoothed to remove such low persistent features. The topological analogue of smoothing is
simplification (cf. section 5.4). To investigate the effect of simplification on the density field,
we simplify the manifold according to the prescription of subsection 5.3.2. The first step in the
prescription is setting a significance value indicating the maximum probability that afeature is
actually Poisson noise. Thresholds have been computed for 643 particle distributions but as the
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Figure 6.3: Gaussian fits to LCDM (run 15) at z = 0. In each diagram from right to left i.e. from high to low densities: 0-cycles,
1-cycles and 2-cycles.

threshold depends on the amount of particles, we have to recompute the thresholds for the 2563

case considered here. To do so, ten Poisson mock catalogues withλ ∼ 2563 are created. Their
cumulative ratio distributionF (r) and cumulative difference distributionD(r) are computed.
The thresholds for the significance values 0.1, 0.01 and 0.001 can be found in table 6.1 andF (r)
andD(r) are plotted in figure 6.5. For comparison, both the Poisson mock catalogues and all
LCDM runs atz = 0 are shown. The figure unambiguously shows that the density fields extend
up to far larger densities than the Poisson mock catalogues and thus contain alot more structure.
The differences between the LCDM realizations themselves is minimal.

Sign. values persistence ratior persistence differenced

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles

0.1 0.212 ± 0.000 0.156 ± 0.000 0.142 ± 0.000 −0.072 ± 0.004 −0.460 ± 0.002 −0.726 ± 0.000

0.01 0.344 ± 0.000 0.252 ± 0.000 0.262 ± 0.000 0.202 ± 0.004 −0.250 ± 0.000 −0.508 ± 0.000

0.001 0.436 ± 0.002 0.288 ± 0.000 0.342 ± 0.002 0.354 ± 0.002 −0.194 ± 0.000 −0.429 ± 0.004

Table 6.1: Simplification threshold values. Threshold values of persistence ratior (left) and persistence differenced (right) for
several cycle dimensions for 2563 particles, density case.

Figures 6.6 and 6.7 show how the persistence diagrams, Betti curves, lifetimecurves and
mean density curves evolve with increasing simplification threshold. Ratio simplification (cf.
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Figure 6.4: Skewed Gaussian fits to LCDM (run 15) atz = 0. The skewed Gaussians are visibly a better fit than the ordinary
Gaussians shown in figure 6.3. In each diagram from right to left i.e. from high to low densities: 0-cycles, 1-cycles and 2-cycles.
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Figure 6.5: Cumulative density distributions. The graphs show the probability of the existence of a persistence pair with a ratio
or difference equal or largerr respectivelyd. LCDM simulations atz = 0: red (0-cycles), yellow (1-cycles) and blue (2-cycles).
The Poisson mock catalogues of 2563 particles: dark red (0-cycles), orange (1-cycles) and darkblue (2-cycles). For all dimensions,
the LCDM curves show significantly more persistent structure. The differences amongst the LCDM curves themselves is negligible.

subsection 5.3.2) does exactly what is was meant to do: shifting the birth=deathdiagonal up-
wards. Due to the shape of their distributions, forβ0 this goes mainly at the expense of the low
density tail; forβ1 the burden is spread relatively evenly between the low and high density tail

99



December 2013 6.1. THE REFERENCE CASE: LCDM ATZ = 0

-1.5

0.92

3.34

-1.5 0.64 2.78

lo
g 

de
at

h 
de

ns
ity

log birth density
-7.5

-7

-6.5

-6

-5.5

-5

-4.5

(a) d = 0 / not simp.

-1.5

0.92

3.34

-1.5 0.64 2.78

lo
g 

de
at

h 
de

ns
ity

log birth density
-7.5

-7

-6.5

-6

-5.5

-5

(b) d = 0 / p(cPoisson) = 0.1.

-1.5

0.92

3.34

-1.5 0.64 2.78

lo
g 

de
at

h 
de

ns
ity

log birth density
-7.6

-7.4

-7.2

-7

-6.8

-6.6

-6.4

-6.2

-6

-5.8

-5.6

-5.4

(c) d = 0 / p(cPoisson) = 0.01.
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(f) d = 1 / p(cPoisson) = 0.1.
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Figure 6.6: The effect of ratio simplification on persistence diagrams.Persistence diagrams for LCDM atz = 0 (run 15). From
left to right: increasing simplification threshold. Here,p(cPoisson) = x indicates that the probability of a cycle to be generated by
Poisson noise is equal or smaller thanx. Top to bottom: 0-cycles, 1-cycles and 2-cycles.
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Figure 6.7: The effect of ratio simplification on 1D persistence summarycurves. 1D persistence summary curves for LCDM
at z = 0 (run 15). The colors indicate different cycle dimensions: red (0-cycles), yellow (1-cycles) and blue (2-cycles). Brighter
means higher simplification threshold, with the followings steps: (i) not simplified, (ii)p(cPoisson) = 0.1, (iii) p(cPoisson) = 0.01
and (iv)p(cPoisson) = 0.001. Here,p(cPoisson) = x indicates that the probability of a cycle to be generated by Poisson noise is
equal or smaller thanx.

and; forβ2 the high density tail is severely diminished. Also the Betti curves behave as was
expected from previous chapter: with increasing threshold they lower slightly and partly loose
their tails. Similar effects can be seen in the mean density curves, where simplification has a
much stronger effect. The direct effect of ratio simplification has a trivialeffect on the lifetime
curves (not shown here): the graphs get cut off at threshold level.
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6.2 Time evolution

Cosmic structure evolves with time, so for different values ofz we expect to see differences in
the persistence measures. To investigate the influence of time evolution, we consider LCDM run
15 at eight redshifts:z = 3.80, z = 2.98, z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10
andz = 0.0.

A visual impression

Figure 6.8 illustrates the evolution of the density field withz. The top-left tile shows the density
field atz = 3.80. Although the seeds of cosmic structure are discernible, structures are diffuse
and the density differences limited. The bottom-right tile showingz = 0 gives a completely
different view. Pronounced structures with a large density differenceare discernible. To see how
this structure evolution is reflected in persistence diagrams, figure 6.9 shows how persistence
diagrams and its 1D summary graphs evolve in time. A distinct time evolution is visible: with

(a) LCDM z = 3.80. (b) LCDM z = 2.05.

(c) LCDM z = 0.507. (d) LCDM z = 0.00.

Figure 6.8: LCDM time evolution. Density field of LCDM 15 for variousz. Structure clearly evolves whenz decreases.

decreasingz the persistence diagrams fan out from close to the middle and near the diagonal to
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all directions. The effect seems strongest at higherz but it could be the effect of time sampling.
The 0-cycles mainly migrate upwards along the diagonal, contrary to 2-cyclewhich mainly
move downwards; 1-cycles spread quite evenly upwards and downwards. Naturally, the spread
is also reflected in the mean density curves and (to a lesser degree) in the Betti curves. The
lifetime ratio increases in time to higher densities, quite strong for 0-cycles and only slightly for
2-cycles.
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(c) d = 0, LCDM z = 0.25 − z = 1.00.
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(e) d = 0, LCDM z = 0 − z = 0.25.
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Figure 6.9: Persistence diagram time evolution.Persistence diagrams for LCDM atz = 0 (run 15). Left: 0-cycle time evolution,
color indicates logarithmic excess of later time (red) or earlier time (green). Right: 1D persistence summaries with red (0-cycles),
yellow (1-cycles) and blue (2-cycles). Brighter means lowerz.
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Parametrization of 1D summary curves

Throughout time evolution a skewed lognormal remains an excellent fit for the mean density
and Betti curves. Fits for the latter curves for various values ofz are shown in figure 6.10.
The plotted skewed Gaussians have 4 parameters: meanµ, standard deviationσ, the skewness
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Figure 6.10: Skew Gaussian fits to Betti curves for various redshifts.Above 1-cycles are shown, fits for 0-cycles and 2-cycles
are analogous. The height of the curves descreases with decreasingz. Note the excellent fit for allz and all dimensions.

parameterα and the scaling parameterc. (The last is a pre-multiplication factor to correct for
bin size.) With time the skewed Gaussians evolve and these parameters change. To assess
whether there is any trend in the evolution of these parameters figure 6.11 shows the evolution
of the best-fit parameters in time. Forµ andσ a trent corresponding with observations above is
evident. With timeσ increases for all dimensions, whereasµ increases for 0-cycles, decreases
for 2-cycles and remains about the same for 1-cycles. More interesting perhaps is the behaviour
of the skewness parameterα, which surprisingly doesn’t increase with time but shows rather
eccentric behaviour. As for allz the number of bins is the same,c doesn’t show any evolution,
as expected.

The effects of simplification

Ratio simplification might influence the persistence diagrams differently for various epochs. As
ratio simplification is an important tool to nice the manifold, it is important to understandif
this is indeed the case and by how much. Figure 6.12 shows Betti curve time evolution for
increasing simplification threshold, with brighter color indicating lowerz. If z goes up the Betti
curve peaks go down, an effect that becomes stronger with increasingsimplification threshold.
For the highest simplification threshold (bottom right panel) the difference between the lowest
and highestz peak has become almost an order of magnitude. This suggests that at lowerz
structure is less pronounced, as it simplifies away easier.

Note also that in the unsimplified case the Betti curve peaks of all dimensions have about
the same magnitude. On the contrary, at the highest simplification level considered here the 2-
cycle peak decreased about an order of magnitude with respect to the 0-cycle peak. This can be
explained by the lower range of densities of 2-cycles, which makes their persistence relatively
low as well. The mean density curves and lifetime curves (not displayed) show the same pattern.
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Figure 6.11: Parameter time evolution of skewed normal fits to Betti curves. All four parameters are shown. The error lines
correspond with the 95% confidence intervals.

-8

-7

-6

-5

-4

-3

-2

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5

lo
g(

be
tti

’s
)

log(density)
(a) Betti curves / not simplified.

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5

lo
g(

be
tti

’s
)

log(density)
(b) Betti curves / r-simplifiedp(cPoisson) = 0.1.
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(c) Betti curves / r-simplifiedp(cPoisson) = 0.01.

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5

lo
g(

be
tti

’s
)

log(density)
(d) Betti curves / r-simplifiedp(cPoisson) = 0.001.

Figure 6.12: Betti curve time evolution under increasing simplificationthreshold. Colors indicate different cycle dimensions:
red (0-cycles), yellow (1-cycles) and blue (2-cycles). Brighter means lowerz andp(cPoisson) = x indicates that the probability of a
cycle to be generated by Poisson noise is equal or smaller thanx.
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6.3 Summary and conclusions

First, as reference case LCDM (run 15) atz = 0 is described in detail:

1. The 1-cycle persistence diagram has an extended inversev-shape along the birth=death
diagonal. The 0-cycle diagram fans out towards higher births and higher deaths, whereas
the 2-cycle diagram goes in opposite direction.

2. The Betti curves and product mean density curves follow nearly exact a skewed log-
normal pattern. The lifetime curves are monotonically decreasing, especiallythe 1-cycle
and 2-cycle curves decrease quite fast.

3. Ratio simplification effects the persistence diagrams as expected by ‘pushing up’ the diag-
onal. Consequently, the lifetime curves abruptly loose their lowest densities.1-cycle Betti
and mean density curves mainly shift downwards. Their 0-cycle and 2-cycle variants also
loose their low respectively high density tail.

With time structure evolves. For LCDM run 15, the persistence diagrams of allavailable epochs
(from z = 3.8 to z = 0) are computed and compared, showing us:

1. In time persistence diagrams fan out. 0-cycles mainly migrate to higher densities, 2-cycles
mainly to lower densities and 1-cycles spread quite evenly in both directions. This spread
also clearly shows from the mean density curves and to a lesser degree from the Betti
curves, in the form of shiftingµ values and increasingσ. Interestingly, no trend seems
to be visible in the skewness parameterα. In time, the lifetime ratio increases to higher
densities, quite strongly for 0-cycles and only slightly for 2-cycles.

2. Simplification enhances the effect of time evolution, as earlier epochs arethinned out
much more than later epochs. This suggests that at earlier epochs structures are less
persistent.

We conclude:

1. Persistence diagrams are a great tool to describe structure evolution:they are very sensi-
tive to structure and structural evolution.

2. The skewed normal distribution is an excellent model for Betti curves ofcosmological
matter distributions.µ andσ have clear patterns, the skewness parameterα not.
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Topological dark energy differentiation

Dark energy determines the global evolution of the universe. (Dark) matter is more powerful on
smaller scales and runs local affairs. As such it is dark matter that determines the detailed shape
of cosmic structure. But perhaps the tentacles of dark energy run deeper than we think and it
mingles in local affairs as well. If so, it will not leave the shape of cosmic structure untouched.
Different flavors of dark energy might leave a characteristic imprint on cosmic structure. In
the future, such an imprint could than be used to put constraints on dark energy models. The
previous chapter gave an extensive overview of the shape of LCDM persistence diagrams and
how they are influenced by simplification and time evolution. Based on the intuition gained
there, in this chapter we will or different DE models leave a different imprinton the shape of the
cosmic web.

The three dark energy models considered here are the three models explored in section 2.4:
LCDM, RP and SUGRA. For each dark energy model five realizations areavailable, named run
14 to run 18. Each dark energy model is considered at eight redshifts:z = 3.80, z = 2.98,
z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10 andz = 0.0. Combining previous gives
3 DE models× 5 realizations× 8 redshifts is 120 files. This large amount of data precludes
investigation of each individual file. Therefore we apply a different strategy and compare all
results with the reference case LCDM (run 15) atz = 0 (cf. section 6).

Three questions will lead us throughout this chapter:

1. Using persistence, can we distinguish between various dark energy models at the samez
in real space?

2. If the answer to the question of the previous point is positive, do the differences remain
visible if we transform to readshift space? If so, we might be able to use persistence to
observationallydistinguish between various dark energy models. In the future, this could
lead to topology induced constraints on dark energy models.

3. Using persistence, can we distinguish in real space between various dark energy models
at the same structure clustering parameterσ8 (cf. equation 2.33)? If so, this suggests DE
has a ‘local’ effect on structure formation. Various DE models will result instructure with
intrinsically different topology.
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The first and third question both consier structure in real space. Their essential lies in the fact
that for different DE models structure evolves differently in time, i.e. the functionσ8(z) depends
on DE model:σ8(z) = σ8(z, DE). Therefore, topological differences between two models at
somez might be the combination of two separate effects: (i) different rates of structure evolution
and (ii) intrinsic topological differences between the structure.

Of course, consideringz andσ8 effects separately is only useful ifσ8(z) differs notably
between various models. To see whether this is the case,σ8(z, DE) w.r.t. σ8(z, LCDM) is
shown for the three dark energy models in figure 7.1. The figure clearly shows that for smaller
z (z . 1) the models differ from each other significantly, making a separate treatmentof the
z andσ8 effects necessary. Furthermore, we observe that for highz SUGRA evolves fastest,
but it is quickly overtaken by RP. Later LCDM takes over from both models and becomes the
fastest evolving model. We note that for largerz theσ8 differences between the models become
smaller. This is understandable as atzCMB structure is identical for all models (cf. subsection
4.1.3).

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 0.5 1 1.5 2 2.5 3 3.5 4

σ 8
 -

 σ
8,

LC
D

M

z

 LCDM
 RP

 SUGRA

Figure 7.1: σ8(z, DE) with respect to σ8(z, LCDM) for the three dark energy models considered here.The values are
averaged over the five realizations, with the error bars indicating the variance.

For each of the three questions stated above, the different DE models will be compared in the
following way:

1. a visual comparison of the similarities and differences is given;

2. the effects of simplification, i.e. topological nicing of the density field (cf. section 5.3),
are considered;

3. we describe the statistical test setup used to determine whether differences (if any) are
statistically signicant;

4. the results from the statistical tests are presented.

An overall summary is given in section 7.4 and a discussion and conclusions are presented in
section 7.5.

7.1 Real space identical redshift

For the three dark energy models under consideration snapshots of the matter distribution in
real space at the samez are directly available (cf. subsection 4.1.3). In subsection 7.1.1 we
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inspect their similarities and differences visually, followed by an investigationof the effect of
simplification in subsection 7.1.2. The statistical test procedure is explained in 7.1.3 and the test
results are presented in subsection 7.1.4.

7.1.1 Visual inspection

Plotting the persistence diagrams of various models and runs directly is not very illuminating, as
the differences turn out to be small. Instead, we use persistence difference diagrams (cf. section
3.6): the bin-wise difference of a diagram with another diagram (the reference case). Persistence
difference diagrams are a great tool to investigate the pattern of differences. For several SUGRA
models atz = 0, their persistence difference diagrams are shown on the left of figure 7.2. Within
the persistence difference diagrams red indicates an excess of the SUGRA model and green of
the LCDM reference case. As we see from the figure, for all dimensions LCDM has clearly
more low-birth low-death cycles. Especially for 2-cycles this effect is consistent across several
runs, cf. the bottom three persistence difference diagrams.

The persistence difference diagrams show the difference pattern, butjust as important is the
magnitude of the difference. This is better shown using the 1D summary curves (in particular
the Betti and mean density curves), shown on right of figure 7.2. They portray that the difference
between LCDM and SUGRA might have a pattern, but in general is very smallcompared to the
function values. Only careful examination shows a systematic shift of LCDMtowards lower
densities at the low density part of the curves. Furthermore, for 0-cycles LCDM seems shifted
towards higher densities at the highest tail end. SUGRA has an opposite behaviour: at lower
densities it is slightly shifted to higher densities whereas the high density 0-cycle tail it is shifted
slightly to lower densities. RP lies nicely in between both models.

The relative shift of LCDM to lower densities might be attributable to a different stage of
structure evolution. Atz = 0 structure is most evolved in LCDM and we saw in section 6.1 that
structure evolution causes persistence diagrams to fan out, exactly what we observe. Physically
we can interpret it as follows: structure evolution makes empty regions emptierand the most
dense peaks much denser. This explains both the shift of the low density LCDM tail to even
lower densities and the shift of its high density tail in the opposite direction.

7.1.2 The effects of simplification

Simplification of the manifold supresses noise or small features, thus if the differences described
above are mostly small and insignificant simplification will take them out. By doing so simpli-
fication might enlarge the effects of more persistent features. To see howthe observed differ-
ences abide under simplification, figure 7.3 shows the Betti curves with increasing simplification
threshold. The differences observed in the non-simplified case seem robust: they neither become
more nor less prominent.

7.1.3 Statistical analysis / test setup

To test whether the small but apparently systematic differences between thevarious DE models
are significant, we perform a two-tailedKolmogorov-Smirnov (KS) two-sample teston each
pair of dark energy models and runs. The KS test is chosen because it isnon-parametric and
sensitive to shape as well as location. For completeness we note that the Anderson-Darling test,
more or less a weightedL2-norm variant of the Kolmogorov-Smirnov test, is more sensitive
to local differences [Feigelson and G., 2012]. However, as the KS testhas enough statistical
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(a) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 0-cycles.
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(b) Betti curves for all dark energy models, all runs.
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(c) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 1-cycles.
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(d) Life distribution curves for all dark energy models, all

runs.
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(e) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 2-cycles.
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(f) Mean density curves for all dark energy models, all runs.
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(g) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 17, 2-cycles.
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(h) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 18, 2-cycles.

Figure 7.2: Comparison of persistence diagrams atz = 0. Left: representative persistence difference diagrams, with green an
excess of the reference LCDM run 15 and red an excess of another dark energy model. Stronger colors means larger excess, the
numbers next to the color bar indicate the (negative) power ofthe excess, so note that the green color bar is inverted. Right: 1D
summary curves for LCDM (blue and LCDM run 15 black), RP (yellow) and SUGRA (red). As can be seen from the 1D summary
curves presented earlier: cycle dimension decreases from left to right curve set.

109



December 2013 7.1. REAL SPACE IDENTICAL REDSHIFT

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5

lo
g(

be
tti

’s
)

log(density)
(a) Not simplified.

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5  3  3.5

lo
g(

be
tti

’s
)

log(density)
(b) Simplified,p(cPoisson) = 0.1.
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(c) Simplified,p(cPoisson) = 0.01.
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(d) Simplified,p(cPoisson) = 0.001.

Figure 7.3: Betti curves at z = 0 with increasing simplification threshold. Betti curves for LCDM (blue and LCDM run 15
black), RP (yellow) and SUGRA (red), with increasing simplification threshold.p(cPoisson) = x indicates that the probability of a
cycle to be generated by Poisson noise is equal or smaller thanx. As can be seen from the 1D summary curves presented earlier:
cycle dimension decreases from left to right curve set.

power for our purposes and is much better known within the astronomical community, we use it
here. As zero hypothesis we take that each DE pair has the same underlying distribution and as
alternative hypothesis we take the opposite.

Unfortunately, the KS test can’t work with binned data as it is based on creating anempiri-
cal distribution function. An empirical distribution function requires an ordering of data points
based on their function value. The points we consider here are the points ina persistence dia-
gram. Each of these points has a lifetime and mean density, thus we can test lifetimeand mean
density in the KS test. In other words: we can test the difference between lifetime curves or mean
density curves of various DE models, as both curves represent a summary of individual points
properties. Betti curves, however, do not. A Betti curve gives the number of cycles alive at a
certain density threshold, but this is a global property of the diagram and does not relate directly
back to individual points. Individual points don’t have a ‘Betti value’ associated to them (other
then their dimension) and thus cannot be ordered based on their ‘Betti value’. Consequently, on
Betti curves no KS test can be performed.

It would be interesting to continue with a Kruskal-Wallis (KW) test1 to identify any group
differences between the DE models. Unfortunately the KW tests requires allthe distributions to
be identically shaped and scaled, a requirement not satisfied here. Therefore, unfortunately, we
cannot proceed in this direction.

1The Kruskal-Wallis test is a non-parametric variant of ANOVA.
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7.1.4 Statistical analysis / results

We test the significance of the difference between each pair of DE models and runs atz = 0
using (i) lifetime curves and (ii) mean density curves. For both, we give (i) the test outcomes
(H0 acceptation or rejection) for ap-value of 0.01 and (ii) the more nuanced test statistic values.

Testing lifetime curves

A visual representation of the KS test outcomes is shown in figure 7.4. The cycle dimension
increases from left to right and the simplification threshold increases fromtop to bottom. Re-
jection of H0 (yellow) means the lifetime curves originate from significantly different models,
where non-rejection of H0 (black) means they do not.

Let’s first consider the unsimplified case, i.e. the top row. For 0-cycles and in particularly
for 2-cycles a clear pattern is visible: in general SUGRA differs significantly from LCDM as
well as from RP. A few RP runs also differ significantly from LCDM runs.Different runs of the
same model are never significant. Interestingly, the 1-cycles shown another pattern: only a few
significant results are found, mainly between different runs of the same model.

The statistical significance changes in a non-trivial way with increasing simplification thresh-
old. For 2-cycles, the statistical significance of the pattern decreases withincreasing simplifi-
cation threshold, whilst for 1-cycles the statistical significance of the pattern increases. For
0-cycles the effects of simplification are more ambiguous.

More nuanced outcomes than acceptation/rejection are provided by the teststatistic values
itself, shown in figure 7.5. The results are analogous to those of the test outcomes, but patterns
are more easily found.

Testing mean density curves

We repeat the analysis above for the mean density curves, the results areshown in figure 7.6
for H0 acceptation/rejection and in figure 7.7 for the corresponding test statistic values. Results
reveal again an unmistakable and significant difference between the various dark energy mod-
els, even stronger than the lifetime curves did. Without simplification, almost all runs differ
significantly from each other, also those of the same underlying DE model. Withrising simplifi-
cation threshold the contrast between the various DE models increases. Simplification levels of
p(cPoisson) = 0.1 andp(cPoisson) = 0.01 (middle rows) show a near perfect model differentation.
The contrast between the various DE models also strenghtens with increasing dimension (left to
right).
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(b) 1-cycles / no simp.
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(c) 2-cycles / no simp.
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(d) 0-cycles /p(cPoisson) = 0.1.
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(e) 1-cycles /p(cPoisson) = 0.1.
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(f) 2-cycles /p(cPoisson) = 0.1.
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(g) 0-cycles /p(cPoisson) = 0.01
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(h) 1-cycles /p(cPoisson) = 0.01
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(i) 2-cycles /p(cPoisson) = 0.01
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(j) 0-cycles /p(cPoisson) = 0.001
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(k) 1-cycles /p(cPoisson) = 0.001
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(l) 2-cycles /p(cPoisson) = 0.001

Figure 7.4: Two-tailed Kolmogorov-Smirnov two-sample test outcomes for lifetime curves / real space identicalz. For each
pair of dark energy models and runs we test whether the curves at z = 0 have statistically different persistence diagrams and thus
topology. If a pattern between the various DE models is visible, it suggests DE models result in different topological structure
at z = 0. The zero hypothesis states the underlying topology is identical, the alternative hypothesis that they are different.A
p-value of 0.01 is used. From left to right: increasing cycle dimension. From top to bottom: increasing simplification threshold.
p(cPoisson) = x indicates that the probability of a cycle to be generated by Poisson noise is equal or smaller thanx. Table indicators:
Ln, Rn and Sn stand for LCDM respectively RP or SUGRA runn+10.
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(d) 0-cycles /p(cPoisson) = 0.1.
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(e) 1-cycles /p(cPoisson) = 0.1.
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Figure 7.5: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for lifetime curves / real space identicalz. The
test setup is analogous to that described in the text or in thecaption of figure 7.4. From left to right: increasing cycle dimension.
From top to bottom: increasing simplification threshold. Table indicators: Ln, Rn and Sn stand for LCDM respectively RP or
SUGRA runn+10.
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(a) 0-cycles / no simp.
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(b) 1-cycles / no simp.
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(c) 2-cycles / no simp.
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(d) 0-cycles /p(cPoisson) = 0.1.

Ref: L5

L4

L6

L7

L8

R4

R5

R6

R7

R8

S4

S5

S6

S7

S8

L5 L4 L6 L7 L8 R4 R5 R6 R7 R8 S4 S5 S6 S7 S8
 0

 0.2

 0.4

 0.6

 0.8

 1

(e) 1-cycles /p(cPoisson) = 0.1.
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(f) 2-cycles /p(cPoisson) = 0.1.
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(g) 0-cycles /p(cPoisson) = 0.01
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(h) 1-cycles /p(cPoisson) = 0.01
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(i) 2-cycles /p(cPoisson) = 0.01
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Figure 7.6: Two-tailed Kolmogorov-Smirnov two-sample test outcomes for mean density curves / real space identicalz. The
test setup is analogous to that described in the text or in thecaption of figure 7.4. From left to right: increasing cycle dimension.
From top to bottom: increasing simplification threshold. Table indicators: Ln, Rn and Sn stand for LCDM respectively RP or
SUGRA runn+10.
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(d) 0-cycles /p(cPoisson) = 0.1.
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(e) 1-cycles /p(cPoisson) = 0.1.
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(k) 1-cycles /p(cPoisson) = 0.001
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Figure 7.7: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for mean density curves / real space identical
z. The test setup is analogous to that described in the text or inthe caption of figure 7.4. From left to right: increasing cycle
dimension. From top to bottom: increasing simplification threshold. Table indicators: Ln, Rn and Sn stand for LCDM respectively
RP or SUGRA runn+10.
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7.2 Redshift space

Observations are made in redshift space, which produces distortions mainly in the line of sight
direction, cf. [Hamilton, 1998] for an overview. Such distortions might influence the topology
and thereby the pattern we found in the statistical tests. To see whether this is indeed the case, we
repeat the analysis of previous section in redshift space. For this, instead of using the simulations
we described in subsection (cf. section 4.1.3) we use an analogous run (run 6) for which linear
redshift distorted boxes are readily available. Run 6 is identical in all respects, safe for (i) other
initial conditions and (ii) slightly differentz values. Although the latter prohibits direct compar-
ison of run 6 simulations with the other simulations of this thesis, we can compare thedifferent
DE models of run 6 with each other. For each of the DE models, 4 redshift distorted simulation
boxes are avaiable. The boxes differ in ‘observational position’, being: (a)(75, 75, 75) Mpc; (b)
(225, 75, 75) Mpc; (c) (200, 0, 100) Mpc and (d)(50, 75, 200) Mpc; with (0, 0, 0) Mpc one of
the box corners. This gives us a total of 3 DE models× 4 observational positions= 12 snap-
shots. For each of these snapshots, the persistence diagram is computed. In subsection 7.2.1 we
inspect the similarities and differences of these persistence diagrams visually, followed by an
investigation of the effect of simplification in subsection 7.2.2. The statistical test procedure is
explained in 7.2.3 and the test results are presented in subsection 7.2.4.

7.2.1 Visual inspection

Proceeding along the same lines as in the real space case, several persistence diagrams have
been plotted on the left of figure 7.8. A clear distinction between LCDM and SUGRA is visible,
consistent throughout dimensions (the top three persistence diagrams) and between different
distorted positions (bottom three persistence diagrams). In addition to the low-birth low-death
tail also visible in real space, LCDM seems to have a more pronounced high-birth high-death tail
as well. Whether this comes due to redshift distortions or slightly differentz values cannot be
answered at this point. Because differences in observational position naturally introduce some
extra spreading, the 1D summary curves on the right show only the curvesbased on distortions as
observed from position (a). Comparing (only the general) characteristics of the curves with their
normal space variants, we see that (i) the redshift curves here reachup to much less high densities
and (ii) skewed lognormality is lost due to ‘bumps’. As we saw in section 6.2 lognormallity is
preserved underz evolution, thus the loss of lognormality is a redshift distortion effect. Redshift
distortions spread the highest density regions in the line of sight direction, the characteristic
‘fingers of God’. This probably explains both observations. A small difference between the
curves of various DE models is visible at low densities.

7.2.2 The effects of simplification

The simplified Betti curves for all DE models all positions are displayed in figure 7.9. The
spread due to observations from different positions as mentioned aboveis clearly visible. More
careful inspection shows that the low density differences between DE models are robust under
simplification. Interestingly, the ‘bumps’ in the Betti curve are not. Whereas inparticular the
2-cycles show a bump in the higher density region, this bump is almost completely simplified
out at the highest simplification threshold considered here. This directly implies that the cycles
responsible for this bump are mainly of low persistence.
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(a) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 0-cycles.
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(b) Betti curves for all dark energy models, all runs.
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(c) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 1-cycles.
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(d) Life distribution curves for all dark energy models, all

runs.
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(e) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 16, 2-cycles.
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(f) Mean density curves for all dark energy models, all runs.
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(g) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 17, 2-cycles.
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(h) Persistence difference diagram for LCDM 15 w.r.t.
SUGRA 18, 2-cycles.

Figure 7.8: Comparison of persistence diagrams in redshift space atz = 0. Left: representative persistence difference dia-
grams, with green an excess of the reference LCDM run 15 and redan excess of another dark energy model. Stronger colors means
larger excess, the numbers next to the color bar indicate the (negative) power of the excess, so note that for green the color bar is
inverted. Right: 1D summary curves for LCDM (black), RP (yellow) and SUGRA (red), all at position (a). As can be seen from
the 1D summary curves presented earlier: cycle dimension decreases from left to right curve set.
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(a) Not simplified.
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(b) Simplified,p(cPoisson) = 0.1.
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(c) Simplified,p(cPoisson) = 0.01.
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(d) Simplified,p(cPoisson) = 0.001.

Figure 7.9: Betti curves in redshift space, at identicalz with increasing simplification threshold. Betti curves for LCDM (blue
and LCDM run 15 black), RP (yellow) and SUGRA (red), with increasing simplification threshold.p(cPoisson) = x indicates that
the probability of a cycle to be generated by Poisson noise isequal or smaller thanx. As can be seen from the 1D summary curves
presented earlier: cycle dimension decreases from left to right curve set.

7.2.3 Statistical analysis / test setup

The test setup for the statistical analysis is identical to the setup for the real space case described
in subsection 7.1.3. Instead of using several runs of the same DE model, we use one run of each
DE model, distorted from several positions. In the real space case the mean density curve turned
out to be the most sensitive tracer. Furthermore, it turned out that the teststatistic outcomes and
test statistic values showed an analogous pattern, but using the latter a pattern was more easily
distinguishable. Therefore, for compactness we restrict ourselves to the testing the difference
between mean density curves and only show the test statistic values.

7.2.4 Statistical analysis / results

The test statistic values are shown in figure 7.10 with increasing from left to right and simplifi-
cation factor increasing from top to bottom. Focussing first on the unsimplifiedcase (top row)
we see the various DE models are clearly distinguishable, specifically 1-cycles and 2-cycles.
Now taking into account the effects of simplification, we notice that it affects the statistical pat-
tern much stronger than in the unsimplified case (cf. figure 7.7). This is in line with previous
subsection, where we saw complete bumps disappearing under simplification.For 0-cycles sim-
plification almost completely destroys any pattern, whereas for 1-cycles and 2-cycles the pattern
becomes stronger. For 2-cycles some extra strong lines at the rows and columns associated with
positiond are visible. Only this position gives extra strong lines, so the extra strenghtis probably
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due to a different point of view (literally) rather than anything else.
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(a) 0-cycles / no simp.
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(c) 2-cycles / no simp.
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(d) 0-cycles /p(cPoisson) = 0.1.
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(e) 1-cycles /p(cPoisson) = 0.1.
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(f) 2-cycles /p(cPoisson) = 0.1.
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(g) 0-cycles /p(cPoisson) = 0.01
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(h) 1-cycles /p(cPoisson) = 0.01
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(i) 2-cycles /p(cPoisson) = 0.01
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(j) 0-cycles /p(cPoisson) = 0.001
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(k) 1-cycles /p(cPoisson) = 0.001
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Figure 7.10: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for mean density curves / redshift space iden-
tical z. The test setup is analogous to that described in the text or inthe caption of figure 7.4. From left to right: increasing
cycle dimension. From top to bottom: increasing simplificationthreshold. Table indicators: Ln, Rn and Sn stand for the LCDM
respectively RP or SUGRA run at observational positionsn, with n ∈ {a, b, c, d}.

7.3 Real space identical clustering parameter

In section 7.1 we found a significant difference between DE models at the samez. But this
doesn’t imply the models also differ significantly at the same stage of structureevolution. To
consider the latter, we need to compare the persistence diagrams from all models all runs at iden-
tical σ8 values. Unfortunately, the available Gadget snapshots are at fixedz values. We therefore
use binwise interpolation or extrapolation to obtain the persistence diagrams attheσ8 values of
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LCDM run 15, using a 2nd degree polynomial. For LCDM run 17 (σ8’s are very similar to
LCDM run 15) and SUGRA run 18 (σ8’s are very different from LCDM run 15) the interpo-
lated/extrapolated Betti curves for all epochs are shown in figure 7.11. At very low redshifts
some of the extrapolated curves start to behave irregular, probably because the extrapolation
breaks down there. For LCDM run 17 the differences between thez-based original and interpo-
lated Betti curves are more or less negligible. For SUGRA run 18 with smallz on the contrary,
the differences between original and interpolated Betti curves are larger than the differences
between successive time steps of one of them.
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(a) Betti curves LCDM run 17.
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Figure 7.11: Interpolated Betti curves. Betti curves of at fixedz are directly avaible from the Gadget snapshots, colored in red
(0-cycles), yellow (1-cycles) and blue (2-cycles). Using binwise interpolation or extrapolation, the Betti curves atfixed σ8 are
determined, colored green (for all cycles). Brighter means lowerz.

In analogy with the real space identical redshift case in section 7.1, we first inspect differ-
ences visually. Than, we turn to statistical analysis.

7.3.1 Visual inspection

A selection of representative persistence difference diagrams compared at identicalσ8 values is
shownin the right columnof figure 7.12. The same difference diagrams compared at identicalz
values are shownin the left columnof the figure. We observe the following:

• For the 0-cycle diagram (top row), the pattern visible in the identical-z case disappears in
the identical-σ8 case.

• For the 2-cycle diagrams (rows 2-4) the identical-z case shows a consistent pattern, but
the consistency of the pattern is lost in the identical-σ8 case. In the diagram on the second
row (right column) we see a SUGRA excess at lower birth and lower deaths, whereas in
the diagram below SUGRA displays an excess at intermediate densities. In thebottom
row SUGRA shows an excess at higher births and higher deaths.

The identical-σ8 1D summary curves (not shown here) agree with previous observations: they
are nearly indistinguishable one their complete density range.

7.3.2 The effects of simplification

To investigate the effects of simplification, figure 7.13 shows its effect on theBetti curves for
increasing simplification threshold. In analogy with the equal-z case, simplification doesn’t
seem to have any effect on the presence of patterns.
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(a) Equalz persistence difference diagram for LCDM 15
w.r.t. SUGRA 16, 0-cycles.
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(b) Equalσ8 persistence difference diagram for LCDM 15
w.r.t. SUGRA 16, 0-cycles.

-1.5

0.92

3.34

-1.5 0.64 2.78

lo
g 

de
at

h 
de

ns
ity

log birth density
-8

-6

-4

-2

 0

 2

 4

 6

 8

(c) Equalz persistence difference diagram for LCDM 15
w.r.t. SUGRA 16, 2-cycles.
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(d) Equalσ8 persistence difference diagram for LCDM 15
w.r.t. SUGRA 16, 2-cycles.
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(e) Equalz persistence difference diagram for LCDM 15
w.r.t. SUGRA 17, 2-cycles.
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(f) Equal σ8 persistence difference diagram for LCDM 15
w.r.t. SUGRA 17, 2-cycles.
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(g) Equalz persistence difference diagram for LCDM 15
w.r.t. SUGRA 18, 2-cycles.
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(h) Equalσ8 persistence difference diagram for LCDM 15
w.r.t. SUGRA 18, 2-cycles.

Figure 7.12: Persistence difference diagrams at identicalz (left) vs identical σ8 (right). Representative persistence difference
diagrams, with green an excess in the reference LCDM run 15 andred an excess another dark energy model. Stronger colors means
larger excess, the numbers next to the color bar indicate the (negative) power of the excess, so note that for red the color bar is
inverted. Left: difference diagrams at identicalz; right: the same difference diagrams at identicalσ8. In case of the identicalz
structural differences between LCDM and SUGRA are visible.These structural differences disappear in the identical-σ8 case.
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(b) Simplified,p(cPoisson) = 0.1.
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(c) Simplified,p(cPoisson) = 0.01.
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(d) Simplified,p(cPoisson) = 0.001.

Figure 7.13: Betti curves at identicalσ8 with increasing simplification threshold. Betti curves for LCDM (blue and LCDM run
15 black), RP (yellow) and SUGRA (red), with increasing simplification threshold.p(cPoisson) = x indicates that the probability of
a cycle to be generated by Poisson noise is equal or smaller than x. As can be seen from the 1D summary curves presented earlier:
cycle dimension decreases from left to right curve set.

7.3.3 Statistical analysis / test setup

The interpolated Betti curves have all the sameσ8. Any statistically significant differences
between them are solely attributable to DE induced intrinsic topological differences in structure.
Unfortunately, binning makes it impossible to define an empirical distribution function and thus
the KS test (or related measures) cannot be used. We therefore switch to(Pearson’s)χ2 test.
The χ2 test has three main disadvantages: (i) it is in general less sensitive than theKS test
[Wall and Jenkins, 2003]; (ii) test outcomes might depend on bin size2 and; (iii) the number of
empty cells should be limited. To mediate the second disadvantage, we note that for Betti curves
the power of the density is approximated reasonably well by a normal distribution (cf. section
6.1). Therefore, we can use Heald’s optimal bin widthδx [Heald, 1984], defined as:

δx = σ

(

20

n

)1/5

with σ the cycle density standard deviation andn the number of cycles. To counteract the third
disadvantage we cut all Betti curves near the end of their tails. This will makeresults more
trustworthy, but at the price of further reduced sensitivity.

2The shear size of our sample makes this effect probably limited, though.
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7.3.4 Statistical analysis / results

To see how well theχ2 test detects differences, we first apply it to a more known case. The top
row of figure 7.14 shows theχ2 values at the samez, analogously with the tests performed in
section 7.1. Again the models are unmistakably distinguishable: SUGRA differsvisibly with
LCDM as well as with RP. Differences between LCDM and RP are smaller anddifferences
between several runs of the same model are very small. Apparently, although theχ2 test might
not be sensitive as KS tests, it is still sensitive enough to detect the different models.

We now proceed with a comparison between the interpolated Betti curves, ason the bottom
of figure 7.14. Note that the values of theχ2 statistics decrease by a factor 2 till 3. Hardly any
pattern is left. Only for a few specific combinations of LCDM and SUGRA runs, the 0-cycles
show slightly largerχ2 values, but they are far from convincing. We therefore conclude thatit is
unlikely that different DE models generate intrinsically different structuretopology.
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Figure 7.14: χ2 two-sample test statistic values for Betti curves at identical z (top row) and identical σ8 (bottom row). For
each pair of dark energy models and runs we test whether the curves have statistically different persistence diagrams and thus
topology. In the top row we compare curves atz = 0, in the bottom row we compare atσ8 = 369.591. Thisσ8 value corresponds
to theσ8 value of LCDM run 15 atz = 0. To top row shows a pattern whereas the bottom row does not. This suggests that the DE
models result in intrinsically identical structure topology. The differences at the identical-z case are solely attributable to different
rates of structure evolution. Table indicators: Ln, Rn and Sn stand for LCDM respectively RP or SUGRA runn+10.

We note that interpolation/extrapolation creates additional uncertainty. Therefore, in this
section we make no statements about the statistical significance of the disappearance of a pattern.

7.4 Summary observations

Dark energy rules the global evolution of the universe, but it might mingle inlocal affairs as
well. If so, it may leave a distinct imprint on the topology of cosmic structure. Tosee whether
such imprint exists the persistence diagrams of the three DE models considered in this thesis are
computed and compared.

Differences between the topology of cosmic structure induced by different DE models con-
sists of two independent factors: (i) the rate of structure evolution variesbetween DE models
and (ii) DE models might each result in intrinsically different structure topology. The first and
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the second effect can be found by comparing persistence diagrams of different DE models at the
samez respectively at the sameσ8.

Comparison of persistence diagrams of several DE models at the samez learns us:

1. Some structural differences are visible in the low birth low death tail of the persistence di-
agrams: LCDM is shifted consistently to slightly lower densities than RP, whilst SUGRA
is shifted to slightly higher densities. The differences are quite small compared to function
value. Physically, they might be caused by the difference in the rate of structure evolution.
The observed differences are robust under simplification.

2. The lifetime curves and in particular the mean density curves show a statistically signif-
icant difference between the various DE models. Mean density 2-cycles at intermediate
simplification thresholds give the most pronounced difference.

Thus, in real space at a givenz it is in principle possible to distinguish between DE models based
on persistence diagrams. To see or whether these differences are alsoobservable, we repeat part
of the analysis above in redshift space:

1. Again LCDM persistence diagrams are systematically shifted to the low birth lowdeath
tail of persistence diagrams, in particular for 2-cycles. Contrary to the real space case,
a high density effect seems visible as well. The observed differences are robust under
simplification.

2. The transformation from real space to redshift space severely distorts the topology of cos-
mic structure, as is visible from in particular the Betti curves and mean density curves.
The most prominent differences between the redshift space versions of these curves com-
pared with their normal space counterparts are: (i) the excess of low density cycles and
(ii) the presence of ‘bumps’. With increasing simplification threshold these bumps become
smaller, implying that they are caused by low persistent cycles.

3. The mean density curves show a statistically significant difference between the various DE
models, especially for 1-cycles and 2-cycles. The difference is robust under simplification.

Hence, using persistence it is in principle possible to observationally differentiate between vari-
ous DE models!

The observed dissimilarities of the cosmic structure might be due to one or both of the following:
(i) different structure formation rates and (ii) intrinsic topological differences. To determine
the magnitude of the latter, the persistence diagrams of several DE models at the sameσ8 are
compared:

1. Visually, the structural differences between persistence diagrams ofvarious DE models
largely disappears and isn’t recovered by simplification.

2. Statistical tests seem to confirm previous.

The DE models here don’t result in intrinsically different structure topology.
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7.5 Discussion and conclusions

Three aspects of the analysis above require some more thought:

1. Throughout this chapter, for computational efficiency all computationsand visualizations
of complete persistence diagrams were done on a 2D histogram instead of theoriginal
point diagram. Mathematically this is not shown to be equivalent, but some investigation
suggests neither the presence nor the magnitude of any patterns are influenced by the
specific choice of any reasonable bin size.

2. Of more pressing concern are theχ2 tests performed on Betti curves in section 7.3. Tech-
nically, theχ2 test demands that every point is put in one bin and that the choice of bin is
independent for all points. These conditions are not met for Betti curves: a persistent cycle
will contribute in many Betti curve bins and consequently these bins are not independent.
Theχ2 test performs quite well in the equal-z case though. Furthermore, a short exper-
iment with mean density curves shows they exhibit the same pattern as the Betti curves.
Thus not strictly meeting the mathematical requirements doesn’t seem to have very large
effects.

3. In the discussion of chapter 5 we claimed that specific types of perturbations might influ-
ence persistence diagrams in different ways. In that chapter we consider random pertur-
bations of predetermined magnitude and here we studied redshift perturbations. A short
comparison of the resulting Betti curves learns us that these different perturbations in-
fluence the persistence diagrams indeed in different ways, supporting the claim above.
Consequently, perturbation results for one type of perturbation have only limited value for
other types of perturbations.

With the previous thoughts in mind, we conclude:

1. The first and second questions posed in the introduction of this chaptercan be answered
with a definiteyes. At fixed low z different DE models result in significantly different
structure topology, both in real and redshift space. In principle, this makes possible to
observationally distinguish between dark energy models based on their persistence dia-
grams!

2. The effects above can be found both from lifetime curves and mean density curves, al-
though these curves are not sensitive at all cycle dimensions and simplification thresh-
olds. Mean density 2-cycles distinguish the DE models nearly flawless, especially for
intermediate ratio simplification thresholds.

3. At fixed σ8, the persistence diagrams of the DE models investigated here are (nearly)
indistinguishable. Thus LCDM, RP and SUGRA don’t result in intrinsically different
structure topology.
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CHAPTER 8

Discussion & conclusions

8.1 Overall conclusions

1. Homological discrete topology is a natural choice to describe the structure, shape and
connectedness of the cosmic web. It visualizes topology using a Discrete Morse Complex
and provides analytical handles via persistence diagrams (cf. section 3.6).

2. Persistence diagrams are (i) very sensitive to the presence of structure and (ii) robust
against uncertainties up to at least 10 %.

3. Persistence simplification is an excellent, intuitive and computationally efficient method
to take out irrelevant features and noise.

4. Persistence diagrams of the cosmic web in an LCDM universe atz = 0 have the following
characteristics:

(a) The 1-cycle persistence diagram has an extended inversev-shape along the birth=death
diagonal. The 0-cycle diagram fans out towards higher births and higher deaths,
whereas the 2-cycle diagram goes in opposite direction.

(b) The Betti curves and product mean density curves follow nearly exact a skewed log-
normal pattern. The lifetime curves are monotonically decreasing, especiallythe
1-cycle and 2-cycle curves decrease quite fast.

5. With time structure evolves. For the persistence diagrams of the cosmic web of an LCDM
universe, this is visible as follows:

(a) In time persistence diagrams fan out. 0-cycles mainly migrate to higher densities, 2-
cycles mainly to lower densities and 1-cycles spread quite evenly in both directions.
This spread also clearly shows from the mean density curves and to a lesser degree
from the Betti curves, in the form of shiftingµ values and increasingσ of their
skewed lognormal fits. Interestingly, no trend seems to be visible in the skewness
parameterα.

(b) Simplification enhances the effect of time evolution, as earlier epochs are thinned
out much more than later epochs. This suggests that at earlier epochs structures are
less persistent.
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6. Comparison of the cosmic web topology of LCDM, RP and SUGRA universes learns us:

(a) At fixed low z (z . 1) the different DE models result in significantly different
structure topology, both in real and redshift space. In principle, this makes possible
to observationally distinguish between dark energy models based on their persistence
diagrams!

(b) Mean density 2-cycles at intermediate ratio simplification thresholds are thebest DE
model differentiators.

(c) At fixedσ8 the persistence diagrams of the DE models investigated here are (nearly)
indistinguishable. Thus LCDM, RP and SUGRA don’t result in intrinsically differ-
ent structure topology.

8.2 Methodological discussion

Two aspects regarding the topological analysis within this thesis warrant some attention:

1. In section 3.6 we discussed impossible cancellations (cf. figure 3.23 in particular). The
topological algorithms used within this thesis (cf. sections 4.3 and 4.4) provideinsufficient
information to determine whether a simplification is possible (i.e. allowed). Therefore,
all simplification are carried out whether possible or not. Although the percentage of
impossible cancellations is expected to be low and their relevance limited [Sousbie, 2011;
Pranav, 2013], a more detailed study of the effects of carrying out impossible cancellations
would further substantiate the conclusions of this thesis.

2. Of more fundamental nature is the structure the Discrete Morse Complex (cf. defini-
tion 3.26)imposeson the Cosmic Web: every 1-simplex connects two 0-simplices, every
2-simplex is surrounded by 1-simplices, etc. From observations we know this is not nec-
essarily the case in the real universe, for example some filaments just end inthe middle
of a void. As such the Discrete Morse Complex is an idealized structure. Artificially ex-
cluding simplices of the Discrete Morse Complex from analysis might be an option, but
current algorithms don’t provide such options yet. (Note that artificially excluding sim-
plices is not the same as simplification, as after simplification the manifold is restructured
such that all conditions imposed by the Discrete Morse Complex remain satisfied.)

8.3 Where to go from here

As direct follow-up of this thesis, we suggest the following:

1. Here we showed that series of pair-wise statistical tests display patternsindicating the
difference between various DE models. A non-parametric group test to show the statistical
significant difference between a set of runs of one DE model and a setof runs from another
DE model could not be performed, as the conditions for the Kruskal-Wallis test are not
met (cf. subsection 7.1.3). In section 6.1 we noted the good fit of a lognormal to the
Betti curves. It would be interesting to fit the Betti curves of all DE models all runs with
lognormals and perform a classical parametric ANOVA test on these fits.

2. Very recently, the branch of statistical topology developed discrete topology hypothesis
testing [Robinson and Turner, 2013; Turner, 2013]. Such hypothesis tests compare two
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persistence diagrams using theWasserstein metric(also called the Earth mover’s distance).
Informally, the metric can be described as a ‘minimum effort’ required to change one
persistence diagram in the other. Unfortunately, the algorithms for such a test are not
publicly available yet (and writing them is beyond the scope of a master thesis). When the
algorithms become publicly available, we recommend to repeat the analysis above using
the complete persistence diagram instead of a 1D summary curve.

3. In this thesis we based our analysis on the density field but other cosmic fields like the
velocity field can be used as well [Cautun et al., 2013; Hoffman et al., 2012]. Repeating
the analysis of this thesis using the velocity field instead of the density field wouldbe
useful.

More fundamentally, how a specific (density) function gives rise to a specific persistence
diagram is poorly understood. That is, we can calculate the persistence diagram of the function
algorithmically with the data pipeline described in chapter 4 but we cannot predict it or calculate
it from more basic principles. [Feldbrugge et al.; Pranav et al., 2013c] provide first steps in this
direction, but a lot of work remains to be done.

From a visualization perspective, several ways to visualize the cosmic webexist (cf. section
2.6). Comparison of the visual output of these methods with the visual outputdelivered by
discrete topology (in the form of the Discrete Morse Complex, cf. definition 3.26) would be
insightful.

8.4 Popular scientific summary

A popular scientific summary of this thesis will be published in the Periodiek [Nevenzeel, 2014].
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APPENDIX A

Mathematical background

A.1 Topological essentials in 10 minutes

Since the dawn of civilization geometry is closely related to astronomy. In antiquity, the Greek
used geometry to describe heavens and as such developed very accurate astronomical models
far beyond their time. In the many centuries that followed geometry remained closely connected
to astronomy. At the beginning of the 17th century geometrical astronomy again provided an
astronomical breakthrough: following classical tradition, Kepler stated hislaws of planetary
motion in geometrical terms. His work not only provided strong support for heliocentric model,
Newton also used it as evidence for his general laws of motion. In modern times, Einstein’s
general relativity basically asserts a relation between the geometry of spacetime and the mass
distribution. General relativity was proved to be correct by astronomicalobservations.

Basically a geometric property is a property unaffected by translation or rotation of a coor-
dinate system, such as the orbit of planets around the sun, the influence ofmass on spacetime or
the height of a mountain. Here we directly see one of the limitations of geometry: an (implicite)
coordinate system (technically: a distance metric) is required. Topology relaxes this constraint
by letting go the requirement of a distance metric and only requiring a notion of ‘near’ or ’far’,
without specifying exactly how near or far. As such, topology is sometimes described as ‘rubber
sheet geometry’: objects may be twisted, deformed or stretched without influencing topology.
Contininuing the examples above: the presence of a peak in a mountain landscape is a topolog-
ical property of the height function, just as the presence of a potential well in the graviational
field function. Here we see at once both the advantage of as well as the extra layer of abstrac-
tion added by topology over geometry. The geometric property of peak height will in general
change: in the winter snow might heighten the mountain peak and in time erosion willlower
it. However, the topological property not concered exact distances remains invariant: there is
a mountain peak. Below follows a very short crash course of the most important topological
concepts required for this thesis.

Our story begins [Katok and Sossinsky; Sutherland, 2005] as many stories in mathematics
begin, with a definition:

Definition A.1 (Metric space). A metric space(M, d) is a non-empty setM on which a distance
functiond is defined. Takex, y ∈ M , thand(x, y) must satisfy:

1. d(x, y) ≥ 0 ∀ x, y ∈ X;
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2. d(x, y) = 0 ⇔ x = y;

3. d(x, y) = d(y, x);

4. d(x, z) ≤ d(x, y) + d(y, z)

Example A.1 (Euclidean space). Rn with the normal Pythagorean distance
d(x, y) =

√
∑n

i=1(xi − yi)2 is a metric space.

Example A.2. R2 with the distance functiond(x, y) = cos(x)·sin(y) is not a metric space as the
distance function violates all demands: (1) it can become negative; (2)d(x, y) = 0 < x = y;
(3) it is not symmetric inx and y and (4) is violated as well, take for examplen = 1 and
(x, y, z) = (0, 0, π/2).

In ann-dimensional metric we can define an:

Definition A.2 (Openn-ball Bo
ǫ (a)). Given metric space(M, d), a pointx ∈ M andǫ ∈ R>0,

the openn-ball Bo
ǫ (a) is the set

Bo
ǫ (a) = {x ∈ M |d(x, a) < ǫ}

Note: sometimes the number in front of the ball denotes theǫ instead of the dimensionn. Here
we usen as for our purpose specific values ofǫ are not so relevant, but the dimension is.

Analogously, one can define a:

Definition A.3 (Closedn-ball Bǫ(a)). Given metric space(M, d), a pointx ∈ M andǫ ∈ R>0,
the closedn-ball Bǫ(a) is the set

Bǫ(a) = {x ∈ M |d(x, a) ≤ ǫ}

In essence, a closed ball is an open ball with boundary. From now on, unless mentioned other-
wise with the termn-ball we will refer to a closedn-ball.

Example A.3. ConsiderRn. An open 1-ball isBo
ǫ (a) = (a − ǫ, a + ǫ) and a (closed) 1-ball is

Bǫ(a) = [a− ǫ, a+ ǫ]. I.e. the open and closed balls are open respectively closed line segments.
An open 2-ball is the interior of a disc with radiusǫ centered ata and a (closed) 2-ball the disc
with boundary. A (closed) 3-ball is a sphere with boundary, etc. A0-ball is a point and an open
0-ball doesn’t exist.

Subsequently, we define an:

Definition A.4 (Open subsetU ⊂ M ). A subsetU of n-dimensional metric spaceM is open in
M if for anyy ∈ U there exists anǫ(y) > 0 such that an openn-ball with Bo

ǫ(y)(y) ⊂ M .

Example A.4. Any open ballBo
ǫ (x) ⊂ M is openM , which one can see by taking a smaller

open ballBo
δ (y) and chooseδ = ǫ − d(x, y). The situation is visually illustrated in figure A.1.

130



APPENDIX A. MATHEMATICAL BACKGROUND Keimpe Nevenzeel

Figure A.1: An open ball in an open
ball.

Using open sets, we can let go of a distance metric and define a
general:

Definition A.5 (Topological space). A topological space(T, s)
is a non-empty setT and a fixed collection of subsetss satisfying:

1. T ∈ s and∅ ∈ s;

2. the intersection of any two sets ins is again ins;

3. the union of any collection of sets is again ins.

The collections is called a topology forT and the members ofs
are called open sets ofs. Thus ‘U ∈ s’ and ‘U open ins’ mean
the same.

Example A.5 (Metrizable spaces). Any metric space(M, d) gives rise to a topological space
(T, s) by settingT = M and choosing fors the open subsets on the metric space as defined via
definition A.4. A topological space on which a metric can be defined is metrizable. Note that a
metrizable space doesn’t necessarily have to allow a unique metric.

Just like a simple vector space, a topological space can have a basis:

Definition A.6 (Topological basis). Let (T, s) be a topological space. A basis fors is a subcol-
lectionB ⊂ s such that every set ins is a union of sets fromB.

Naturally, between topological spaces we can define functions which map an element of
one space to another space. Topology is used to define closeby and faraway without worrying
about exactly how closeby or how far away, and as such allow continuous deformations of space.
Therefore, we need to have a notion of continuity:

Definition A.7 (Continuity at an element). Let (T1, s1) and(T2, s2) be two topological spaces,
f : T1 → T2 a map between them anda an element ofs1. Thenf is continuous ata ∈ s1 if for
anyU2 ∈ s2 such thatf(a) ∈ U2, there existsU1 ∈ s1 such thata ∈ U1 andf(U1) ⊂ U2.

Just as in real analysis, continuity at an element can be extend to continuity of a function:

Definition A.8 (Continuous topological functions). Consider the situation of continuity at a
point. f is continuous (with respect tos1 and s2) ⇔ it is continuous at every point (every
element) ofT1.

Above we mentioned that topology is concerned with the general shape of figures, we now make
that a bit more precise using:

Definition A.9 (Homotopic functions). LetT1 andT2 be two topological spaces,f, g : T1 → T2

two continuous functions andI(t) over [0, 1] ⊂ R. We say thatf andg are homotopic if there
exists a continuous functionF : X × I → Y such thatF (x, 0) = f(x) andF (x, 1) = g(x).
Intuitively, the previous means that two functions are homotopic if they can becontinuously
transformed in each other. The intervalI is used to indicate how far in the transformation
proces we are. Homotopy is illustrated in figure A.2.
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Figure A.2: A homotopy transforms f in g [Adams and Franzosa, 2009].

Example A.6. Define the continuous functionF : R× I → R byF (x, t) = x− t. ThenF (x, t)
is a homotopy between the identity mapf(x) = x and the mapg(x) = x − 1, which translates
the entire graph downward by one element. Ast increases from 0 to 1F (x, t) slowly translates
the identity map downwards.

Example A.7. Consider the unit discD2 ⊂ R2. The identity map on the unit disc id• : D2 → D2

and the constant mapc0 : D2 → 0 are homotopic. Using polar coordinates, a possible homotopy
between them is given byF ((r, ϕ), t) = ((1 − t)r, ϕ).

Homotopic functions can be continuously transformed in each other. Using such functions
we say when topological spaces are continuously transformable in each other. Spaces for which
this is possible are called:

Definition A.10 (Homotopy equivalent spaces). Two topological spacesT1 andT2 are homo-
topy equivalent if there exists two continuous mapsf : T1 → T2 and g : T2 → T1 such that
g ◦ f is homotopic to the identity map idT1

onT1 andf ◦ g is homotopic to the identity map idT2

onT2.

Example A.8. Any n-ball is homotopy equivalent withRn and with any pointp. To see why
p is homotopy equivalent withRn, define the zero-mapf : p → 0 ∈ Rn and the point map
g : Rn → p. Theng ◦ f = idp is the identity on the pointp whereas the mapf ◦ g : Rn → Rn

is homotopy equivalent to the identity ofRn by the homotopyF ((r, ϕ), t) = ((1 − t)r, ϕ).

As the example above shows, homotopy can lead to ‘loss of information’, as apoint clearly
contains less information than an-dimensional space. To prevent this, the idea of homotopic
functions and homotopy equivalence can be sharpened by demanding a one-one relation:

Definition A.11 (Homeomorphisms). A homeomorphism is a one-one correspondencef : T1 →
T2 such that bothf andf−1 are continuous.

Definition A.12 (Topological equivalence). Two topological spacesT1 andT2 are topologically
equivalent if there exists an homeomorphism between them.

Here we see why continuous deformations don’t change topology. As long as every open set is
mapped one-one to another open set in a structure preserving way the topology doesn’t change.
Such mappings are not influenced by deformations, stretching or twisting and so topology is
neither.
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Example A.9. Clearly, any topological equivalent spaces are homotopy equivalent aswell,
whereas the converse is not necessarily true. As counterexample of the latter statement: in
example A.8 was shown thatRn is homotopy equivalent with a point. But asRn and a point
don’t allow a one-one mapping they are not topologically equivalent.

Example A.10. Leta, b, c, d ∈ R with a < b andc < d. Any two open intervals(a, b) and(c, d)
in R are homeomorphic. To see this, consider the functionf : (a, b) → (c, d) given by:

f(x) = c + {(x − a) · (d − c)/(b − a)}
which maps any open interval in(a, b) to an open interval in(c, d). Since bothf andf−1 are
continuous,(a, b) and(c, d) are homeomorphic.

Example A.11. A famous example: a donut and a coffee cup are topologically equivalent, as
can be seen by the continuous transformation of the one in the other illustratedin figure A.3.

Figure A.3: Topological equivalence of a coffee cup and a donut [Adams and Franzosa, 2009].

Example A.12. In fact, all of the objects in figure A.4 are topologically equivalent to a coffee
cup or donut and thus to each other.

Figure A.4: All objects above are topologicall equivalent to a coffee cop or donut [Adams and Franzosa, 2009].

Example A.13. The objects in figure A.5 are not topologically equivalent. By continuous de-
formation it is impossible to change a sphere in a donut, as continues transformations can’t
create the central hole inside. Analogously, neither a sphere nor a donut can be transformed in
a brezeln, which has two holes.

As the saying goes: you can’t always have your cake and eat it too. Going to topological
spaces was motivated by the wish to look at certain properties of space without considering
detailed values. But this has an important downside: almost all calculus techniques are lost in the
process. Therefore, in physics in general and in this thesis we will mainly look atn-manifolds:
topological spaces that locally resemblen-dimensional Euclidean space [Giblin, 2010]. For
example, a 1-manifold locally resembles a line, a 2-manifold a plane, a 3-manifold3D space,
et cetera. Then for the full space we have the generality allowed by topology but locally our
intuition and calculus techniques forn-dimensional Euclidean space can be used. To formalize
previous we define an:
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Figure A.5: Topologically inequivalent objects [Giblin, 2010]. The objects are topologically equivalent because they can’t be
continuously deformed in each other.

Definition A.13 (n-manifold). Ann-manifoldM is a topological space1 with a countable basis
such that every point ofM has a neighborhood that is homeomorphic to an openn-ball. A map
φ between the neighborhood on the manifold and the openn-ball is called acoordinate chart.

Actually, the idea is rather intuitive and a prime example we encounter in everyday life is the
surface of the Earth. The 2D-surface of the Earth is spherical, but locally it seems flat and can
be approximated by a plane. To give some more mathematical examples:

Example A.14. Any surface of two variables in 3D Euclidean space is a 2-manifold. An example
is given in figure A.6.

Figure A.6: The torus as an example of a 2D surface in 3D space [Lee, 2003].The neighorhoodU on the torus is homeomorphic
to a disc, withϕ indicating the coordinate chart.

Example A.15. Then-sphereSn, then-torusRn and the real projective planeRP (n) are n-
dimensional manifolds.

Example A.16. Let F : Rn → R be a continuously differentiable function and letc be a non-
critical value ofF . ThenF−1(c) is a manifold of dimensionn − 1, if it is non-empty.

The existence of local coordinates on manifolds allows local use of calculus. Global analysis
is still out of reach if there are no differentiable coordinate transformations between the local
patches. This leads to the following definition:

Definition A.14 (Smoothn-manifold). A smooth manifold is a manifold with a collection of
charts that (i) cover the entire manifold and (ii) at their intersection are smooth i.e. infinitely
differentiable.

1Formally: a topological Hausdorff space, meaning that for every pairof pointsp, q ∈ M there are disjoint open
subsetsU, V ⊂ m such thatp ∈ U andq ∈ V . I.e. p andq are in some sense separable. In (astrophysical) practise,
the Hausdorff condition is almost always satisfied.
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Example A.17. Following example A.14, figure A.7 shows the idea behind a smooth manifold.
Two different neighborhoodsU and V induce two different chartsϕ and ψ. If at their inter-
sectionϕ andψ are smooth and the entire torus is covered with neighborhoods inducing such
charts, the manifold is smooth.

Figure A.7: An illustration of a smooth manifold [Lee, 2003]. Two neighorhoodsU andV of the torus are shown, together with
their chartsϕ andψ. If the entire manifold is covered with such charts and at their intersection both are smooth, the manifold is a
smooth manifold.

Sometimes, it is convenient to map properties of one smooth manifold to another. This can be
done using a:

Definition A.15 (Diffeomorphism). A diffeomorphism is a function between two manifolds
which is a bijective smooth map with a smooth inverse.

Example A.18. Obviously every diffeomorphism is a homeomorphism, but the inverse doesn’t
have to be true.

Here we developed enough basic topology for our purposes below. Interested readers with a
taste for more are referred to any of the references within this appendix.

A.2 Chains and homology in 10 minutes

The DMC provides us with a natural way to divide a point set (of galaxies)in a cosmic structure
of voids, walls, filaments and nodes; providing us with a mathematical handle onthese mor-
phological components. Large galaxy catalogues contain millions of galaxiesand their Morse
complexes will be enormous. For such large complexes, a simple description of the DMC is not
very insightful and a more systematic way to explore the structures of the DMCis required. Here
homology [Giblin, 2010; Poincare, 1904] helps out by defining connectedness using equivalence
relations. This appendix gives an elementary introduction to the field, focussed on homology
on triangulated spaces. Homological equivalence relations are based ongroup theory, therefore
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it was unavoidable to use some basic ideas from group theory. Readers unfamiliar with group
theory are referred [Jones, 1998] for a physics focussed introduction to this field of mathematics.

We start with the building blocks of the DMC: simplices. To describe structuresof simplices
we need a way to describe large groups of them, which we can do using:

Definition A.16 (p-chains). Let K be a simplicial complex of dimensiond. A p-chain c is a
formal sum ofp-simplices inK, written as

c =
∑

aiσi (A.1)

Here,σi are the simplices andai the coefficients. In principle the coefficients can be real num-
bers or even more general elements, but here we restrict them to modulo 2 integers: 0 (off) or
1 (on)2. This allows us to think of a chain as the set ofp-simplices with coefficientsai = 1.
Naturally, forp < 0 or p > d thep-chain consists only of the neutral element.

p-chains have intuitive properties:

Properties A.1.

1. Just as with polynomials, addition is defined component-wise. Specifically, if c =
∑

aiσi

andd =
∑

biσi than

c + d =
∑

(ai + bi)σi (A.2)

Because the coefficients are integers modulo 2, adding two chains actuallygives their
difference.

2. The neutral element0 =
∑

0σi

3. Due to addition modulo 2 the inverse element ofc is actuallyc itself, i.e.−c = c.

To relate chains of different dimensions to each other we define the:

Definition A.17 (Boundary of ap-simplex). The boundary of ap-simplex is the sum of its facets.
More formally, letσp = [u0, ..., up] be ap-simplex spanned by the verticesu0, ..., up, then its
boundary∂pσ is defined as:

∂pσ =

p
∑

j=0

[u0, ..., ûj , ..., up] (A.3)

with the hat indicating that vertex̂uj is omitted.

Example A.19. Consider the 1-simplexσ = [u0, u1]. Its its boundary is the 0-chain given by
∂σ = u1 − u0.

Example A.20. Consider the 2-simplexσ = [v0, v1, v2] as shown in figure A.8. Its boundary is
the 1-chain given by∂σ = [v0, v1] + [v1, v2] + [v2, v0].

2Restricting the coefficients to modulo 2 gives the convenient property thatap-chain is its own inverse, see below.
In a more general setting, an simplex needs to be given an orientation, i.e. an ‘arrow’ indicating in which direction to
add the simplices.
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Figure A.8: The simplicial complex of example
A.19 [Giblin, 2010]. A 2-simplex, with the arrow
indicating the direction in which we take the bound-
ary.

From previous definition follows directly:

Definition A.18 (Boundary of ap-chain). The bound-
ary of ap-chain is the sum of the boundaries of its sim-
plices. More formally, letc =

∑

aiσi be ap-chain,
than its boundary is

∂pc =
∑

ai∂pσi (A.4)

Clearly, the boundary maps ap-chain to a (p − 1)-
chain, so it can be thought of as a function∂p : Cp →
Cp−1. Taking the boundary commutes with addition,
i.e. for twop-chainsc andd we have

∂p(c+d) =
∑

(ai+bi)∂pσp =
(

∑

ai +
∑

bi

)

∂pσp = ∂pc+∂pd

From group theory we know this is the defining property of a homomorphism, so∂p is a homo-
morphism. We define the the boundary of a vertex to be 0.

Example A.21. Consider the simplicial complexT consisting of two trianglest1 andt2 shown
in figure A.9. We have:

∂2(T ) = ∂2(t
1 + t2) = (a + e + d) + (b + c − e) = a + b + c + d

This corresponds to the geometrical idea that the boundary of the simplicial complex are their
outer segments. Taking the boundary of the diamond(a + b + c + d), we get:

∂1(a + b + c + d) = (q − p) + (r − q) + (s − r) + (p − s) = 0

Figure A.9: The simplicial complex of example A.21 [Giblin, 2010].A simplicial complex, with the arrows indicating the
direction in which we take the boundary.

Using the boundary operator, we can define a:

Definition A.19 (p-boundary). A p-boundary is ap-chainc that is the boundary of a(p + 1)-
chaind, i.e. c = ∂d with d ∈ Cp+1.

Example A.22. In previous example A.21, the diamond(a + b + c + d) is a 1-boundary of
simplicial complexT . The boundary of the diamond is zero.

Chains with zero boundary turn out to play an important role in homology and have been given
their own name:
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Definition A.20 (p-cycle). A p-cyclec is ap-chain with empty boundary, i.e.∂c = 0.

Example A.23. In previous example A.21 the 2-chaint1 + t2 is not a 2-cycle, as its boundary
∂2(t

1 + t2) = a + b + c + d 6= 0. The diamond(a + b + c + d) is a one-cycle however, as
∂1(a + b + c + d) = 0.

In the examples above we sawe that applying the boundary operator twice gave zero, something
which turns out to be true in general:

Lemma A.1 (Fundamental Lemma of Homology). ∂p∂p+1c = 0 for everyp and every(p + 1)-
chaind.

This lemmia is one of the fundamental properties that makes homology work. Given the impor-
tance of the lemma, the proof is amazingly simple.

Proof. The boundary∂p+1c consists of allp-facets ofc. Every (p − 1)-face ofc belongs to
exactly twop-facets, which cancel each other out. Therefore∂p(∂p+1c) = 0.

Consider again the properties ofp-chains: (i) the sum of twop-chains gives anotherp-chain;
(ii) there is a neutral ‘zerop-chain’; and (iii) everyp-chain has an inversep-chain (here actually
being the chain itself). This are the defining properties of a group, showing thatp-chains actually
form the:

Definition A.21 (Group ofp-chainsCp(K)). The group(Cp(K), +) is the group ofp-chains
together with the addition operation. In notation, addition is usually understoodimplicitely.
The group is associative because addition is associative and Abelian because addition modulo
2 is Abelian.

p-boundaries are a special kind of chains, thus the set ofp-boundariesBp(K) ⊆ Cp(K). Ob-
serving that∂ commutes with addition, we can say thatBd is not just a subset ofCp but it is a
subgroup:

Definition A.22 (Group of p-boundariesBp(K)). The subgroup ofp-boundariesBp(K) ⊆
Cp(K) is the image of(p + 1)-st boundary homomorphism, i.e.Bp = im(∂p+1). SinceCd

is Abelian, so isBp.

Analogously the subset ofp-cyclesZp also form a subgroup:

Definition A.23 (Group ofp-cyclesZp(K)). The subgroup ofp-boundariesZp(K) ⊆ Cp(K) is
the kernel of thep-th boundary homomorphism, i.e.Bp = ker(∂p+1). SinceCp is Abelian, so is
Zp.

Differentp-chain,p-cycle andp-boundary groups are related via the boundary operator and
together form thechain complex, which is illustrated in figure A.10.

The chain complex follows from a triangulated. It describes the structure but doesn’t give
direct information on general topological properties. But we can use thechain complex to extract
such information. To intuitively understand why, we let go mathematical rigor for a moment and
consider figure A.11 below. The 1-cyclesa, a′ andd bound an area of the surface which is
shaded in grey, although it would be possible to use the complementary regionas well. By
continuously deforming the cycles without leaving the surface, it would be possible to shrink
them to a point i.e. a 0-cycles. On the contrary, such a thing isn’t possible with the 1-cyclesb, b′
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Figure A.10: The chain complex [Edelsbrunner and Harer, 2010].It consists of chain, cycle and boundary groups connected
via the boundary map.

Figure A.11: A sphere and torus with several cycles, based upon [Giblin, 2010].

andc, which reveals the presence of 2D tunnels. Forc the tunnel is the center of the torus (the
‘donut hole’) and forb andb′ the tunnel is the ‘torus tube’.

By continuously moving the shrunken pointa over the surface of the circle, we can let it
coincide with shrunken pointa′ but not with shrunken pointd, revealing thata anda′ lie on
the same surface and bind the same object, whiled lies on another surface and binds another
object. Because the 0-cyclesa anda′ bind the same object we can say they are in a certain way
equivalent, whereasa andd bind another object and thus are not equivalent. I.e.: cycles which
bind the same object are equivalent and the other way around: the numberof non-equivalent
cycles gives the number of different objects. This suggests that by looking at the quotient group
H0 = Z0/B0, we can use 0-chains to reveal an intrinsic topological property: the number of
different objects.

By continuous deformation and continuous movement over the surface of the torus, segment
b can be transformed in segmentb′, showing that they form a boundary for the same tunnel. On
the contrary,b cannot be continuously transformed intoc showing thatb andc don’t bind the
same tunnel. So in a certain manner,b andb′ are equivalent andb andc are not. I.e: cycles which
bind the same tunnel are equivalent and the other way around: the numberof non-equivalent
cycles gives the number of tunnels. Again, it seems the quotient groupH1 = Z1/B1 allows us
to use 1-chains to reveal an intrinsic topological property: the number of tunnels.

The above can be generalized to arbitrary dimensions: thep-th quotient groupHp = Zp/Bp

tells something about the number ofp-dimensional tunnels also calledholes. An exception is
p = 0, here it gives the amount of objects. Denoting ‘A is generated by’ withA = {generating elements}
we formalize previous by defining the:
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Definition A.24 (Homology groupHp). Thep-th homology groupHp = Zp/Bp, i.e. thep-th
quotient group.

If K consists ofn simplices, the number of elements inCp(K) is 2n and its rank (the number
of elements in the smallest generating set) isn. BothZp andBp follow the same structure, giving
us a concrete way to compute the rank of thep-th homology group, defined as its:

Definition A.25 (p-th Betti numberβp).

βp = rank(Hp) = rank(Zp/Bp) = rank(Zp) − rank(Bp) (A.5)

For p = 0 the Betti number gives the number of components and forp > 0 it gives the number
of p-dimensional holes in the manifold under consideration.

Example A.24. Consider again figure A.11 above. There are two separate components, thus
H0 = {a, d} andβ0 = 2. The sphere doesn’t have any tunnels but the donut has two seperate
tunnels enclosed by respectivelyb and c, giving us: H1 = {b, c} and β1 = 2. Note that the
surface of the sphereS encloses its 3D volume, soS is actually the boundary of the volume of
the sphere. Analogously, the surface of the torusT is the boundary of the volume of the torus.
ThusH2 = {S, T} andβ2 = 2.

Example A.25. Figure A.12 shows a 2D manifold approximated by a simplicial complex. Fol-
lowing [Feldbrugge et al.] we compute the chain, cycle and boundary groups explicitely, fol-
lowed by its homology groups. Directly from the figure, we can see that the chain groups are

Figure A.12: A manifold approximated by a simplicial complex, based upon[Feldbrugge et al.].

generated by:

C0 = {A, B, C, D, E, I, J, H}
C1 = {AB, AC, AD, BC, CD, DE, HI, IJ, JI}
C2 = {ABC}

Which of the chains are cycles? By definition any point has zero boundaryand any closed loop
of segments as well. For a 2D surface to have zero boundary it needs to enclose a 3D volume,
obviously impossible in a 2D manifold. Thus we get:

Z0 = C0 (A.6)

Z1 = {AB + BC + CA, AC + CD + DA, HI + IJ + JH}
Z2 = {0}
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Any combination of two vertices which bind a segment form a 0-boundary and analogously any
combination of three segments binding a triangle form a 1-boundary. Again, 2-boundaries need
to bind a 3D volume which is impossible in a 2D manifold. This gives us:

B0 = {A + B, A + C, A + D, B + C, C + D, D + E, H + I, H + J.I + J}
B1 = {AB + BC + CA}
B2 = {0} (A.7)

When two elements differ by an boundary elementb ∈ Bi, we can continuously transform an
element overb to another element. When two elements don’t differ by a boundary element there
is a hole somewhere and a continuous transformation is not possible. Therefore, we partition
all elements ofZi in subsets which differ by an element ofBi. Obviously, all points in the
same structure can be reached via boundaries. One dimension higher,(AB + BC + CA) and
(AC+CD+DA) clearly differ by the first, itself a boundary element. Or more intuitively, the 1-
cycles(AC+CD+DA) and(AB+BC+CD+DA) = (AB+BC+CA)+(AC+CD+DA)
can be continuously transformed into each other. The above leads to:

H0 = {A, H}
H1 = {AC + AD + CD, HI + HJ + IJ}
H2 = {0}

Counting generating elements we see that the Betti numbers are given byβ0 = 2, β1 = 2 and
β2 = 0. We could have seen this intuitively by observing that the manifold consists of two
components with two 1D holes (tunnels).

Before we continue to the next section a note about mathematical rigor. In theintuitive
explanation of homology classes and Betti numbers, we wrote things like “by continuous defor-
mation and continuous movement over the surface of the torus, segmentb can be transformed in
segmentb′ [and thereforeb is homologous tob′] ”. Actually, mathematically this comes closer
to a description of homotopy (cf. definition A.10) than ofhomology. Two cycles are homotopy
equivalent if they can be continuously transformed in each other and homologous if there ex-
ists a manifold of higher dimension of which they are both the boundary. For smooth compact
surfaces embedded in 3D Euclidean space the differences between homotopy and homology are
limited. As we consider the first much more intuitive than the latter, we used a bit ofhomotopy
in our intuitive description. Differences do occur, however. Considerfor example a toroidal coil
with n windings, as shown in the left part of figure A.13. On the torus, the coil is homotopy
equivalent withn · b + c of the cycles of figure A.11 but the coil still hasβ1 = 1. To see why,
note that if you cut the torus alongb or c, they both bind the torus surface. Analogously, if you
cut the torus along the coil, the coil also binds the torus surface. In more complicated spaces the
differences between homology and homotopy become much more important, in particular when
it comes to measuring holes. For example homotopy misses the 2D hole given by the inside
of the torus, whereas we saw above it was picked up by homology. On the contrary, homol-
ogy doesn’t detect the varying structures of complements on knots in 3D, whereas homotopy
does [Weisstein, 2013a]. ForRd the intuitive picture of homology measuringd-holes is correct
[Edelsbrunner and Harer, 2010, par IV.1].

If homotopy is more intuitive, why didn’t we use this equivalence relation instead of ho-
mology? The most important reason is computational efficiency. Homology hascompared with
homotopy much faster algorithms [Edelsbrunner and Harer, 2010, chap.4] allowing its practical
use for cosmological datasets.
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(a) [Brandisky] A toroidal coil with the
endpoints connected. Although for
illustrative purposes the coil is lifted
as a thick line above the torus sur-
face, it should be seens as a 1-cycles
wrapped around it.

(b) [Weisstein, 2013b] The trefoil knot
is one of the simplests knots and the
unique prime knot with three cross-
ings. The homology on its com-
plement doesn’t detect the varying
structure in the knott.

Figure A.13: Examples where homotopy and homology differ.

A.3 Formalizing persistence

In the main text persistence was defined intuitively. Here we formalize persistence using homol-
ogy, building upon the definitions developed in appendix A.2.

Let f be a strictly increasing Morse function on simplexK with m simplices. Starting with
an empty set, we add the simplices ofK one by one in order increasing function value. This
gives us the filtration (cf. definition 3.28):

∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K

Each of the subcomplexes will give rise to several homology groupsHp (cf. definition A.24),
whose ranks gave us the number ofp-dimensional holes. To consider how the homology changes
while the subcomplex increases in size, we can define an inclusion map from the underlying
space|Ki| to |Kj |, with i ≤ j. The inclusion between the underlying spaces induces a homo-
morphism between the homology groups:

f i,j
p : Hp(Ki) → Hp(Kj) (A.8)

Connecting these homomorphisms between all stages of the filtration, we get a sequence of
homomorphisms:

0 = Hp(K0) → Hp(K1) → . . . → Hp(Km) = Hp(K) (A.9)

At each stage the homology might change because some new classes are born and some other
classes become trivial or merge. For example, letγ be a cycle class which is born at stagei of the
filtration and dies at stagej because it merges atj with an older component. Then the sequence
of homomorphism and the life ofγ can be illustrated as in figure A.14. (Note that merging of
γ with an older component results in the death ofγ is in accordance with the Elder Rule, cf.
definition 3.30.) Collecting the classes that are born and which die at or before a certain stage in
the filtration gives us the:
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Definition A.26 (p-th persistent homology groupsHi,j). LetK be a simplicial complex on which
a filtration is defined and letf i,j

p be a homomorphism between thep-th homology group of stage
i and stagej in the filtration. Then thep-th persistent homology groupsHi,j are the images of
the homomorphisms induced by inclusion:

H
i,j
p = im f i,j

p (A.10)

for 0 ≤ i ≤ j ≤ n. The correspondingp-th persistent Betti numbersβi,j
p are the ranks of these

groups:
βi,j

p = rankH
i,j
p (A.11)

Figure A.14: Persistent homology groups [Edelsbrunner and Harer, 2010]. The cycle classγ is born in subcomplexKi. At
stagej of the filtration its image merges for the first time into the image of Hp(Ki−1). When this happens the class is paired and
dies.

Now we can define:

Definition A.27 (Persistence). Consider the setup of definition A.26. Denote for each stage in
the filtration the function value of the simplex being added withai, this gives us a sequence
of function valuesa1 < a2 < . . . < am. We set the value corresponding to the empty set
a0 = −∞. Then, ifγ is born atKi and dies atKj , its persistence is:

persistence(γ) = aj − ai (A.12)

Intuitively, persistence is the difference between the birth and death value ofthe critical simpli-
cies composing the cycle. I.e. persistence gives the lifetime of the cycle with respect to a rising
sublevel set of the function.

143



BIBLIOGRAPHY

Erik A. Petigura, Andrew W. Howard, and Geoffrey W. Marcy. Prevalence of earth-size planets
orbiting sun-like stars.Proceedings of the National Academy of Sciences, 110(48):19273–
19278, 2013.

R. B. Tully. The local supercluster.Astrophysical Journal, 257:389 – 422, 1982.

M. Subbarao, D. Surendran, and R. Landsberg. Sloan galaxies dome300, 2005. URL
http://astro.uchicago.edu/cosmus/projects/sloangala xies . Con-
sulted at December 7, 2013.

R. Brown. Reference in memorial tribute to eric lenneberg.Cognition, 4:125 – 153, 1976.

J.A. Lucy. Linguistic relativity.Annu. Rev. Anthropol., 26:291 – 312, 1997.

Aubrey L. Gilbert, Terry Regier, Paul Kay, and Richard B. Ivry. Whorf hypothesis is supported
in the right visual field but not the left.Proceedings of the National Academy of Sciences of
the United States of America, 103:489–494, 2006.

W.E. Schaap and R.v.d. Weygaert. Continuous fields an discrete samples: reconstruction through
delaunay tesselations.Astronomy and Astrophysics, 363:L29 – L32, 2000.

N. Copernicus.On the revolutions: Nicolas Copernicus Complete Works. Foundations of Nat-
ural History. Johns Hopkins University Press. ISBN 978-0801845154. Translation and com-
mentary by E. Rosen.

Bayerische Akademie der Wissenschaften. Kommission zur herausgabe der werke von johannes
kepler. URLhttp://www.kepler-kommission.de/index.html . Consulted at
December 10, 2013.

M. Hoskin. The cosmology of thomas wright of durham.Journal for the History of Astronomy,
1:44 – 52, 1970.

E. Hubble. A relation between distance and radial velocity among extra-galactic nebulae.PNAS,
15:168 – 173, 1929.

144

http://astro.uchicago.edu/cosmus/projects/sloangalaxies
http://www.kepler-kommission.de/index.html


BIBLIOGRAPHY Keimpe Nevenzeel

W. Baade. A revision of the extra-galactic distance scale.Trans. IAU, 8:397 – 398, 1952.
[Reprinted with commentary in Lang, K. R. and Gingerich, O., eds., A Source Book in As-
tronomy and Astrophysics, 1900-1975 (Harvard Univ. Press, Cambridge, MA, 1979), 750-
52.].

A.G. Lemaitre. Contributions to a british association discussion on the evolution of the universe.
Nature, 128:704 – 706, 1931.

R. A. Alpher, H. Bethe, and G. Gamow. The origin of chemical elements.Phys. Rev., 73:
803–804, 1948.

R. Dicke, P. Peebles, P. Roll, and D. Wilkinson. Cosmic black-body radiation. 142:414 – 419,
1965.

A. Penzias and R. Wilson. A measurement of excess antenna temperature at 4080 mc/s.Astro-
physical Journal, 142:419 – 421, 1965.

Nobelprize.org. The nobel prize in physics 1978. 2013a. URL
http://www.nobelprize.org/nobel_prizes/physics/laur eates/1978/ .
Consulted at December 7, 2013.

JP Ostriker and Paul J Steinhart. The observational case for a low-density universe with a non-
zero cosmological constant.Nature, 377:19, 1995.

R.v.d. Weygaert. Lecture notes cosmology, 2010. URL
http://www.intra.astro.rug.nl/ ˜ weygaert/cosmo2010.html . Uni-
versity of Groningen.

B. Ryden.Introduction to Cosmology. Addison Wesley, 2003. ISBN ISBN 0-8053-8912-1.

A. Liddle. An introduction to modern cosmology. Wiley, 2nd edition, 2009. ISBN 978-0-470-
84835-7.

R.v.d. Weygaert. Lecture notes large scale structure, 2012. URL
http://www.astro.rug.nl/ ˜ weygaert/lss2012.html . University of Gronin-
gen.

J. Peacock.Cosmological Physics. Cambridge University Press, 2005. ISBN 0-521-42270-1.

Masataka Fukugita and P. J. E. Peebles. The cosmic energy inventory.The Astrophysical Jour-
nal, 616:643, 2004.

Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter:evidence, candidates
and constraints.Physics Reports, 405:279 – 390, 2005.

S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua,
S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes,
R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon,
P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S.
Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and The Supernova Cosmology Project.
Measurements of and from 42 high-redshift supernovae.The Astrophysical Journal, 517:
565, 1999.

145

http://www.nobelprize.org/nobel_prizes/physics/laureates/1978/
http://www.intra.astro.rug.nl/~weygaert/cosmo2010.html
http://www.astro.rug.nl/~weygaert/lss2012.html


December 2013 BIBLIOGRAPHY

Adam G Riess, Alexei V Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M
Garnavich, Ron L Gilliland, Craig J Hogan, Saurabh Jha, Robert P Kirshner, et al. Observa-
tional evidence from supernovae for an accelerating universe and acosmological constant.
The Astronomical Journal, 116:1009, 1998.

Nobelprize.org. The nobel prize in physics 2011. 2013b. URL
http://www.nobelprize.org/nobel_prizes/physics/laur eates/2011/ .
Consulted at December 7, 2013.

Planck Collaboration.Astronomy and Astrophysics, 2013. Submitted.

Eiichiro Komatsu, KM Smith, J Dunkley, CL Bennett, B Gold, G Hinshaw, N Jarosik, D Larson,
MR Nolta, L Page, et al. Seven-year wilkinson microwave anisotropy probe (wmap) obser-
vations: cosmological interpretation.The Astrophysical Journal Supplement Series, 192:18,
2011.

Scott Dodelson, Vijay K. Narayanan, Max Tegmark, Ryan Scranton, Tamas Budavari, An-
drew Connolly, Istvan Csabai, Daniel Eisenstein, Joshua A. Frieman, James E. Gunn, Lam
Hui, Bhuvnesh Jain, David Johnston, Stephen Kent, Jon Loveday, Robert C. Nichol, Liam
OConnell, Roman Scoccimarro, Ravi K. Sheth, Albert Stebbins, Michael A. Strauss, Alexan-
der S. Szalay, Istvan Szapudi, Michael S. Vogeley, Idit Zehavi, JamesAnnis, Neta A. Bahcall,
Jon Brinkman, Mamoru Doi, Masataka Fukugita, Greg Hennessy, Zeljko Ivezic, Gillian R.
Knapp, Peter Kunszt, Don Q. Lamb, Brian C. Lee, Robert H. Lupton, Jeffrey A. Munn, John
Peoples, Jeffrey R. Pier, Constance Rockosi, David Schlegel, Christopher Stoughton, Dou-
glas L. Tucker, Brian Yanny, Donald G. York, and (fortheSDSSCollaboration). The three-
dimensional power spectrum from angular clustering of galaxies in early sloan digital sky
survey data.The Astrophysical Journal, 572:140, 2002.

Will J. Percival, Carlton M. Baugh, Joss Bland-Hawthorn, Terry Bridges, Russell Cannon, Shaun
Cole, Matthew Colless, Chris Collins, Warrick Couch, Gavin Dalton, RobertoDe Propris, Si-
mon P. Driver, George Efstathiou, Richard S. Ellis, Carlos S. Frenk, Karl Glazebrook, Carole
Jackson, Ofer Lahav, Ian Lewis, Stuart Lumsden, Steve Maddox, Stephen Moody, Peder Nor-
berg, John A. Peacock, Bruce A. Peterson, Will Sutherland, and KeithTaylor. The 2df galaxy
redshift survey: the power spectrum and the matter content of the universe. Monthly Notices
of the Royal Astronomical Society, 327:1297–1306, 2001.

Wendy L. Freedman, Barry F. Madore, Brad K. Gibson, Laura Ferrarese, Daniel D. Kelson,
Shoko Sakai, Jeremy R. Mould, Jr. Robert C. Kennicutt, Holland C. Ford, John A. Graham,
John P. Huchra, Shaun M. G. Hughes, Garth D. Illingworth, Lucas M. Macri, and Peter B.
Stetson. Final results from the hubble space telescope key project to measure the hubble
constant.The Astrophysical Journal, 553:47, 2001.

Robert R. Caldwell, Marc Kamionkowski, and Nevin N. Weinberg. Phantomenergy: Dark
energy with w smaller than -1 causes a cosmic doomsday.Phys. Rev. Lett., 91:071301, 2003.

Robert R. Caldwell and Marc Kamionkowski. The physics of cosmic acceleration. Annual
Review of Nuclear and Particle Science, 59:397–429, 2009.

Joshua A. Frieman, Michael S. Turner, and Dragan Huterer. Dark energy and the accelerating
universe.Annual Review of Astronomy and Astrophysics, 46:385–432, 2008.

146

http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/


BIBLIOGRAPHY Keimpe Nevenzeel

S. Weinberg. Cosmological constant problem.Rev. Mod. Phys., Jan 1989.

Bharat Ratra and P. J. E. Peebles. Cosmological consequences of a rolling homogeneous scalar
field. Phys. Rev. D, 37:3406–3427, 1988.

Philippe Brax and J́erôme Martin. Robustness of quintessence.Phys. Rev. D, 61:103502, 2000.

Daniel Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara. Progress toward a theory of super-
gravity. Phys. Rev. D, 13:3214–3218, 1976.

Eric V. Linder. Exploring the expansion history of the universe.Phys. Rev. Lett., 90:091301,
2003.

Eric V. Linder. Constraining models of dark energy. 2010.

E.G.P. Bos, R v.d. Weygaert, K. Dolag, and V. Pettorino. The darkness that shaped the void:
dark energy and cosmic voids.Monthly Notices of the Royal Astronomical Society, 426:440
– 461, 2012.

A.E.P. Veldman and A. Velicka. Stromingsleer, 2010. URL
http://www.math.rug.nl/ ˜ veldman/Colleges/stromingsleer/Stromingsleer1011.pd f .
University of Groningen.

Wayne Hu and Scott Dodelson. Cosmic microwave background anisotropies. Annual Review of
Astronomy and Astrophysics, 40:171–216, 2002.

NASA / WMAP Science Team. Nine year microwave sky. URL
http://map.gsfc.nasa.gov/ . Consulted at December 10, 2013.

Alan H. Guth. Inflationary universe: A possible solution to the horizon andflatness problems.
Phys. Rev. D, 23:347–356, 1981.

Andrei D Linde. Inflation and quantum cosmology. Elsevier, 1990.

Ofer Lahav and Yasushi Suto. Measuring our universe from galaxyredshift surveys.Living
Reviews in Relativity, 7, 2004.

Eric V. Linder. Cosmic growth history and expansion history.Phys. Rev. D, 72:043529, 2005.

F. Bernardeau, S. Colombi, E. Gaztaaga, and R. Scoccimarro. Large-scale structure of the uni-
verse and cosmological perturbation theory.Physics Reports, 367:1 – 248, 2002.

Y. Zel’dovich. Gravitational instability: An approximate theory for large density perturbations.
Astronomy and astrophysics, 5:84–89, 1970.

J. Hidding. Adhesion - a sticky way of understanding large scale structure. Master’s thesis,
2010. URLhttp://www.astro.rug.nl/ ˜ hidding/go/report.pdf .

S. Shandarin. Tessellating the universe: the zel’dovich and adhesion tiling of space. 2009. URL
http://arxiv.org/abs/0912.4520 .

W.H. Press and P. Schechter. Formation of galaxies and clusters of galaxies by self-similar
gravitational condensation.Astrophysical Journal, 187:425 – 438, 1974.

147

http://www.math.rug.nl/~veldman/Colleges/stromingsleer/Stromingsleer1011.pdf
http://map.gsfc.nasa.gov/
http://www.astro.rug.nl/~hidding/go/report.pdf
http://arxiv.org/abs/0912.4520


December 2013 BIBLIOGRAPHY

JR Bond, S Cole, G Efstathiou, and Nick Kaiser. Excursion set mass functions for hierarchical
gaussian fluctuations.The Astrophysical Journal, 379:440–460, 1991.

Galaxy Formation. Galaxy formation. Astronomy and Astrophysics Library. Springer, 2nd
edition.

J.R. Bond, L. Kofman, and D. Pogosyan. How filaments of galaxies are woven into the cosmic
web. Nature, 380:60 – 606, 1996.

Virgo consortium. Slices of the dark matter distribution. URL
http://www.mpa-garching.mpg.de/galform/virgo/millen nium/ . Con-
sulted at December 10, 2013.

Volker Springel, Simon D. M. White, Giuseppe Tormen, and Guinevere Kauffmann. Populating
a cluster of galaxies i. results at.Monthly Notices of the Royal Astronomical Society, 328:
726–750, 2001.

Mark C. Neyrinck, Nickolay Y. Gnedin, and Andrew J. S. Hamilton. voboz: an almost-
parameter-free halo-finding algorithm.Monthly Notices of the Royal Astronomical Society,
356:1222–1232, 2005.

M. Dries. A hierarchy of voids. Master’s thesis, 2013. URL
http://www.astro.rug.nl/ ˜ dries/Thesis.pdf .

Erwin Platen, Rien Van De Weygaert, and Bernard JT Jones. A cosmic watershed: the wvf void
detection technique.Monthly notices of the royal astronomical society, 380:551–570, 2007.

Mark C. Neyrinck. zobov: a parameter-free void-finding algorithm.Monthly Notices of the
Royal Astronomical Society, 386:2101–2109, 2008.

Marius Cautun, Rien van de Weygaert, and Bernard JT Jones. Nexus:tracing the cosmic web
connection.Monthly Notices of the Royal Astronomical Society, 429:1286–1308, 2013.

Bos. E.G.P. Voids as probes of the nature of dark energy. Master’s thesis, 2010. URL
http://egpbos.nl/ .

V.J. Martinez and E. Saar.Statistics of the Galaxy Distribution. Chapman and Hall/CRC, 2001.
ISBN 978-1584880844.

Vicent J Martinez, Bernard JT Jones, Rosa Dominguez-Tenreiro, andRien van de Weygaert.
Clustering paradigms and multifractal measures.The Astrophysical Journal, 357:50–61,
1990.

Martin Kerscher, Jens Schmalzing, J&oumrg Retzlaff, Stefano Borgani, Thomas Buchert,
Stephan Gottl̈ober, Volker M̈uller, Manolis Plionis, and Herbert Wagner. Minkowski func-
tionals of abell/aco clusters.Monthly Notices of the Royal Astronomical Society, 284:73–84,
1997.

T.; Wagner H. Mecke, K. R.; Buchert. Robust morphological measures for large-scale structure
in the universe.Astronomy and Astrophysics, 288:697 – 704, 1994.

J. Schmalzing, M. Kerscher, and T. Buchert. Minkowski functionals in cosmology. InProc. Int.
School of Physics Enrico Fermi, Course CXXXII, 1995.

148

http://www.mpa-garching.mpg.de/galform/virgo/millennium/
http://www.astro.rug.nl/~dries/Thesis.pdf
http://egpbos.nl/


BIBLIOGRAPHY Keimpe Nevenzeel

Joshua Parker, Eilon Sherman, Matthias van de Raa, Devaraj van der Meer, Lawrence E. Samel-
son, and Wolfgang Losert. Automatic sorting of point pattern sets using minkowski function-
als. Phys. Rev. E, 88:022720, 2013.

H. Edelsbrunner and J.L. Harer.Computational Topology, an introduction. American Mathe-
matical Society, 2010.

T. Sousbie. The persistent cosmic web and its filamentary structure - i. theory and implementa-
tion. Monthly Notices of the Royal Astronomical Society, 414:350 – 383, 2011.

J. Milnor. Morse Theory. Princeton University Press, 5th edition, 1973. ISBN: 0-691-08008-9.

M. Morse. The Calculus on Variations in the Large, volume 18 ofColloquium publications.
American Mathematical Society, 1960. ISBN: 9780821874554.

J. O’Connor and E. Robertson. Harold calvin marston morse, 2003. MacTutor History of
Mathematics archive.

A. Okabe, B. Boots, K. Sugihara, and S. Chiu.Spatial Tesselations: concepts and applications
of Voronoi Diagrams. John Wiley and Sons, 2nd edition, 2000. ISBN: 0-471-98635-6.

G. Voronoi. Nouvelles applications des parametres continus a la theorie desformes quadratiques.
premier memoire.Journal fr die reine und angewandte Mathematik, 133:97 – 178, 1907.

G. Voronoi. Nouvelles applications des parametres continus a la theorie desformes quadratiques.
deuxieme memoire.Journal fr die reine und angewandte Mathematik, 134:198 – 287, 1908.

B. Delone. Sur la sphere vide.Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Bestestven-
nyka Nauk, 7:793 – 800, 1934.

G. Vegter. Lecture notes for applied geometry, 2012.

R. Forman. Morse theory for cell complexes.Advances in Mathematics, 134:90–145, 1998.

T. Lewiner. Constructing discrete morse functions. Master’s thesis, PUC-Rio, Rio de Janeiro,
2002.

X. Ni, M. Garland, and J. Hart. Fair morse functions for extracting the topological structure of
a surface mesh.ACM Trans. Graph., 23:613–622, 2004.

Cecil Jose A. Delfinado and Herbert Edelsbrunner. An incremental algorithm for betti numbers
of simplicial complexes. InProceedings of the Ninth Annual Symposium on Computational
Geometry, SCG ’93, pages 232–239. ACM, 1993. ISBN 0-89791-582-8.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete and computational geometry, 28:511 – 533, 2002.

A. Gyulassy and Vijay Natarajan. Topology-based simplification for feature extraction from 3d
scalar fields. InVisualization, 2005. VIS 05. IEEE, pages 535–542, 2005.

A. Gyulassy, Vijay Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. A topological ap-
proach to simplification of three-dimensional scalar functions.Visualization and Computer
Graphics, IEEE Transactions on, 12:474–484, 2006.

149



December 2013 BIBLIOGRAPHY

R.W. Hockney and J.W. Eastwood.Computer simulations using particles. McGraw-Hill, 1981.
ISBN 0-07-029108-X.

J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm. Nature, 324:446 –
449, 1986.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.Journal of Computa-
tional Physics, 135:280 – 292, 1997.

V. Springel. The cosmological simulation code gadget-2.Monthly Notices of the Royal Astro-
nomical Society, 364:1105 – 1134, 2005.

J.J. Monaghan. Sph and riemann solvers.Journal of Computational Physics, 136:298 – 307,
1997.

W.E. Schaap.DTFE: the Delaunay Tessellation Field Estimator. PhD thesis, University of
Groningen, 2007.

F. Bernardeau and R.v.d. Weygaert. A new method for accurate estimation of velocity field
statistics.Monthly Notices of the Royal Astronomical Society, 279:693 – 711, 1996.

F. I. Pelupessy, W.E. Schaap, and R.v.d. Weygaert. Density estimators in particle hydrodynamics
- dtfe versus regular sph.Astronomy and astrophysics, 403:389 – 398, 2003.

R. vd. Weygaert and W. Schaap. The cosmic web: Geometric analysis. InVicent J. Martinez,
Enn Saar, Enrique Martinez Gonzales, and Maria Jesus Pons-Borderia, editors,Data Analy-
sis in Cosmology, volume 665 ofLecture Notes in Physics, pages 291–413. Springer Berlin
Heidelberg, 2009. ISBN 978-3-540-23972-7.

M. Cautun and R.v.d. Weygaert. The dtfe public software, 2011.

P. Bendich, H. Edelsbrunner, and M. Kerber. Computing robustness and persistence for images.
Visualization and Computer Graphics, IEEE Transactions on, 16:1251–1260, 2010.

P. Pranav, R. vd. Weygaert, H. Edelsbrunner, J. Feldbrugge, M. Kerber, B. Jones, and G. Vegter.
Persistence landscapes of gaussian random fields.Monthly Notices of the Royal Astronomical
Society, 2013a. To be published.

P. Pranav, H. Edelsbrunner, R. vd. Weygaert, M. Kerber, B. Jones, G. Vegter, and M. Win-
traecken. On the betti of the universe, and her persistence.Monthly Notices of the Royal
Astronomical Society, 2013b. To be published.

Chao Chen and Michael Kerber. Persistent homology computation with a twist.In Proceedings
27th European Workshop on Computational Geometry, 2011.

V. De Silva, D. Morozov, and M. Vejdemo-Johansson. Dualities in persistent (co)homology.
Inverse Problems, 27:124003, 2011.

U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: computing persistent homology
in chuncks. 2013.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Numerical recipes 3rd edition: the art of
scientific computing. Cambridge University Press, 3rd edition, 2007. ISBN 978-0521880688.

150



BIBLIOGRAPHY Keimpe Nevenzeel

D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams.Discrete
and Computational Geometry, 37:102 – 120, 2007.

D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko. Lipschitz functions have lp-stable
persistence.Foundations of Computational Mathematics, 10:127–139, 2010.

T. Lindeberg. Scale-space for discrete signals.IEEE Transactions of Pattern Analysis and
Machine Intelligence, 12:234–254, 1990.

J. Feldbrugge, M. Van Engelen, R.v.d. Weygaert, P. Pranav, and G. Vegter. Stochastic homology
of random fields using betti numbers and persistence diagrams. To be published in Monthly
Notices of the Royal Astronomical Society, 2013.

P. Coles and Jones. B. A lognormal model for the cosmological mass distribution. Monthly
Notices of the Royal Astronomical Society, 248:1–13, 1991.

E. Feigelson and Babu. G.Modern Statistical Methods for Astronomy. Cambridge University
Press, 2012. ISBN 9780521767279.

A.J.S. Hamilton. Linear redshift distortions: A review. In Donald Hamilton, editor, The Evolving
Universe, volume 231 ofAstrophysics and Space Science Library, pages 185–275. Springer
Netherlands, 1998. ISBN 978-0-7923-5074-3.

J. Wall and C Jenkins.Practical statistics for astronomers. Cambridge University Press, 2003.
ISBN 0-521-45616-9.

Mark A. Heald. On choosing the bin width of a gaussian histogram.American Journal of
Physics, 52:254–255, 1984.

P. Pranav, 10 2013. Personal communication.

A. Robinson and K. Turner. Hypothesis testing for topological data analysis. 2013.

K. Turner. Means and medians of sets of persistence diagrams. 2013.

Yehuda Hoffman, Ofer Metuki, Gustavo Yepes, Stefan Gottlber, Jaime E. Forero-Romero,
Noam I. Libeskind, and Alexander Knebe. A kinematic classification of the cosmic web.
Monthly Notices of the Royal Astronomical Society, 425:2049–2057, 2012.

P. Pranav, R.v.d. Weygaert, H. Edelsbrunner, J. Feldbrugge, M. Kerber, B.J.T. Jones, and G. Veg-
ter. Persistence landscapes of gaussian random fields.Monthly Notices of the Royal Astro-
nomical Society, 2013c. to be published.

K.J. Nevenzeel. Triangulating the darkness.Periodiek, 2, 2014. To be published.

A. Katok and A. Sossinsky. Introduction to modern topology and geometry.Available via
http://www.personal.psu.edu/axk29/TOPOLOGY/.

W. Sutherland.Introduction to Metric and Topological Spaces. Oxford Science Publications,
2005. ISBN 978-0-19-853161-6.

C. Adams and R. Franzosa.Introduction to topology, pure and applied. Pearson Prentice Hall,
indian edition, 2009. ISBN: 978-81-317-2692-1.

151



December 2013 BIBLIOGRAPHY

P. Giblin. Graphs, surfaces and homology. Cambridge University Press, 3th edition, 2010.
ISBN: 978-0-521-15405-5.

J. Lee. Introduction to smooth manifolds, volume 218 ofGraduate texts in mathematics.
Springer, 2003. ISBN: 0-387-95448-1.

H. Poincare. Cinquieme complement a l’analysis situs.Rendiconti del Circolo Matematico di
Palermo, 18:45 – 110, 1904.

H.F. Jones.Groups, Representations and Physics. Taylor and Francis, 2nd edition, 1998. ISBN
978-0750305044.

E. Weisstein. Hole, 2013a. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Hole.html.

Brandisky. Coil on torus. Retrieved from http://fa.tu-sofia.bg/te/Brandisky/research.html at
November 11, 2013.

E. Weisstein. Trefoil knot, 2013b. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/TrefoilKnot.html.

152


	Introduction
	Cosmology and the Cosmic Web
	The geometry of the Universe
	The Laws of the Universe
	Universal ingredients
	Dark energy in more detail
	Cosmic structure
	The seeds of cosmic structure
	Linear structure formation
	Non-linear structure formation: Zel'dovich

	Cosmic web morphology
	Numerical morphology identification
	Statistics
	Minkowski functionals
	Homological discrete topology


	Topology
	Continuous Morse Theory
	Discretization: simplicial complexes
	Voronoi diagrams and Delaunay triangulations
	Discrete Morse Theory
	Practical implementation
	Towards the persistence diagram
	Cycles and persistence
	Simplification
	The persistence diagram


	Algorithms and software
	Gadet 2: model universes
	N-body algorithms
	The Gadget 2 code
	This Gadget implementation

	DTFE: from particles to densities
	From particles to densities
	The DTFE algorithm
	This DTFE implementation

	DMC and filtration builders
	Density DMC's and filtrations
	Particle DMC's and filtrations

	PHAT: computing persistence pairs
	Persistent homology computation
	Persistent homology with PHAT
	This PHAT implementation

	Data analysis


	Stability
	Mathematical results
	Experimental stability - perturbation analysis
	Particle perturbation analysis
	DTFE perturbation analysis

	Nicing persistence diagrams
	Smoothing the input field
	Manifold simplification
	Persistent Betti numbers

	Summary
	Discussion and conclusions

	On the persistence of LCDM
	The reference case: LCDM at z = 0
	Time evolution
	Summary and conclusions

	Topological dark energy differentiation
	Real space identical redshift
	Visual inspection
	The effects of simplification
	Statistical analysis / test setup
	Statistical analysis / results

	Redshift space
	Visual inspection
	The effects of simplification
	Statistical analysis / test setup
	Statistical analysis / results

	Real space identical clustering parameter
	Visual inspection
	The effects of simplification
	Statistical analysis / test setup
	Statistical analysis / results

	Summary observations
	Discussion and conclusions

	Discussion & conclusions
	Overall conclusions
	Methodological discussion
	Where to go from here
	Popular scientific summary

	Mathematical background
	Topological essentials in 10 minutes
	Chains and homology in 10 minutes
	Formalizing persistence


