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Abstract

This study consists of a thorough application of a new mathe-
matical formalism to analyse the topological and morphigiaighature
of the cosmic matter distribution: homological discretpdingy. As
an illustration of its potential, we apply it to a set of simtibns in
different dark energy cosmologies. The analysis revealsthie topol-
ogy of cosmic structure is not influenced intrinsically byldanergy.
However, various dark energy models have different ratestratture
evolution. We show that the topology of cosmic structure specific
redshift value depends on the dark energy content. For loshiés
(z < 1) this effect can be used to differentiate between variouk da
energy models both in real and in redshift space. This paesvay
for future constraints on dark energy based on the topol6gyeocos-
mic web.

Homological discrete topology has been introduced in togyl
only very recently. Here, we provide a reference model witleg-
tensive description of its topology. We show that (i) the Imoetis ro-
bust under perturbations and (ii) the topological varidrgrooothing,
called simplification, is a natural and better equivalerddnventional
smoothing.

Finally, we provide a detailed description of both discitetgolog-
ical theory within an astrophysical context and its aldoriic imple-
mentation.

PACS: 98.65.Dx and 07.05.Kf.
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CHAPTER 1

Introduction

"Far out in the uncharted backwaters of the unfashionable end of theaneSpiral Arm of the
Galaxy lies a small unregarded yellow sun. Orbiting this at a distance ajhiyuninety-eight
million miles is an utterly insignificant little blue-green planet whose ape-detxt lifeforms
are so amazingly primitive they still think digital watches are a pretty neat’ideaso at least
Adam Douglas described the position Earth in the Milky Way. Put in this waplaunet already
sounds quite irrelevant, perhaps justified by the knowledge there adedusof billions of stars
in our galaxy and there are good chances most of them have (se\AanaEl)qﬂ[Petigura etal.,
m%]. But even this description makes our planet, our sun and our gatary inconceivable
more important than they are. Our Galaxy is just another spiral galaxy seenewn the out-
skirts of the Virgo cluster, in itself only a small part of the Virgo superclum M] -one
of the many superclusters in the visible part of our universe. ..

On these largest scales of the universe every galaxy can just leseeped by a dot and all
these dots together form an intricate structure called tirge Scale Structure of the Universe
(LSS). More poetically it is sometimes also called tbesmic web as it visually resembles a
spider's web. Figure 1.1 shows an image of the cosmic web based on tmeCsital Sky Sur-
vey. It shows intricate structures throughout the universe: large filss®nnecting enormous
clusters and surrounding large empty voids. It is here, on the largedes saf the universe,
where our story begins in chapter 2 with an overview of cosmology andosmaic web.

As marvellous as the cosmic web may be, even more stunning is the realizatidgts that
visible components (like galaxies, gas, et cetera, in general calledriiany@tter) represent
only a fraction of the total energy content of the universe. On the tsaletage, baryonic
matter is just a side-actress lighting up the play but only marginally influencingtting The
main actors are the mysterious dark matter and dark energy, whose coshigidtldetermine
the future and fate of the universe. In general, dark matter arrange®dal’ affairs: it is
the main constituent of the cosmic web, whose structure and shape is stdepggdent on
it. Dark energy on the contrary, is spreaded too thinly to exert local infeielirectly. But it
is everywhere and rules the universe on global scales. Howewdragmedark energy subtly
mingles locally as well. If so, it will give a distinct imprint on the detailed shapksiructure of
the cosmic web. Conversely, the detailed shape and structure of the cosminay shed some
light on the mysterious nature of dark energy.

Every story is written in a language. According to tivgguistic relativity hypothesi®f
cognitive linguistics, the use of a particular language influences thomghban-linguistic be-
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Figure 1.1: lllustration of the cosmic web [Subbarao et al., 2005]Based inside a filament, we look back to our galaxy and see
the majestic cosmic web unfolding. Image data is from the SlagitdD Sky Survey.

haviour (weak version) or even determines it (strong version) [Brd@76]. l.e. language
might not just neutrally express thought, it might influence or even defifiéé.strong version
of linguistic relativity has an acquisition problem: in order to learn a languagesognition
(thoughts) are needed, so language cannot determine thought compldielyweak version is
an area of active empirical research [Lucy, 1997], in generaligiray support for the hypoth-
esis. Some of the most recent developments attempt to tie in the weak varianewitiagy
[Gilbert et al., 2006].

Nature is written in the language of mathematics. Just as the use of a certaiadardirects
our thoughts and questions we can ask to other persons, the type of métkersad determines
the type of questions we “can ask” nature. Since the discovery of timeicegeb, many analyti-
cal and statistical methods have been employed to describe its structumaeitals employed
are often genial and have a sound physical foundation but they alscahaajor disadvantage:
they are ill-equipped to reallgescribestructures and shapes. They only provide handles to work
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CHAPTER 1. INTRODUCTION Keimpe Nevenzeel

with it. A branch of mathematics perfectly suited for describing structure haplesis topology,
a generalization of geometry letting go of exact distances. Chapter 3 psostiintroduction of
this branch of mathematics and how it can be applied to cosmology.

One of the first applications of topology to the study of the cosmic web is he@rand Weygaert,
M] in the form of the Delaunay triangulation, which also plays a role iilouvarstages of this
thesis. Only very recent developments within topology itself allow its utilization dsmol-
ogy in full rigour and detail. As cosmological datasets are very large, algmacessing of the
data is unfeasible and theoretical topology needs to be translated into compaltaijmlogy.
Chapter 4 describes the full data pipeline.

This is one of the first times topology is applied to cosmology and as such ebesitw
mathematical results for individual cases, the stability of the data pipeline pfeh@us chapter
has not been proven for real datasets. Furthermore, the topolofjeakef elementary oper-
ations like smoothing the dataset is yet unknown. Chapter 5 provides tlésexagrimentally,
showing (i) that topological measures employed are robust and (ii) smgdtaman excellent
topological analogue called manifold simplification.

Having established the stability of the method, we study the topology of the cosahic w
under the standard form of dark energy extensively in chapter Gsesuiently, we do the same
for several other forms of dark energy and compare the results irteshap We find that at
equal (and low) redshifts, the dark energy models considered hedistinguishable in real and
redshift space! However, at equal this does not seem to be the case. This suggests that dark
energy does influence the shape of cosmic structure but only indirectiisvigluence on the
expansion of the universe.

These discoveries pave the way to put constraints on dark energg bashe shape of
cosmic structure. These and other future directions of research, ¢ogeéth a discussion and
conclusions are presented in chapter 8.




CHAPTER 2

Cosmology and the Cosmic Web

Since the dawn of mankind, in all cultures at all times, fundamental questizesli&e Where
does everything come from®hat is our place in the universethdHow do we and everything
around us come to an end7hese kind of questions are studied cysmology the study of
the universe as a whole. Though such questions are seemingly renratevieoyday life, the
organisation of many societies ultimately depends on supposed answersdatiestions and
throughout history many wars have been fought over them.

The stage for modern physical cosmology was set with Copernicus’ baliéc model in
1543 Coéernicus] and Kepler’s discovery of the ellipticity of planetanyits at the first half
of the 17th centur)} [der Wissenschaften]. In the decades that folltheediea that stars might
actually be other suns developed. It was around 1750 when the Britishnaser Wright

roposed that these stars might be ordered in a thin planar region asocectre [Hoskin,
1970@, i.e. in a structure we call galaxytoday. For a long time it was unclear whether
our galaxy the Milky Way constituted the entire universe or is just of manyxgaaor ‘island
universes’ within the universe. The excellent observations of H bble, 1929] and later
by Baade lBaad@SZ] provided empirical evidence that our galgugtiene of many, settling
the issue. The realization that there are numerous galaxies in the visibérasand that our
galaxy doesn’t occupy a spcial position in any way heralded the birgthg$ical cosmology
One of its cornerstones is tlk@smological principle which states that on large scales (00
Mpc) the universe is spatially homogeneous and isotropic, i.e. it looks the egerywhere and
in all directions.

Besides showing the existence of other galaxies, Hubble had shownllahatehey are
moving away from each other with a ‘velocity’ proportional to their distandde Belgian
astrophysicist and priest Lefiti@ interpreted this correctly as meaning not that the galaxies ac-
tually moved, but that the universe is expanding. If the universe isnekpg now, than it must
have been smaller in the future and further backwards infinitely small, whidteladtre to
the Big Bang cosmological mod@emaitre, 193h]. In this model the universe originated from
a Big Bang. Several mainly agnostic scientists ridiculed the idea that thersmiwas created
with a Big Ban@ and proposed th8teady State cosmological modslalternative. The Steady

More accurately, Wright proposed a thin shell or an annulus aroundatesetic centre, partly for religious
purposes. Based on only a summary of his ideas, the famous phikrsiipht interpreted and extended Wright's
ideas to a plane around the galactic centre [Hoskin, 1970].

2Actually the nameBig Bangwas coined by an opponent of the theory.
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CHAPTER 2. COSMOLOGY AND THE COSMIC WEB Keimpe Nevenzeel

State model asserts tiperfect cosmological principlehomogeneity and isotropy in space and
time, but at a price. The only way to reconcile homogeneity and isotropy in timeamitx-
panding universe is to let go energy conservation and embrace spoutageneration of matter.
The principle observation confirming the Big Bang model was the discoghe@osmic Mi-
crowave Background (CMRB)highly uniform microwave radiation coming from every point
on the sky. It was theorized by Alpher, Herman and Gamov [Alpher ]1and discov-
ered by Penzias and Wilson [Dicke etal., 1965; Penzias and \Nilsonﬂ,lﬂl@iﬁh earned them
the Nobel Prize of Physics in 1978 [Nobelprize.org, 2013a]. Within theBigg model, the
existence of the CMB is naturally explained: when the universe is very smdldense aver-
age temperatures will be very high. Consequently, photons will contilpiarsze hydrogen
atoms and the universe will be filled with a photon-matter fluid. When the ws@vexpands
the average temperature decreases and at a certain moment becomethabpbwtons cannot
longer ionize hydrogen. Photons decouple from matter and commence pilongy through
the universe. The photons which decouple at this moment form the CMBilitons of years
they travel uninterruptedly through an effectively transparent us@jecarrying with them an
imprint of these early moments of the cosmos. When their journey ends at eofsedetector,
they reveal that early state. The Steady State model doesn'’t offereasgmrable explanation
to account for the CMB. With the manifest victory of the Big Bang model, plafsiosmology
outgrew its infancy and defined tlstandard cosmological moc@l We note that besides the
expansion of the universe and the presence of the CMB the standarsblogical model also
explains the chemical abundances of light elements, the formation of s&ucttire universe,
Olber’s paradox and a host of smaller observations, making it a full- €i@dgientific paradigm.

Based on this model, the first part of this chapter considers the geometing ahiverse
(section 2.1), its laws of physics (section 2.2) and a general overviéw iofyredients (section
2.3). The main references for this part are [Wequ%ZdloL RM] and |Liddld, 2009].
The second part of this chapter focusses more in detail on the cosmidigmgewith as basic
reference@)lZ] alﬁd lPeac@ZOOS]. We shed kgimen the mysterious dark
energy in section 2|4 and describe how matter forms the cosmic structures umiverse in
section 2.5. In section 2.6 we consider several formalisms to describe thaohmgy of cosmic
structure. Many of these formalisms excellently partition space in its morphalagimponents
and a few even provide some aggregate measures. But non deallyibeits morphology. It
is here that discrete topology enters the stage, as it describes the codmdiraaly in its
components. A general introduction to topology follows in chapter 3.

2.1 The geometry of the Universe

In a flat three dimensional space with Cartesian coordin@tgs c) or spherical coordinates
(z, 6, ¢) the standard Pythagorean distance metsi¢cf. definition'A.1) is:

ds* = da® + db? + dc® = da® + x* (d6? + sin” 0d¢?) (2.1)

There is no a priori reason to assume we live in a flat universe. Inthogan arbitrary irregular
curvature is very difficult but under the assumption of the cosmologicatipie only three
universal curvatures need to be considered: a positive (sphamizaBture, zero (flat) curvature
or negative (hyperbolic) curvature. The type of curvature is indichyee, which is +1, 0 and
-1 for positive, zero and negative curvature respectively. For tmezero case, the radius of

3A well known specific version of this model is the Concordance Mcﬁdet[]@er and Steinhart, 1995].

11
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curvature is written a®. To generalize the metric above to include such curvatures, we have to
replace the:? in the equation above bi? sin?(x/R) for a positively or byR? sinh?(z/R) for
a negatively curved universe. Combining the three possible curvatiome we get:

ds? = da® + S, (x)?dQ? (2.2)
with

Rsin(z/R) k=+1
S. =<z k=0
Rsinh(z/R) k= -1
dQ? = db? + sin®(0)d¢p>

Performing the coordinate transform— y = S, (x) we can equivalently write equation 2.2 as:

dy2

2 _
ds” = 1 —ky?/R?

+ y?dQ? (2.3)

To go from a metric for space to metric for spacetime we should take time intoracealding

an extra term—c2dt® to equations 2/2 and 2.3. In time, the universe expands. Because the
expansion is uniform, we can describe it with #wpansion factora(t), normalized such that
a(today) = a(to) = 1. Taking time and universal expansion in time into account turns equations
2.2 and 2.3 in the:

Definition 2.1 (Robertson-Walker metric)

ds® = —dt* + a(t)? (dz® + Su(x)%d0?) (2.4)
= —c%dt* + a(t)? A + y2dQ?
- 1 ry?/R] Y

Here,x andy are called the&eomoving coordinateas they ‘move along’ with the expansion of
the universe. Thphysical coordinates can be found by multiplying the comoving coordinates
with the expansion factor, i.e.= a(t)z. We note that this metric is only valid under assumption
of the cosmological principle. More subtle is than previous equation; which reference frame
do we take to measure cosmic time? Héfeyl's postulatehelps us out:

Postulate 2.1(Weyl's postulate) The geodesics of all observers meet at one point in the past:
cosmic time can be measured from that point.

Due to Weyl's postulate, we can simply use a ‘universal time’ within our calicms. Contrary
to the classical Newtonian view, the curvature of the universe and thésegpeometry are not
just a passive stage on which the grand play of the universe devdRatiser, the geometry is
intimately linked to the content of the universe. This link is provided by the laaveiing the
universe, which we will consider now.

2.2 The Laws of the Universe

Ordered from strong to weak, the four fundamental forces of theeusdvare (i) the strong force,
(ii) the weak force, (iii) the electro-magnetic force and (iv) the gravitaliém@e. The strong

12



CHAPTER 2. COSMOLOGY AND THE COSMIC WEB Keimpe Nevenzeel

and the weak force work on microscopic distances while the electro-magnetigravitational
force act on macroscopic distances. On large distances the univelsetigcally neutral. So
slightly ironically it is the weakest force of all, gravity, which rules the unéeson the largest
scales. The gravitational field is described by general relativity with taatational field equa-

tions orEinstein equations
y y 87G, .,
GM +Ag“ = —7TM (25)
with G*” the Einstein tensor describing curvatufé! the energy-momentum tensor describing
the energy-content of the universe afidhe cosmological constantin a Robertson-Walker

metric, g** becomes:

2
. t
g"" = diag (1, — la—(k:)yQ ,—a’y?, —a?y? sin2(9))
It is from the Einstein equations that we see the intimate link between geometigfthiele of
the equation) and the energy-content (the right side of the equatior)gddmetry determines
how the energy-content is distributed but in turn the energy-contentaietes the geometry.

On cosmological scales potentials are weakef < 1) and so contraction fofz) and G}
gives the:

Definition 2.2 (Friedman-Robertson-Walker-Leiitr@ (FRWL) equations)

8rG 1
a’ = 7TTpaQ — ke + §Aa2 (2.6)
. ArG 3p A

with p the densityp the pressure and the curvature constant.

Note that in the Einstein equations, the cosmological constant term canumghbfiom the left
to the right side. Then instead of being part of the curvature side it bescparé of the energy
content of the universe and is renandatk energy Defining the density of dark energy as
PA = % it can be absorbed in the density term of the FRWL equations.

Multiplication of equation 2.6 witl2a and taking the time derivative of equation[2.7 we can
equate both, giving the:

Definition 2.3 (Fluid Equation)
p+3(p+p/?) g —0 (2.8)

Essentially, this equation states the universe expands adiabatically.

The FRWL equations and the fluid equations can be obtained in an insighéfsil- lewtonian
way as well [se RydeE, 2&03, chap. 4]:

1. Integrate Newton’s law of gravity over the surface of a sphere godte the integration
constant with the curvature term. This gives the first FRWL equation.

2. The fluid equation can be derived by applying the first law of thermaaycs on an
adiabatically expanding sphere.

13
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3. Combining the time derivative of the first FRWL equation with the fluid equatopration
gives the second FRWL equation.

As becomes clear from the derivations above (both the relativistic anddd&am version), the
FRWL equations and the fluid equation are only two independent equathanthey contain
three variablesy, p andp, another independent equation is required. Here the equation of state
comes in, which for a given cosmic ingredient relates its density and peessu

Definition 2.4 (Cosmic equation of state)

p(p) = w(a)pc? (2.9)
with w(a) a parameter determined by the cosmic ingredient under consideration.

Plugging the equation of state in the fluid equation gives:

p+3p(1 -l-WDE)g =0 (2.10)

After integration this becomes:
pla) = ppa 3(1+wpe) (2.11)

Equations 2.10 and 2.11 show that the rate of density decrease as flofetimndetermined by
the parametew, i.e. by the cosmic ingredient under consideration. The next sectiomeoss
these ingredients in more detalil.

2.3 Universal ingredients

So far we spoke about density without actually specifying a density ot.w&dobally, our
universe has four main ingredients: (i) matter, (ii) radation, (iii) dark @nand (iv) curvature.
We shortly discuss each of these in more detail below, for a complete amiifiooverview of
all ingredients we refer to [Fukugita and Peebles, 2004].

Matter is often subdivided in two types. Baryonic matter is the stuff humans, stdrstan-
stellar gas is made of. But baryonic matter is only like the lights in a Christmas tiesrlyc
visible but almost negligible in terms of total mass. A far greater mass contribtgioes from
dark matte: a pressureless form of matter which doesn't interact withtiadiaWe refer to
ﬂBertone etal., 2005] for a recent review on candidate species. @alaansist largely of dark
matter and therefore the N-body simulation we use later on (cf. section 4 bnlysdark matter

to describe large scale structure. In good approximation, for neasuysedess baryonic matter
and pressureless dark matter we haye) = 0. Plugging this in equation 2.11 shows that matter
density decreases proportionally to the increase of volume:

pm(a) oca™®

Radiation consists of two types as well: photons and neutrino’s. Although radiatidities
outnumber matter particles by orders of magnitude, their current contrittotitve total energy
budget of the universe is near negligible. This can be understoodrisydewing their equation
of state. Thermodynamics gives,4(a) = 1/3. Plugging this in equation 2.11 results in:

Prad (a) oca”t

14



CHAPTER 2. COSMOLOGY AND THE COSMIC WEB Keimpe Nevenzeel

We see that radiation density decreases a factiaster than matter density. Intuitively, this
additional factora can be understood from stretching of light waves due to expansion of the
universe.

Dark energy (DE) is responsible for the largest contribution to the energy budget of the uni-
verse. Despite abundant experimental evidence for its existence itsreatare remains a mys-
tery. Many models have been proposed, we will review the most importastesian sectian 2.4.
The idea of dark energy originated from Einstein, who introduced\tiherm is his equations
(cf. equation 2.5). Einstein was a firm believer of the Steady State cosmallogaziel and
the A term was meant to prevent such a model to collapse under its own gravign Wiibble
showed the universe expanded, Einstein withdrew the term and namedigdest blunder

The famous discovery of an accelerated expansion of the universeobyndependent su-
pernova redshift surve%s [Perimutter etal., 1999; Riess et al., 1298]ded the return of the
term, as it can provide the required negative pressure to explain tHeratics. The Nobel Prize
of Physics 2011 was awarded to the lead scientists of previous papéhésfonexpected and
ground-breaking discoverﬁl [Nobelprize.Hrg, 2013b]. Later olzgens based on amongst oth-
ers the CMB |Co||aboratidﬂ'|. 201\3: Komatsu ek \al., 2011], large scaletstm@odelson etal.,
%2; Percival et almbl] and the Hubble constant [Freedman Mi] confirmed their
findings.

Although the equation of state of dark energy is unknown, the fact thitedeergy exerts
negative pressure can be used to obtain some general constrainssdeZdne second FRWL-
equation 2.7 with the equation of state 2.9 plugged in:

g = —g <PDE + chgE) = _ngE (14 3w)
To create negative pressure the term between brackets on the righsigdgnshould change
sign. This gives the restrictianpr < —%. Furthermore, it follows from the equation of state
2.9 thatwpr < —1 implies the DE density increases when the universe expands, an highly
unlikely (although not completely disprovéd [Caldwell etal., 2003]) sbendhus, reasonable
constraints fowpg are—1 < wpg < —%.

Curvature can also be seen as a contribution to the total energy budget of theamiasr
according to the Einstein equations|2.5 the geometry and energy conteetusfiverse are inti-
mately linked. Detailed measurements of the CMB [Collaboration, 2013; Komaﬂ;\ 2011]
show the curvature parameter = —xc?/a? = 0 within one percent, indicating the universe is
(nearly) flat.

The exact energy density value required to obtain a flat universe edound by setting
x = 0 in the first FRWL equation 2.6, defining tlegtical density

3 /a\?
Pe= 237G \a (212)

Evaluated at today, we geto = (9.2 + 1.8) - 10~ 2’kg m® [see Ryden, 2003, chap. 4]. As
the universe is nearly flat, densities are often expressed in terms of thasiimiess density
parameteK)(t) = p(t)/p.(t). A graphical illustration of the density contributions of matter,
radiation and DE is shown in figure 2.1.
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baryonic matter: 0.0455 —

I —radiation: 0.005

dark energy: 0.72

dark matter:
0.226
L

Figure 2.1: The cosmic energy inventory. The values shown are from [Komatsu et al., 2011]. Very recerdsui@ments
[Collaboratioh 205]3] suggeStpr = 0.6825 andQpy + Qb = 0.3175 instead, nonetheless the general pictures remains
the same.

2.4 Dark energy in more detalil

Figurel 2.1 clearly shows that today, DE provides by far the largestibation to the energy
budget. Furthermore, it plays a vital role in the standard cosmological mitialy ideas on
the nature of dark energy have been put forward. Here, we giv®i sverview of the most
important classes. More extensive reviews can be found in [Caldm@KamionkowsRi, 2009;
Frieman et al., 2008].

The cosmological constantA as introduced by Einstein was a constant meant to keep the
universe from collapsing under its own gravity. As mentioned in sectiorm&Z;an associate
the A component with a densityy, = % To keep the density constant, the fluid equation 2.8
tells us that we than havye, = —é}fé and consequently, = —1. Although observed values

converge in this direction, the cosmological constant has one problems ihdnéheoretical
underpinning.

Vacuum energy attempts to provide such an underpinning by bringingAhierm from the
geometrical to the energy-momentum side and relating it with vacuum enengyduantum
mechanics. According to quantum field theory empty space is filled with virardicfes have
been measured in the shifts of atomic lines and particle masses. Consedihentigcuum
adds a term to the energy-momentum tensor. As the density of this effectstant we again
getw(a) = —1. Unfortunately, attempts to calculate the resulting vacuum energy density fail
dramatically: they require the vacuum energy density to be 120 orders gritmde larger
than the critical density.! This very large discrepancy is known as the cosmological constant
problem l@einber 1989]. Supersymmetry helps to reduce this to 6@sooflenagnitude due

to partial cancelling of zero-point energy contributions of fermions awbhs, but 60 orders of
magnitude is still a lot.

Quintessence hypothesises the existence of a yet unmeasured scalap fieéd permeates the
universe. Introducing such a scalar field makes vacuum energstiedfiy dynamical, allowing
itto vary in timé*. In its standard form, the scalar field has Lagrandian %a%am - V(o),

“Technically the scalar field can also vary in space, but often it is chodezemit spatially homogeneous.
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resulting in:

p=09"/2+V ()
p/c® = ?/2 -V (9)
N (2.13)
CPF2-V(p)  —1+¢?)2V

CTRRTV(e) 1+e2v

For slowly evolving scalar fields, i.ei)Q/QV < 1 we getw ~ —1 and the scalar field behaves
like a slowly changing vacuum energy with- ac(t) ~ V[¢(t)]. A visual illustration of the
scalar field potential and how it gives rise to dark energy is illustrated indigi2. Scalar fields
are interesting because they offer degrees of freedom, contrarguamweenergy. Furthermore,
it might an explanation for dark energy and inflation in one go. They hawgesdownsides
as well: (i) the cosmological constant problem isn’t addressed and (iiptfaguction of new
forces may be necessary.

Vig)

Vacuum energy

4

Figure 2.2: Generic scalar field potential [Frieman et al.| 2008].The scalar field rolls down the potential and settles evélptua
in a minimum, corresponding to the vacuum.

Modified gravity changes the left hand side of the Einstein equations instead of the right han
side. If 4D spacetime can still be described by a metric, such a theory teetiange two
things: (i) the FRWL equations 2.6 and 2.7; (ii) the equations that descrilggdieh of density
perturbations in the early universe that evolved into the cosmic structuseevioday. Different
authors have different starting points to modify gravity, some originatingn fnegher dimen-
sional theories, some from string theories and some are purely phenlagieab Changing

the laws of gravity is an attractive approach as it doesn't require nalarsfields. However, no
consistent theory has been put forward so far.

Inhomogeneous cosmologiessuggest the universe is inhomogeneous up to far larger scales
than normally assumed. For example, if our galaxy resides near the middleeasf darge
underdense region, the acceleration effects of DE could be mimickede ifodgreement with
the isotropy of the CMB, this region would have to be nearly spherical ds wihough the
idea is interesting, it requires quite some coincidences. Furthermore, knewn whether such
cosmologies can be made consistent with all cosmological observations.

In this thesis, we will consider and compare the following dark energy models:
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. LCDM§ assumes the classicala) = —1, i.e. the cosmological constant or vacuum
energy.

e RPis a classical quintessence model [Ratra and Peebles, 1988] anddadardisld po-

tential Vep(¢) = 427,

e SUGRA extends the RP model by including supergravity corrections [Brax amtinva

2000; Freedman et al., 1976], which extends the potentidt@;z4(¢) = % exp(49G¢?).

The DE models above are relatively uncomplicated. Much more complicatedsmds, each

with their own set of parameters. That many models have their own set ainpéers makes
it rather difficult to compare them directly. Therefore, it has become mestpin literature to

parametrize the DE equation of state as:

w(a) = w + we(l — a) (2.14)

This parametrization allows good comparison of many different moi] up to
observing accuracb[l.Td r, 2010]. For the three models undeidenasion here, the values of
wo were set at = 0 and theirw, values determined by @’ fit. These values are tabulated in
table 4.1 and the resulting-evolution is shown in figure 2.3.

-0.5 T T T T T

06 Rp
<07 .
2 o08F .

209 |

Figure 2.3: w evolution as function of z [Bos et al.| 2012] (adapted).By definition LCDM's equation of state parameter
remains constant. RP’s and SUGR4&'s/alue increases slightly respectively significantly in time

The rich variety of DE models stands in sharp contrast with their spatiavmivawhich
is very monotone. Due to its negative pressure any density differengedtliywashed out and
consequently its density is the same everywhere. Matter on the contrafgroarstructures.
Exactly how is discussed in the next section.

2.5 Cosmic structure

The magnificent cosmic web we see today developed from the very eanlgsents; its im-
print can already be found in the CMB. No formalism exists which desctitesosmic web
from its very earliest moments to nowadays, but especially for the earligesstaf structure
development some excellent models have been developed. By the cosmlopowiciple, the
universe is homogeneous and isotropic on large scgle)0 Mpc), giving rise to a universal
background density,,, background potentiab,, and background gravitational forgg. Fur-
thermore, expansion of the universe causes all galaxies to ‘move &way’each other with

®It can be either, as fro the point of view of particle simulations, the exacse ofv(a) = —1 doesn’t change
any outcomes.
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‘velocity’ vy (r,t). For structure formation, it is more useful to describe physical quantities in
terms of their perturbations with respect to the background. These quaatiéiealled the den-
sity perturbatiord(x), peculiar potentiad(x, t), peculiar gravitational force(z, t) and peculiar
velocity v(z, t) and are defined as:

_ o) = pult)

=T

d(x,t) = Dy (r,t) — %ad:f (2.15)
g9(x,t) = =Vo(x,t)/alt)

v(z,t) =u(r,t) —vg(r,t) = a(t)s

with u(r, t) the physical velocity.

Structure is formed by dark and baryonic matter under influence of radia@io the Mega-
parsec scales of the universe we study here, matter and radiation magrbassa continuous
fluid [Weygaert, 2012]. Consequently, we can use fluid dynﬂn'ﬂnsiescribe the cosmic evo-
lution of matter and radiation. For each cosmic ingredjetratter, radiation or dark eneF@y
the three main equations, rewritten in terms of the general relativistic comoeingripation
quantities are the:

e Continuity equation formalizes mass conservation: the amount of mass flowing in a
volume equals the increase in mass within that volume:
8(5j - 1 + u)j
ot

Voo (146 (2.16)

e Euler equation describe the forces on the mass which result into mass flows:

ov 1 a 1
— (Voo Lv- v, 2.17
9 a(v Vi)v av aV 10) ( )

e Poisson equatiorspecifies the gravitational potential from which the sources originate:

Vig =4rGa® | > (14 3w;)p;.cd; (2.18)
J

These equations will play a pivotal role in analysing the development of lscgle structure,
which we will do in three stages: (i) the initial conditions; (ii) the linear phasg @) the
non-linear phase.

2.5.1 The seeds of cosmic structure

The seeds of cosmic structure can already be found in the CMB in the fosmall temper-
ature perturbations, see figure [2.4. For larger angular Ecﬁdese temperature perturbations
correspond inversely to density fluctuations: at places the density wasrhjghotons required

SFamiliarity with fluid dynamics is assumed. The reader who requires adalittmckground is referred to the
excellent treatise [Veldman and Velicka, 2010].

Although for dark energy the perturbation quantities are zero.

8For smaller angular scales the relation between photon temperaturedertying density is more complex, we
refer to [Hu and Dodelson, 20\02] for an overview.
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more energy to escape the gravitational pull, hence lowering their temperdtuthe CMB
the temperature differences are very small’/T ~ 10~° and analogous figures are true for
the density differences. Under these circumstances structure formatioexcellently be ap-
proximated linearly, as we will see in the next section. In this section we wilhseethese
density perturbations came into being. Within standard theory, the denditylpaions visible

Figure 2.4: The CMB [Team], based on 9 years of data from the Wilkinson Microwave Amism¢ Probe (WMAP). The fluctua-
tions are extremely smalAT /T =~ 10~°, showing that the universe was already isotropic at itsnicya

in the CMB actually come from the earliest moments after the Big Bang, when thersaiwas
incredibly small. Because the universe was so small it was in thermal equitipvitnich ex-
plains the near equilibrium of temperature and density. That there areedidfes at all is due to
Heisenberg’s Uncertainty PrincipleAround10~3% seconds after the Big Bang the universe ex-

anded with the extraordinary factor factdf”. This expansion is calledflation [Guth, 1981;
@,@O] and it blew up the Heisenberg’'s microscopic energy fluctusmtim macroscopic
scale. The power spectrum of the CMB supports this hypothesis: it islyhparfectly Gaus-
sian [Collaboration, 2013; Komatsu et al., 2b11], exactly as one wouldogXpm quantum
fluctuations.

Besides sowing the seeds of structure, inflation also solves severalpotiidems in cos-

mology, most notably the:

1. The flatness problenas we saw in sectidn 2.3 the curvature of the universe is (almost)
zero. Inflation explains why: even if the universe was curved, theemdrexpansion
would reduce this curvature to nearly zero.

2. The horizon problemhe CMB shows the matter-radation soup at its time of last scattering
was nearly isotropic, even between regions which couldn’t have beeauisal contact.
Causal contact can be reestablished if the universe expandeddiasafmuch smaller
state.

3. The monopole problenmwe don’t observe magnetic monopoles, whereas Grand Unified
Theories predict they should be formed around the moment of inflation. iBdowp
the universe by a factor af'?’ descreases the monopole density to 1 in our observable
universe.
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Although the exact physical mechanism giving rise to inflation has yet toebermined, it
is expected that inflation arises from the breaking of symmetry between tvey dtsrce and
electro-magnetic & weak forces.

With the seeds of structured sowed, the next subsection describesabelmgiment.

2.5.2 Linear structure formation

In the first epochs of real structure formation, density and velocity gmtions are small so
structure formation can be described with a linear approximation. Congrtellnear regime
is valid whend < 1 and(vt.,;,/d)* < & with d the coherence length for spatial variations’ of
andt.,, the expansion time. In the linear regime higher order terms are negligible andithe fl
equations 2.16, 2.17 and 218 simplify to:

ot a

ov a 1

B 2.1
ot av aV(]ﬁ (2.19)

V2¢p = 4rGa® Z(l + wj)pjud;
J

The stage of linear structure formation takes place at redshifts at whicbnilierse hasn'’t
reached the DE dominated epoch yet. Furthermore, as most of the matter mivérse consists
of collisionless dark matter, in good approximation pressure effects caedbected. This gives
us the linearised fluid equations for matter perturbations:

a5 1

o gV

ov a 1

ov_ a1 2.2
ot av quﬁ (2.20)

V2¢ = 4nGa’p,0

Taking the divergence of the Euler equation, substitutingtterms byé-terms using the con-
tinuity equation and substituting thieterm by aj-term using the Poisson equation we obtain a
second order partial differential equation for

0%  _ads 3 1
T et O Y - gt 2.21
ot? + adt 2 0a0a36 ( )

This equations allows us to draw two conclusions regarding the linear statfeicture forma-

tion: (i) as second order partial differential equation it has two indegetrgblutions and (ii) the
time and space variables can be separatedj{®.t) = D(t)A(z). We can write the general
solution as:

5(z,t) = Dy ()A4 (2) + D_(H)A_(z) (2.22)

In general, the growing mode solutidn,. will become stronger in time whereas the decreas-
ing modeD_ will decrease in time. Quite fast, the_ solution will become negligible and

we only need to consider thR solution to describe linear structure evolution. A general an-
alytic formula D (a) is not available, but for spatially flat models a good fitting formula is
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ﬂLahav and Suto, 2004]:

D(a) = Salm(a)/2
MT(a) — App(a) + [+ Am(a)/2][1 + Apg/70]
Qm,O
Am(a) = R sy (2.23)
Apis(a) = Qppoa’

Qo+ Qppoa®

Although the above formula could be used directly to study the evolution aftateiformation,
usually the evolution oD(a) is expressed in terms of tldémensionless linear velocity growth
factor f, defined as:

dln(D)  a dD
= = —— 2.24
/ dln(a) D da (2.24)
The following approximation turns out to be extremely accurate [Liﬁidea]zoo
f(Qm) = Qg (2.25)

v =0.55 + 0.05[1 + w(z = 1)]

Both formulae 2.23 and 2.25 for the growing mode of the density perturbatiorite:, ¢) show
that structure evolution mainly depends on matter, but a subtle influence isf\léible as well.
The second of these equations also shows that the magnitude of the DEGeflleppends on its
equation of state. To illustrate the dependence of structure formation ofigDEg[2.5 shows
the evolution of for —1 < wpr < —1/3. Under the influence of gravity, density perturbations

100 [T T T T T T TTT T T T T

a(z)/6 (today)

| N 1 L1 1
10 100 10+
Redshift (2)

Figure 2.5: The influence of dark energy on structure formation 1 2008].

grow. Whend(z,t) ~ 1 linear theory is not longer an appropriate description of structure
evolution and we will need to resort to non-linear theory.

2.5.3 Non-linear structure formation: Zel'dovich

Whereas the linear stage of structure formation has been completely waukechalytically,
no complete analytic theory is available for the non-linear case. The mogthstoaward ap-
proach is to take the non-linearised fluid equations 2.16, 2.17 and 2.1®atidue from there.
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Extensive amounts of literature exist in this direction and complicated higler-perturba-

tion analyses has been done [Bernardeau et al., 2002]. Howeverasig the order of the
approximation quickly leads to a drastic increase in complexity, resulting swiftlyarioss of
structural insight and computational achievability. Fluid dynamics as destcdb far uses a
metric fixed in space over which the fluid moves, calledEuwerian approach Alternatively,

fluid dynamics can also be described on a metric that moves along with the fillel] the
Lagrangian approach As example, the simplest Eulerian approach uses a coordinate system
with equidistant points in terms of space whereas the simplest Langrangieoeap uses a co-
ordinate system with equidistant points in terms of mass. A transformation frderi& to
Lagrangian comoving coordinates is achieved with:

Z=g vV (2.26)

Thereby the Lagrangian fluid equations (in terms of general relativistiooeing perturbation
quantities) become:

_ %
YT
dv a 1

V2¢ = 4nGa’p.o

The Zel'dovich approximationﬂZeI'dovich, 197@)] is a first order approximation of the inverse
of mapping 2.26 to describe density evolution. Consider a mapping from ingiadjiangian
coordinatey to its Eulerian coordinate(q, t), i.e. ¢ — x(q,t). If we consider the perturbation
quantitys(q,t) = x(q,t) — ¢, previous mapping becomes— s(q, t).

The mass originally contained in the infinitesimal voludgeis transported to the infinites-
imal volumedz. Naturally, the density in Lagrangian spagg) is simply the average cosmic
densityp.(t), giving us:

p(z,t)dz = pc(t)dq

N (2.28)
p(x,t) or, 4
1+0(z,t) = = ||—
w0 = ot oy
with || ... || the Jacobian determinant. To evaluate the Jacobian determinant, note treat we c

write x(q, t) in terms of an ordered sequence of moments of displacement:
2(q,t) = g+ 2 (g, 1) + 22 (¢,t) + O(h.o.t.)

wherez(™) corresponds to the the-term of the relative displacemefi(z — ¢)/dq|. Taking
the derivative ta; and limiting ourselves to first order terms only we obtain:

)
”a%” —1+V, 2+ O0(hot) (2.29)

Combining equations 2.28 ahd 2|29 gives:

dz,t)=—-V4- 2 (2.30)
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Analogously with the linear case above, plugging the Poisson and contirguigtien in the
Euler equation (restricting ourselves to first order terms and assumindomgjjgudinal contri-
butions) we get:
d’x adz
dt? * a dt
Again a growing and decaying mode exist and solutionsefgt ¢t) can be found, allowing to
compute particle displacement as function from its initial position and time.
Using the Zel'dovich approximation, we can also derive another feafuree@osmic web:
its anisotropic collapseConsider again equation 2.28. The Zel'dovich approximation computes
how the mass in the infinitesimal volurde is transported to the infinitesimal volurde (q, t).
During this transport the volume can be deformed, allowing ut to write:

=4nGpcx (2.31)

or _
1+6(z,t) = Hafqll U= 18 — a(t)tmn| (2.32)
1

[1 = a®M][1 = a(®)A][1 — a(t)As]

with 4,,,,, the Zel'dovich deformation tensor ard its eigenvalues. Note that wheift) — \;

we getd — oo, implying gravitational collapse in one of the dimensions. Here we see the
anisotropic nature of the cosmic web. Assume< Ao < A3, than with increasing expansion
factora(t) the following happens:

e While a(t) < A1 none of the dimensions has collapsed and the structure under considera-
tion is a 3D space, woid.

e While \; < a(t) < A2 one dimension collapsed. The resulting 2D structure is called a
wall.

e While Ay < a(t) < A3 two dimensions collapsed, giving us a fiiment
o After A3 < a(t) all dimensions collapsed, resulting in a @Ddeor cluster.

The resulting weblike pattern forms the cosmic web and is illustrated in figureso@/bWrit-
ing out equation 2.32 explicitly leads to a second order partial differeriztion in terms of
o(x,t), analogously to the linear case. The Zel'dovich approximation remains valid sur-
prisingly highd(x,t) values, but when sheets start to cross the approximation breaks dpwn. U
to that point, the Zel'dovich approximation provides valuable physical itsighd explains the
anisotropic nature of the cosmic web. If we could prevent sheets frossicily the Zel'dovich
approximation remains valid into even stronger non-linear regimes. Theiadtepproach does
so by introducing an artificial viscosity that models the self-gravity of bastnactures. Due to
that, structures stick together instead of cross. An extensive discusfsamthesion is beyond
the scope of this thesis, we refer the interested reader to [Hidding, Sbiddarin, 20@9] for
an overview. Although the adhesion approach brings us even furtiieeinon-linear regime
than Zel'dovich did, so far strongly non-linear regimes are still out ofme&everal approaches
exist to continue from here, each with their own merits and shortcomings:

e The classical Press-Schechter formalism [Press and Scﬁéchtd],dk—ﬂ;tribes the for-
mation of objects out of the perturbed density fiél{d:, ¢). It assumes isolated spherical
densities and provides support for thierachical buildupof the cosmic web: small struc-
tures form first and larger structures form later. The excursiorpsetalism lBond etal.,
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M] improves upon the Press-Schechter formalism by filtering oviemeae of the den-
sity field. It is more physically intuitive than Press-Schechter and deals vétbldud-in-

cloud problem (smaller objects which form in larger objects). Howeveh Approaches
give only a local description of overdensities. In reality the overdensities'’t isolated
but part of the global density field.

e Amongst others the spherical model or the homogeneous ellipsoidal n%ggaert,
2012; Peacock, 20b5] assume a special simple configuration and attemlfivoits full
non-linear evolution. Although such models provide insight in the mechanisipisyn
they only work for the idealized cases.

e N-body codes (cf. section 4.1) allow simulation of structure formation all thg in
general configurations. The results are impressive, see for exangpndpshot of an
N-body code in figure 2.6. But contrary to the formalisms above, theyt goavide any
physical insight.

When gas falls in the highly non-linear potential wells, dissipative effectsikicresulting in
energy loss due to cooling. The pressure drops and further infaltamgression of baryons
follows. In time this leads to the formation of galaxies and stars, a fascinaticg§s with many
open guestions. We refer to the clastion] for details. Ultimatelyxigaléorm the
cosmic web [Bond et al., 1996].

& X
‘..
v

Figure 2.6: Snapshot of the Millennium Simulation [consortium]. The Millennium Simulation is one of the largest cosmological
simulations done to date. It involved over 10 billion paggHistributed in a cubic universef10° light-years in each dimension.
The weblike pattern is clearly visible.
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As N-body codes are the only means to evolve a general density field itrtimgly non-
linear regime, they are frequently used and we will use them in this thesisisBey don't pro-
vide any physical insights, how to check what comes out is what shouoid coit and whether it
makes sense? An intuitive way is to compare the shape and connectédndiss,morphology,
of the structure formed in a simulation with the structure observed in the rearse. Visual
inspection is capable of detecting large deviations but is not precise letofigd more subtle
differences. Therefore, several attempts have been undertakesdaed the morphology of the
cosmic web. We will review them in the next section.

2.6 Cosmic web morphology

The cosmic web consists of very dense nodes or clusters, connecsehtotber by an intricate
network of filaments. Filaments in turn are bounded by walls, large sheetswhaund the
gigantic empty large regions called cosmic voids. Several of these morptedlagmponents
can be readily appreciated from figlre|2.6. Yet although these compdobois directly from
the Zel'dovich formalism and are recognizable by the human mind directly, matieal iden-
tification and handling is a challenge. Several approaches in this direciginwee discuss the
most important classes below.

2.6.1 Numerical morphology identification

For each of these components and in particular nodes and voids, manydsexist to identify
them in simulations or observations. Examples of node finders aB&ISD [Springel et al.,
@] and \0bBOZ [Neyrinck et al., 2005] and some excellent void finders are theji(i-
SCALE) WATERSHED TRANSFORM [Drieé, 201@; Platen et ai., 2007] orocBov [Neyrinck,
@]. Some outstanding methods likeXUs [Cautun et al., 2013] even present a coherent
framework to identify all morphological components. Besides the insights samponent
identifiers give in the structure of the cosmic web, they are also a valuablétomosmolo-
gists in general. For exampie [E.EEEOlO] uses void ellipticity in to distinguigérelift DE
models. But identification and numerically designating a part of space ag jp&ihof a certain
component is something else then reaéscribing the morphologygf the cosmic web.

2.6.2 Statistics

Another approach to get a handle on the morphology of the LSS is probigsthtistics. The
most basic approach in this direction is perhaps measuring the amount ofinfysigadition-
ally, this is done by measuring;: the rms-density variantion averaged ovér8 Mpc spheres.
If we ‘fill space’ with a set of sphereS; with massesns,, than:

_ 2
i (ms; = ms) (2.33)

ms

o8 —

with ms the average mass contained in a sphegeis one of the basic parameters of the stan-
dard cosmological model. A more elaborated statistical approach tsvthpoint correlation
function ﬂPeacoc\k\. 2005; Martinez and Saar, jOOl]. It gives the joint pribtyathat both in-
finitesimal volumeslV; anddV; at distance: contain a galaxy:

dP(r) = ndVidVa (1 + £(r12)) (2.34)
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with 7 the number density of galaxies afi@2) the auto-correlation function. Variations like a
continuous and angular two-point correlation function exist. Howeveyeireral their approxi-
mations are crude: they don'’t contain the information provided by the pludiske Fourier field
and completely different spatial patterns could display the same two-pai@ation function
ﬂMartinez etal., 1990]. Extensions to higher order correlation functexist but in the back-
ground a problem remains: a set numbers froqoint correlation functions might describe the
general galaxy distibution, they still dordescribe the morphology

2.6.3 Minkowski functionals

Major progress in handeling cosmic morphology mathematically was made with thduntr
tion of Minkowski functionalsﬂKerscher etal., 1997; Mecke, 1994; Schmalzing etal, 1995].
Minkowski integrals give a full morphological description in terms of bottotogical and geo-
metrical descriptors. Id-dimensional space there ate- 1 Minkowski functionals, thus in 3D
Euclidean space there are four, being:

1. the volumeV’ = [ dV;

2. the surface aredl = § dS;

3. the integrated mean curvatufe, = 1 §(R; ' + Ry);

4. the integrated Gaussian curvataig = (1/27) ¢(1/R1R2)dS.

These integrals can be computed using the following formalism: consider aggbifx;, i =
1,..., N} of galaxies in 3D Euclidean space and introduce a set of closed 3D{li&l(s;),i =
1,,,.N} with radiusr around these points, where in this context a closed ball is defined as (cf.
definition/ A.3):

B,(a) = {z € R¥|||z —a| <1}

We start with a very low value for, such that all balls are disjoint. Whernis increased, the
balls grow and balls close to another connect. Figure 2.7 shows a sdisdolbdhree different
radia, showing a clear difference in connectivity. The Minkowski fdisma studies how the
four Minkowski functionals on the structure of balls changes as functien Such a formalism
has several nice properties, like robustness and invariance unaglatian and rotation.
Minkowski functionals turn out to be good descriptors of differentdldeed) structures, see
figure[2.8. Furthermore, they really give a description of the geometrgrnomhsideration. But
they have limitations as well. First, their topological characterization of stregt{in essence
the fourth integral) is limited. Second, although the formalism can discriminatesbatdiffer-
ent structures, it doesn't really capture the essence of cosmic s#lintterms of anisotropic
structures. A formalism that goes beyond these limitations is discrete topology.

2.6.4 Homological discrete topology

A mathematical language that describes the morphology of the cosmic structime way
humans do intuitively, in terms of nodes, filaments, walls and voids, is homolatjgaete
topology. Although the fundaments are around since the beginning of thec2@tury, only
very recent developments both theoretically and algorithmically makes thelfermasable for
large cosmological datasets. An introduction to the this field of mathematics iz igiekapter
3 and its algorithmic implementation is discussed in chapter 4. Here we will use thialfem

27



December 2013 2.6. COSMIC WEB MORPHOLOGY

Originalé N I
Pattern | ° ‘|

r=r

®

©©®
O

O
OO

Figure 2.7: Minkowski analysis of a point set with growing balls [Parker e al., 2013]. A set of points inR? with balls of
increasing radius (top left). The resulting structure (@t left) is analysed using Minkowski functionals (righthich in 2D are
the area(r) (solid curve), the perimeter(r) (dashed curve) and the Euler characterigtic

Volume Surface Area / 8
T T T T R SAAANRARNS RERSARRRRSY
0.1 I)j r 7 e
F 7 3 , ey
0.08 S 3 0.08 R
7 1 r Va 7
0.06 S 4 0.06 - A -
, ] r s b
0.04 - S 0.04 |- P |
4T L Lo 1
0.02 [ P - 0.02 [ = ]
Oiﬁﬁf\.ulh.ﬁ OA‘W s
0O 01 02 03 04 0 01 02 03 04 o
radius radius
Mean curvature /3« Gaussian curvature
0_1_‘""“'/“,‘»'L"“—U_ | [T
- { [ ¥ ]
il S 7 [ N3 4
AT ] \ ]
0.05 [ f | - @5 . 7]
// \ ] i 7]

0 0.1 02 03 04 0 0.1 02 03 04
radius radius

Figure 2.8: Morphology discrimination via Minkowski functionals [Schmalzing et al., 1995]. Minkowski functionals for ide-
alized structures are good discriminators, as is shown by adngpa Poisson process on a filament (dashed curve), a wétk@o
curve) and a cubic void (solid curve). The division of the medric quantities by constants is due to normalization, etc.

to distinguish between the three DE models described in section 2.4. As claséngy®remark

that the seeds of homological topology are already present in the fountkodski functional

C¢q. Betti numbers3y, 3, and 3, are the ranks of homology classes (cf. definition A.25 and
will be defined in chapter|3. It turns out they give the number of compishamnels and shells

of a structure. Writingy for the Euler characteristic and using subsequently the Gauss-Bonnet
theorem and the Euler-Poincare formula, we can write:

Ca=x=00— 051+ (2.35)

l.e. the Minkowski functionals gave a taste of what is to come!
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CHAPTER 3

An introduction to topology

Mathematics forms an integral part of natural sciences for sevesameaFirst, mathematically
formulated natural laws allow deeper understanding of phenomenan&ec@bsence of such
laws mathematics can help data analysis by indentifying relevant featuresigiréss others.
But what exactly qualifies as ‘a feature’ and what as ‘relevant’? {@enshe slightly ominous
looking mountains on the photo below. With the misty clouds hiding most of the valllegs
mountain peaks feature prominently on the picture. With a bit of fantasy sothe aiountains
contain large hollow caves in which dragons live. . . Suppose the mountaisdape to be a hol-
iday picture, how would you describe the landscape to friends and fantk/H@mme? Probably
you would describe the whimsicality of the landscape, the central peak in thriendidd the
large peaks on the background. Just as some of the most prominest fathe clouds would
hang a bit lower and some of the mountain passes or valleys would be ibwsalemight have
described some of these as well. The smaller peaks surrounding thd oerteae already less
relevant. The irregular structure on the peaks themselves is hardly wonttomiag in detail.
Not so important as well are the exact locations of the peaks or their bgegtit. The last of
which is even impossible to say as the mountain roots are hidden deep bemectiuthlayer.
What is true for the ominous mountains above is true for many scientific ‘mouatailscapes’
as well: to describe their structure, the exact location or height of fesisiret always very im-
portant. It is more their shape, the type of feature (peaks, caves,s)alegt the amount of them
what matters. Unfortunately, the normally used mathematical field of analysésyisgeod in
describing analytical measures like location or height but is ill-equiped widesshapes. The
mathematical field ofopology more or less a generalization of geometry letting go of exact
distance measures, is much more suited for the latter. This chapter gives asduction in
topology and its application to cosmological density fields. One of the most inmp@dacepts
we need from general topology is the concept of a smooth manifold: a gipalmbject which
is everywhere locally equivalent with simple Euclidean space. As suchmbiees the gener-
ality of topology and the exactness of regular calculus. Readers less famihaopology can
consult appendix A1 for a quick overview of the most important concé&ptasider a function
describing a manifold. Starting from its largest value, we slowly decreadetiction value and
so reveal more and more of the manifold. Much like descending clouds wexgél more and
more of the mountain landscape above. First, only the highest peaksiate, st slowly more
and more peaks emerge and later mountain passes will connect the pesdserice, the appear-
ance of new features means the manifold changes topologically. We begahépiter with an
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introduction to Morse Theory in section 8.1, which describes in detail howrafalé changes
when new features emerge. Many astronomical datasets and in partialday gatalogues
contain discrete data. Sections 3.2 introduces simplices, the basic buildirks lolbdiscrete
topological space. Using simplices a manifold can be triangulated and athsircbhapes can
be described in a both concise and computable manner. An instructive lexafragriangulation
is the Delaunay triangulation. It is based on the Voronoi diagram and wilsbd extensively in
the next chapters. We describe the Delaunay triangulation in detail in s@&8oBy defining
functions over simplices Morse Theory can be extended to discrete tgpolbgch is done in
section 3.4. Previous sections are combined and some issues regastitiggbpimplementa-
tion are given in section 3.5. Triangulated spaces describe manifoldsvedirigut for scientific
analysis some aggregated measures are useful. How many featurepéikeseomponents or
mountain peaks does a manifold have, how many tunnels and how manysesere dragons
can hide? By defining equivalence relations on groups of simplices, feateges can be ex-
tracted from the triangulated topological space in the form of cycles. Thissaus to answer
the first question posed in the beginning of this section: what is a feature2étails of these
equivalence relations is relatively involved, we give their mathematicalgrsaakd in appendix
'A.2. As we saw in the picture of the mountain landscape, not all cycles aalgimportant:
some are main features but other are just small ripples on the waves ofdatgagures. How to
distinguish? Suppose we have a descending cloud layer. In essesateli fis important if it
remains a separate feature for a long time after its peak was revealed Bgutls, avhereas it
is not so signficant if it melts with another feature fast. The previous is cagphtuathematically
in the concept of persistence. Using persistence, we can concressierawhich features are
relevant and which not. Cycles and persistence will be defined in sec@pth® culmination of
this chapter.

The material discussed in this chapter encompasses substantial matariahfide range in
mathematics, but throughout this chapter two sources will be used retye@lsbrunner and Harer,
M} conceived the idea of homological persistence and persistéamgeams, the summit
of this chapter. lSousbi@ll} was the first to translate and a]gmmuener and Harer,
M]’s ideas fully to astrophysics. We cite them here as major refesdacthis entire chap-
ter. Although most of the topological theory expounded below is applicaldentimle range of

30



CHAPTER 3. TOPOLOGY Keimpe Nevenzeel

manifolds, for ease of exposition and because we don’t require moevémad cases we restrict
ourselves ta@R?. A note will be made wherever this is done.

Let no one unversed in geometry enter here.
Entrance words of Plato’s academy

3.1 Describing topological changes: continuous Morse Theory

The most important topological space we will encounter in this thesis is a (sjmoattifold.
Critical points of a function defined over a manifold allow us to analyze the wldrsftopology.
Exactly how is excellently described by Morse Theory [Milnor, 1973; Mﬁr1960] developed

by the famous Marston Morse. By some Morse Theory is cgiedthaps the single greatest
contribution of American mathematif®’Connor and Robertson, 2003]. To understand the ra-
tionale behind Morse theory, let's look at a simple and classical example in matics, a torus

M tangent to the plan® as shown in figure 3|1. Analogously to the mountains above, suppose

Figure 3.1: Torus M tangent to the planeV’ [Edelsbrunner and Harer,|2010]

the torus is completely covered in clouds up to the grolndinstead of standing above the
clouds, we go stand below it and while the clouds rise to a certain hejghpart of the torus
M, is revealed. The part of the torus becoming visible is defined as the:

Definition 3.1 (Sublevel set) A sublevel sef\/, of functionf : M — R is the subsef\/, =
M|f_1(_007 CL].

We definef : M — R as the height abovE and consider the topology af,:
1. Ifa<0=f(u) = M,=2.
2. If f(u) <a< f(v) = M, is topologically equivalent to a 2-ball, see figure|3.2 left.

3. If f(v) < a < f(w) = M, is topologically equivalent to a cylinder, see figure|3.2
middle.

4. If f(w) <a < f(z) = M, is topologically equivalent to a torus with a disc removed, see
figure 3.2 right.

ol

. If f(2) < a = M, is topologically equivalent to a full torus.
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(a) A 2-ball. (b) Acylinder. (c) A torus with a

circle missing.

Figure 3.2: M, with increasing level ofa [Edelsbrunner and Harer, 2010].
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Figure 3.3: ‘Constructing’ M, from bottom to top, based on [Edelsbrunner and Harer| 2010] .

As we saw above the topology 8f, changes at the points v, w andz, i.e. the critical points

of f. This is intuitively understandable: the shapel@f only ‘really’ changes when the rising
clouds reveal a new structuré - 2), a “mountain pass”X — 3 and3 — 4) or rise above the
complete structurel(— 5). What is true in this specific example of a height function on a torus
is true in general, bringing us to:

Theorem 3.1(Classical Morse Theory, part.ILet f : M — R be smooth and let < b such
that f~![a, b] is compact and contains no critical points pf ThenM,, is diffeomorphic ta\z,.

What happens at the critical poinf$u), f(v), f(w) andf(z)? As visualized in figure 3|3, this
depends on the critical point in question:

1 — 2 : ‘attaching’ a O-ball to the (till than empty)/,,.
2 — 3 : attaching a 1-ball td/,.
3 — 4 : attaching a 1-ball td/,.
4 — 5 : attaching a 2-ball td/,.

For simplicity of exposition and because we don’t need more we confirselves tol/ = R¢.
The ‘type’ of critical point influences how the topology changes. A 8tep in formalizing this
is explicitely defining a:

Definition 3.2 (Critical point). For function f over R% and pointp € R¢, p is critical if

vzf(p) -

Remembering that tHdessian matri¥ s is the matrix of second derivateét; (z) = d*f /dz;dzj(z),
we can write:

Definition 3.3 (Order of a critical point) Critical point p has orderk if H;(p) has exactlyk
negative eigenvalues. This means intuitively that therekag@ections to go from the critical
point in descending direction.
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Example 3.1.for ann-dimensional space minima have order 0, saddle points order 4 il
and maxima ordet..

In 2D, like the surface of our torus, there is one saddle of order 1k lag@in at the list
of changes when the critical point of our example torus was encountéredems that when
the rising cloud level meets a critical point of ordeer a k-ball is added to the topological
structure. But this rule is too simple, consider for example the continuoustynded torus
shown in figure 3.4. Near the critical point the torus is locally approximated bf(z,y) ~
(r —wh)3+ (y — w;)2. From the figure we can already see that the topology doesn't change,
which is confirmed ‘by a completely zero Hessian determinant. Of course thidejsandent of
coordinates used, as elementary matrix operations on the Hessian cargedhe determinant

value. A zero Hessian can also occur when critical points aren't isolededeach other. This

Figure 3.4: Continuously deformed torus, based on [Edelsbrunner and Haer, 2010].

happens for example if we give the torus above a slight push such tals ibf its side. On this
fallen torus there is an entire circle of minima and maxima with zero Hessian. Tinlseceeen
by changing to polar coordinates and noting #Atr, 0) /06 = 0V 0, creating a zero column in
the determinant and thus a zero Hessian. Although the topology changesibissible to say at
which point. Therefore, it makes sense to look onlyan-degenerateritical points, meaning
thatdet(H(p)) # 0. Later on, also another property will be required: all critical points rieed
have distinct function values. Functions with these desirable properdeated:

Definition 3.4 (Morse functions) A Morse function is a smooth function on a manifofd;
M — R such that (i) all critical points are non-degenerate and (ii) the critical gsihave
distinct function valu

Morse functions have several nice properties:
1. they lead to the complete classical Morse Theory (part Il follows shortly

2. they form an open dense set in the space of all proper smooth funetitnappropriate
topology, so any proper smooth function can be approximated by a Mansédn;

3. ifafunctionf’ is close enough t¢ is some topology, thafi and f' have the same smooth
topological type.

1Sometimes the second condition is dropped but in this thesis it will alwayscpsgred.
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Critical values obtained by Morse functions describe or and how the tgpalba manifold
changes:

Theorem 3.2(Classical Morse Theory, part llI)Let f be a Morse function with < b such that
f~![a, b] is compact and contains one critical poinbf f with order k. ThenM, is homotopy
equivalent tal/, with a k-ball attached along its boundary.

Let us pause here for a moment and realize the importance of MorseyTHeorm very
general class of functiongit describes precisely when the topology is constant as well as when
and how it changes. In the context of large scale structure the cosnalldgitsityp is (certainly
for all practical purposes) a Morse Function. Consequently, Mohs®fly describes exactly its
topology i.e. the shape of cosmological structure! For the rest of this segg@ssumeg to be
Morse. At any non-critical point the gradient defines a preferregction and by following this
direction we can define:

Definition 3.5 (Integration lines (or field lines))An integral line (or field line) is a curv&(t) €

R? such that L
_v, 3.1
i f (3.1)

Integral lines are defined for alland their origin and destination are written &isn;, ., L(t)
andlim;_, o L(t).

Example 3.2. The integral lines of the torus are shown in figure 3.5.
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Figure 3.5: [Edelsbrunner and Harer, 2010] Our torus with the four irdétines that end at the two saddles.

For the application of our thesis, we are interested in astronomical density &éied not
so much in a torus. Therefore, the top-left panel of figure 3.6 showmtkgral lines on an
astronomical density field. Integral lines have several conveniepepties:

Properties 3.1(Integral lines of Morse functions)

1. The origin and destination of integral lines are critical points.

2. Integral lines are ordinary differential equations. From their existeaand uniqueness
theorems it follows that two integral lines passing through different pgirdaed ¢ are
either the same of fully disjunct, except perhaps at their origin and destmatio
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3. Itfollows from previous properties th& is completely covered by distinct integral lines,
except perhaps at critical points.

These properties allow us to divide space in regions whose integral Bnegle same origin
or destination:

Definition 3.6 (Ascending/descendingmanifold). The stable manifold of a critical poiptof f
is the point together with all non-critical points whose integral lines eng &s f (p) > f(x)Vz
in the stable manifold, it is often called the descending manifold. Analogouslynstable
manifold of a critical poinip of f is the point together with all non-critical points whose integral
lines originate ap. As f(p) < f(x)Vz in the unstable manifold, it is often called the ascending
manifold.

If fis defined oveR? and it has critical poinip of orderk, than the Hessian hasnegative
andd — k positive eigenvalues thus the descending manifold has dimensiad the ascending
manifold dimensioa — .

Example 3.3. Consider a Morse functiorf defined ovelR? and a critical pointp of order k,
than:

e If £ = 0, an ascending manifold @fconsist of a 3D space (a ‘void’), whereas a descend-
ing manifold ofp only consists of the 0D point itself (a ‘node’).

e If £ = 1, an ascending manifold qgf consist of a 2D subspace (a ‘walls’), whereas a
descending manifolds pfconsist of 1D subspaces (a ‘filament’).

e k = 2resembles thé& = 1 case with the dimensions of the ascending and descending
manifolds interchanged.

e k = 3 resembles thé& = 0 case with the dimensions of the ascending and descending
manifolds interchanged.

The set of ascending or descending manifolds together divide the étineensional man-
ifold in O till d-dimensional regions called the:

Definition 3.7 (Morse complex) The Morse complex of Morse functigris the set of ascending
or descending manifolds.

The top-right and bottom-left part of figure 3.6 show the descendimmpotisely ascending
2-manifolds of the 2D density field. Here we see how Morse Theory appliessmology. The
Morse complex of the ascending manifolds naturally divides space in laigg 2D regions,
which intersect at the 1D medium density filaments, which in turn connect OD degsity
nodes. The extension to 3D space is straight forward. Thus, if the d¢ogival density field
would be a Morse function the morphological division in voids, walls, filamemi nodes
follows automatically. Of course there is no guarantee the cosmologicaitydémsction is
Morse, but as the set of Morse functions is dense we know for sumitoe approximated
arbitrarily well by a Morse function.

It should be noted that the Morse complex in some exceptional caseselsdial. A math-
ematical compl&must satisfy that every subspace of an element is contained in the complex.
For Morse functions this doesn’t necessarily have to be the caseidéofsr example the de-
scending 1-manifold of the upper saddilen figure/ 3.5. It reaches down to the lower saddle

2Formally defined in definition 3.15.
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Figure 3.6: From density field to its Morse complex [Sousbie, 2011JA 2D density field with its gradient (top left), its descenglin
2-manifolds (top right), its ascending 2-manifolds (bottaft)land its Morse-Smale complex (bottom right). Criticalmsiare
indiceated by red (maxima), green (saddle points) or blue (n@hi The three pink lines on the top left are three integra&slin
On the bottom right the descending/ascending 2-manifoldsbatinded the white/black lines. The intersection betweegda
descending and blue ascending 2-manifold is a 2-cell shoywarle and the intersection between the green descendimanifold
and previous blue ascending 2-manifold is a 1-cell shown llowe

but the latter in not a stable 0-manifold and thus (one) of its endpoints is nobfpie set of
descending manifolds. The problem is caused by a degeneracy in thergridow: an integral
line both begins and ends at a saddle of the same order or equivalenihtetii@l line between
v andw belongs both to the descending 1-manifolduofind the ascending 1-manifold of
To avoid these situations, integral lines of ascending and descendingoidarshould only in-
tersect transversely, where ‘transverse’ is the opposite of ‘tangeet’ when two transverse
lines cross each other they penetrate and do not only touch, makingai&at lines in which
direction they continue. Adding this conditions to Morse functions, we get:

Definition 3.8 (Morse-Smale functions)A Morse-Smale function is a Morse function whose
ascending and descending manifolds intersect only transversely.

Under the assumption of transversality, the intersection of an ascepdirapifold and a de-
scendingz-manifold has dimensiomin(p, ¢) or is void and we can define a:

Definition 3.9 (Morse-Smalé:-cell). A Morse-Smalé-cell is the non-void intersection of/a
ascending manifold with g-descending manifold with dimensién= min(p, ¢). Integral lines
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from descending/ascending manifolds all have the same origin/destinatisrintiegral lines of
a Morse-Smalé-cell have all the same origin and destination.

The set of allk-cells together defines the:

Definition 3.10 (Morse-Smale complex)The Morse-Smale complex of Morse-Smale function
f is the set of alk-cells of f.

A Morse-Smale complex is a proper mathematical complex and solves the proldesn-
countered in the torus above: the boundary of every descending akisifa union of stable
manifolds of lower dimension. The Morse-Smale complex of a slightly pertudred is shown
in figurel 3.7 and the Morse-Smale complex of the density field is displayed iroth@f right
of figure/ 3.6.

Figure 3.7: The Morse-Smale complex of our slightly disturbed torus[Edésbrunner and Harer,|2010].

3.2 Discretization: simplicial complexes

Many datasets in astrophysics, under which galaxy catalogues studesdahe not continuous
but discrete data sets. The simplest way to transform the ideas developesi far the con-
tinuous case to the discrete case is to switch from continuous to discreteggpdloere are
many ways to represent discrete topological spaces, an intuitive onémple slecomposition
in pieces which form aimplicial complex the main object of study in this section. On simplicial
complexes a discrete version of Morse Theory can be defined, whichecased analogously
with continuous Morse Theory and will be developed in the next section.

We begin where we should begin: with a set of discrete paigts,, ..., u;, € R?, each
with weight A\g, A1, ..., \x € R. Combining the set of discrete points with weights gives a
pointz = Z§:0 Aiu;, which is called araffine combinatiorof « if >, \; = 1. The set of all
affine combinations is thaffine hull Depending on the choices of the coefficients, some affine
combinations might be analogous whereas other might really differ. To meskentine specific
we define:

Definition 3.11 (Affine independence)Consider two affine combinations = > A\;u,, and
y = Y pu;. Two affine combinations = > A\ju, andy = > u,u,; are the same= \; = p;
for all i. Thek + 1 pointsu; are affinely independert thek vectorsu; —uo with j € {1,..., k}
are linearly independent.
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In R¢ we have at most linearly independent vectors so at madst- 1 affinely independent
points. An affine combination is calledanvex combinatioif all A; > 0. The convex hull
(conv) is the set of all convex combinations. We use the convex hull toeddfe basic elements
of this section, the:

Definition 3.12 (k-simplex) A k-simplex is the convex hull &f+ 1 affinely independent points
o = confug, uy, ..., ux }. In other words, &-simplexo is the convex hull spanned hy.

Just as in linear algebra a set of vectors spans up a vector spatefafimely independent
points spans up simplex. Consequently, simplices can be seen as the elgimgidarg blocks
of topological structure. Some important properties of simplices are:

Properties 3.2(Simplex related definitions)

1. A non-empty subset of vectors spans a subspace and analogsuslget of points span
an subsimplex called a face. A face is proper is the subset isn't the ertir€ maversely
o is the (proper) coface af, sometimes denoted as< ¢ with a strict inequality in case
of a proper (co)face.

2. As we will need them often, faces and cofaces of one dimension lowagher hhave
obtained their own name: facets respectively cofacets.

3. A set ofk + 1 elements hag@**+! subsets including the empty set (all elements can be
switched on or off) thus has2**! — 1 faces. It is said that has dimensiork.

4. The boundary of, bd(c), is the union of all proper faces. The interior of int(c), is
everything else, i.e. ifw) = o — bd(o).

Example 3.4(Basic simplices) Figure[3.8 shows some basiesimplices. From left to right: a
vertex ¢ = 0), aline (¢ = 1), triangle (¢ = 2) and a tetrahedroni = 3). Clearly, a line has
22 — 1 proper faces (its vertices angl), a triangle2? — 1 (three vertices, three lines amm), etc.
The boundary of a tetrahedron consists of all the vertices, lines andgiean The remaining
‘inside’ is its interior.

Figure 3.8: Basic simplices.

A set of simplices can form a:

Definition 3.13(Simplicial complex) A simplifical complex is a finite collection of simplicks
such that:
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l.ifceKandr<o=rT1¢€K;
2. ifog,01 € K = 09N oy is either empty or a face of both.

Example 3.5. Figure[3.9 shows some valid and invalid simplicial complexes. The invalid com
plexes have either incorrect intersections or missing faces.

o h
-_4‘} E

L} L]

valid simplicial complex invalid simplicial complex

Figure 3.9: Example of valid (left) and invalid (right) simplicial comp lexes[Sousbie, 2011].

Some important properties of a simplicial complex are:

Properties 3.3(Simplicial complex related definitions)

1. A subcomplexX is a simplicial complex. C K. Three specially named subcomplexes
are:
e A full subcomplex: all simplices ik spanned by vertices ih.

e A j-skeleton: all simplices of dimensigror less, i.e.K) = {¢ € K|dim < j}.
The 0-skeleton is sometimes named a vertex set.

e A star subset of simplex is its set of all cofaces, 8t= {oc € K|r < o}. The
closed star of- is the smallest subcomplex that contains the star, which is obtained
by adding all missing faces from the star.

2. The dimension ok is the maximum dimension of any of its simplices

3. The underlying space @, denoted with K|, is the union of its simplices together with
topology inherited from the ambient Euclidean space.

This can give us a:

Definition 3.14 (Triangulation of topological spacg). A simplicial complexXs together with a
homeomorphism betwe&hand |K|. A topological space is triangulable if it has a triangula-
tion.

For mathematical purposes it is sometimes easier first to construct a comgleactip and
consider how to put it in Euclidean space later, if at all. This warrants flevimg definition:

Definition 3.15 (Abstract simplifical complex) An abstract simplicial complex is a finite col-
lection of setsA such thain € Aandfg C a = (6 € A.
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The Geometric Realization Theoreﬂﬁdelsbrunner and Harer, 2010] guarantees that every
abstract simplicial complex of dimensiahcan be realized iR24*+!. A nice example of a
simplicial complex is the Delaunay triangulation, often constructed via the dordiagram.
Both to illustrate the concept of triangulations and given their importance laterthis thesis,
the next section is devoted to them.

3.3 Voronoi diagrams and Delaunay triangulations

Suppose we have a set of points and we want to know the region cloge$n 2D these regions
can be obtained by first connecting all points and subsequently dravéngetpendicular bisec-
tors of these lines, stopping at the intersection with another perpendicsgatdr. This gives us
a diagram as shown in figure 3.10. This process can be generalizedhév Highensions, giving
us a:

Definition 3.16 (Voronoi diagram [Okabe et al., 2000; Voronoi, 1907, 1908Bt uq, ...u, be a
finite set of pointsS’ C R9. Each pointu; has a Voronoi cellV,,, associated with it, defined as
that part of the space which is closest to it, il6,, = {z € R?|||z — u|| < ||z — v|,v € S}.
The set of all Voronoi cells associated with the pointsi € {1, n} is the Voronoi diagram.

Figure 3.10: Example of a 2D Voronoi diagram [Edelsbrunner and Harer, 201(. The area inside each cell is by definition
closest to its center point.

The above can be generalized by giving each pojr# real weighto,,, and defining a dis-
tance functiorr, (). For example, when the points represent galaxies their weight carsegpre
their mass and the distance function their domain of strongest gravitatiosaktiattr. These can
be used to define theeighted Voronoi diagramwhose cells are defined as the regions of space
closest to au; € S using the distance function instead of Euclidian distance. Some useful
properties of weighted Voronoi diagrams are:

Properties 3.4.

1. Every point inR? lies closest to some point ifi, thus the Voronoi diagram covers the
entire space.
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2. Thed-dimensional inside of a Voronoi cell is defined by the region closeshéood the
pointsu; € S. The(d — 1)-dimensional boundary of two cells is equally close to two
pointsu; andw; € S. Two boundaries intersect at(@ — 2)-dimensional region closest
to three pointsy;, u; anduy, € S, etc. In case of the 2D example of figure 3.10, two cells
define a Voronoi segment at their intersection and three cells a Vox@nt@x.

The last of the properties above states thatdimensional Voronoi region lies closest to 1
point, a(d— 1) dimensional Voronoi region lies closest to 2 points, and so on till a O-dimealsio
region is defined byd + 1) points. Consequently, in general b+ 2) or more Voronoi regions
have non-empty intersection; it only happens wiién+ 2) or more points lie on a common
(d — 1)-sphere. In this case the point set is calisdienerate Probabilistically, the change of
this happening is zero, as(d — 1)-sphere has measure zerodilimensional space. When a
point set is non-degenerate the points are said to lggireral positionwhich we will assume
for the remainder of the section unless mentioned otherwise.

A dual triangulation can be obtained by connectinglallimensional points whose Voronoi
cells meet along & — 1)-dimensional boundary, giving us the:

Definition 3.17 (Delaunay triangulation [Okabe et al., 2000; Delone, 1934t uo, ...u,, be a
finite set of pointss C R? in general position with associated Voronoi celig . Connecting all
the d-dimensional points whose Voronoi cells meet alorid & 1)-dimensional boundary gives
the Delaunay triangulation. This triangulation is the dual of Voronoi diagram

The Delaunay triangulation for the Voronoi diagram above is shown imdfi§ul1l. Named after

Figure 3.11: Example of a Delaunay triangulation [Edelsbrunner and Haref, 2010]. The triangulation is the dual of the
Voronoi diagram of figure 3.10.

its inventor, the Russian mathematician Delone, the triangulation has somepregtities:

Properties 3.5.

1. Delaunay cells are clearly a convex combination of points and thus destmibus the
Delaunay triangulation is a simplicial complex.
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2. Even stronger, amongst all possible triangulations, the Delaunay calis minimal size
and elongation.

3. It follows directly from the definition that the circumcircle of the Delaunay deesn’t
contain any other points besides its vertices. The center of the circumisiraleertex of
the Voronoi diagram.

Here, it is important that the point set is non-degenerate. To undenstay)ctonsider the
2D figure/ 3.12. On the leftd + 2) = 4 dotted Voronoi segments meet at a common vertex,
resulting in an ambiguity in the definition of the Delaunay triangulation. An arlyitsanall
perturbation of any of the points brings the point set in general positidsalve the issue. Just
as the Voronoi diagram, the Delaunay triangulation can be generalizeddamhted variant.

3.4 Discrete Morse Theory

In previous sections we developed and ex-

amplified discrete topology, we now continue

with discretizing Morse Theory. A funda-

mental part of continuous Morse theory are I SR
continuous Morse functions, so our first dis- P N
cretization step is discretizing them: S

Definition 3.18 (Discrete Morse Function) e
Let K be a simplicial complex defined over

R. A discrete functiory : K — R assigns

a real valuef (o) to each simplex;, € K.

The functionf is a discrete Morse function ifrigure 3.12: The importance of a non-degenerate point set

and onIy if for all oL € K: [Vegter, 2012]. The degenerate point set (left) results in a degen-
erate Delaunay triangulation. A non-degenerate pointregit]

. results in a valid Delaunay triangulation. The dotted liaes
1. there exists at most one facef 1 of \,ron0i segments. v ang

o, such thatf (o) < f(ak_1);

2. there exists at most one cofackt ; of
Ok such thatf(O'k) > f(ﬂk+1);

3. all critical points have distinct function
values.

Example 3.6. Figure/ 3.13 shows a simple example of a Morse and not-Morse function.

In words, the non-zero Hessian conditions is replaced with a conditioneoveiie of the
simplices: a simplex has a higher value than its facets and a lower values thafladsts. Only
one exception is allowed in each ca1998] showed thatadjtion 1 or condition
2 of discrete Morse functions can be satisfied for a given simplex. ltealccondition 1 and 2
can be seen as a single condition with an ‘either-or’ construction. Althoadtaps not directly
obvious, these conditions assure a preferential discrete gradier{tédl®e defined shortly), just
as the non-zero Hessian did in the continuous case. Clearly, whenfeogmtél direction can
be defined the simplex is critical:

3Sometimes the third condition is dropped but in this thesis it will always benestju
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0 ]

Figure 3.13: Two discrete functions[Forman, 1998].The left function is not Morse ag~(0) violates rule 2f ~1(3) violates
rule 1. The right function is Morse.

Definition 3.19 (Critical k-simplex) A k-simplexoy, is a critical k-simplex of discrete Morse
function f if:

1. there exists no facet;_, of o, such thatf (o) < f(ax—1); and
2. there exists no cofacgj;1 of i, such thatf (o) > f(Bk+1)-
A critical k-simplex hasrder k.

Note that this definition introduces an asymmetry not existing in the continuoaslca$e
continuous case a minimum and a maximum are both points in space. Here in tetedisse,
a minimum is a critical vertex (0-simplex) whereas in 3D a maximum is critical tetrahed
(3-simplex). As a direct consequence, wheis a discrete Morse function it doesn't follow
automatically that- f is a discrete Morse function as well. Howeverf over the dual complex
is Morse and defines the same topology.

If a Morse function isn'’t critical, there are two possibilities left: simplexhas (i) a facet
with a larger value or (ii) a cofacet with a smaller value. In either case,farnerdial relation is
established. Using this, we define a:

Definition 3.20 (Discrete gradient vector field)-et f be a discrete Morse function of simplicial
complexk. Then a discrete gradient vector field is defined by coupling simplexasdiegt
arrows (also called gradient pairs) in the following way:

1. If simplexsy, has a lower valued cofacet 1, then[oy, a+1] form a gradient arrow.
2. If simplexoy, has a higher valued facet, 1, then[oy, 5x—1] form a gradient arrow.

By convention the lowest-valued simplex is the tail and the highest-valuelésiimphe head.
Therefore, a discrete gradient actually point in opposite direction of itdinanus counterpart.

Example 3.7. An uncomplicated example of a discrete gradient is shown in figure 3.d4an
more elaborate example is shown on the top of figure|3.16.

To define discrete Morse theory in analogy with its continuous countesgestill need the
discrete equivalence of a sublevel set:

Definition 3.21 (Discrete sublevel set) et K be a simplicial complex with discrete morse func-
tion f and denote for simplex, its facets with3;_;. Consider a threshold level € R, then
the discrete sublevel set is defined as:

K= U B (3.2)

oL€K, f(or)<cBr-1<0)
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Figure 3.14: An example of a discrete gradient [Forman, 1998]An uncomplicated density field over a simplicial comples (left)
and its discrete gradient (right).

In words: K (c) is the set of all simplices on whigh< ¢, as well as all of their faceg<’(c) is a
full subcomplex of<.

Nicely, [Forman, 1998] showed that to check whether a simpl&ith f(3) > ¢ might be
in K(c) because there is a simplexwith 3 < «, it is enough to consider all facets of

The first part of continuous Morse theory states when the manifoldsiog risiblevel sets
are diffeomorphic, i.e. ‘not essentially different’. For an equivaléstiette notion we require:

Definition 3.22 (Simplicial collapse) Let K be a simplicial complex with simple, and one

of its cofacetsy, 1 in K. If o is not the face of any other cell besides,; and simplicial

complex, = K — (o), U agy1), we sayK can be collapsed ontd. If K can be transformed
into L by a finite sequence of such operations, we wisite\, L.

In essence, simplicial collapse allows simplices to be reduced to their mostiaksem-
ponents. Figure 3.15 illustrates simplicial collapse: on the left the simplex tiogsis triangle
with boundary is collapsed to a point. By analogous operatios, the figutleeotight can col-
lapsed to a circle.

AN\ N\

(a) Stepwise simplicial collapse from triangle to point. (b) This complex can be collapsed to a cir-
cle.

Figure 3.15: lllustrations of simplicial collapse [Forman, 1998].

Using, simplicial collapse, we can state the main theorems of discrete classicse Whe-
ory:

Theorem 3.3 (Discrete classical Morse Theory, part Det K be a simplicial complex and
a < b € Rin the range of a discrete Morse functigitK). If [, b] contains no critical values
of f, thenM (a) N\, M (b).

Theorem 3.4 (Discrete classical Morse Theory, part.lConsider the same setup as in part
1 and letoy, be a critical simplex of ordek with f(o) = ¢c. Ifa < ¢ < band f~([a,b])
contains no other critical simplicies besideg, than M (b) is homotopy equivalent td/(a)
with a k-simplex attached to its boundary.
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Analogously with the continuous case, at every non-critical simplex theedésgradient
describes a preferred direction. By following this direction, we obtain therete variant of the
integral line:

Definition 3.23 (Discrete integral line or V-path)A discrete integral line, in literature called a
V-path, is a strictly decreasing alternative sequenceiof- 1)-simplicesa;, ; and k-simplices
3] of the form:

a27 /818+17 allw ﬁli+17 ) O‘Z? /BZJrl

where each paifaj, 5}, } form a gradient pair andvj*' is a facet ofg; _ ;.

Intuitively, a V-path just consists is following the arrows of the discreteligrat, see figure 3.16
bottom left. This allows us to divide discrete space in regions which haveathe srigin or
destination:

Definition 3.24 (Discrete ascending/descendikgnanifold) The discrete stable or ascending
manifold of critical k-simplexoy, of discrete Morse functioyi over simplicial complexs is the
set ofk-simplices that belong to at least one V-path with destinatipnThe discrete unstable
or descending manifold is the set/eBimplices reached by at least one V-path with origin

Note that a discrete-manifold only containg-simplices, which leaves holes between them and
makes it to define manifold intersections. Therefore, the following definitiohrisore practical
use:

Definition 3.25(Extended discrete ascending/descendimganifold). An extended discrete as-
cending/descendingmanifold discrete is an ascending/descendinganifold together with its
cofacets/facets and their extended discrete ascending/descéndiagifolds.

The bottom right of figure 3.16 shows an (extended) ascending mandfotsif example gradi-
ent field. The set of ascending/descending manifolds forms the:

Definition 3.26 (Discrete Morse complex (DMC))The discrete Morse complex (DMC) of
Morse functionf is the set of its extended ascending/descending manifolds.

Contrary to the continuous case no transversality conditions need to beeidy@ssthis is au-
tomatically taken care of by the tessellation itself. This allows us to define direetlgisicrete
Morsek-cell and makes the introduction of a discrete ‘Morse-Smale’ complex Bupes.

Definition 3.27 (Discrete Morsek-cell). A discrete Morsek-cell is the intersection of two ex-
tended ascending and descending discrete manifolds.

3.5 Practical implementation

How to use the above practically? The point set of a N-body simulation odehaity data cube
can be triangulated with a Delaunay triangulation, giving a simplicial complex. NFoody
simulations the density at each point can be computed using a scheme like DITEEdtion
4.2). In the density case the density at each point is already given. ketttisn we will discuss
how to go from a density at each point to a discrete Morse density functientbe whole
complex. And how to go from there to a valid discrete gradient.

Discrete Morse functions have three restricting properties (cf. defir8ti8). (i+ii) for each
simplex at most one facet may have a higher function value or at most emmetomay have a
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Figure 3.16: Example of a discrete simplicial complex with discrete graéénts and extended manifolds [Sousbie, 2011}

2D simplicial complex with a Morse function (top left) and itsroesponding discrete gradient (top right), with the catisimplices
color coded red (triangles), green (segments) and blueiges)t The gradient results in two V-paths, two of them am@shin

pink (bottom left). A corresponding ascending 2-manifoldoisned by the blue vertices (bottom right), combined with theeg
segments and red triangles it becomes an extended ascendfiagifdid.

lower function value and (iii): all critical simplices should have differemtdiion values. Note
that the last constraint is in practise always satisfied for cosmologicaltgduactions. Even if
the function itself doesn’t satisfy the constraint, an infinitesimal changernsigevalues will
make it satisfy the constraints without affecting the physics. To satisfy ttecfinstraint, the
easiest and surest way to implement a discrete Morse function is to ak$aceis have a lower
value and all cofacets a higher value. l.e. to make all simplices critical. To desstart with
known densities at the verticeg(6)) and extend the discrete function to higher simplices by
giving it the density value of its highest valued face plus a little bit extra. Tocpidllify as a
Morse function the exact value of a little bit extra is not even important, it caplg be an
infinitesimal amount. Concretely, this gives us the following receipt to build a discrete Morse
functionpp:

B P(Uk) fork=0
pp(ok) = {max (pp(facetoyr])) + € X pp(verteXoy]) fork >0 &
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Note that the receipt guarantees that if every vertex has a differasitgeéhe same holds for all
higher dimensional simplices in the triangulation.

A discrete Morse function built by the definition above can be said to be stimtfgasing
along increasing chains of cofaces. Under this assumption, the definitiodiscrete sublevel
set (cf. definition 3.211) can be simplified: when a simplex is in the discretevailslet its faces
are in automatically as well. This simplified discrete sublevel set is called a:

Definition 3.28 (Filtration). Let f be a strictly increasing Morse function on simpl&xwith m
simplices. Starting with an empty set, we add the simplicés ohe by one in order increasing
function value. This gives the following chain of nested subcomplexes:

o= KyCK C..CKp=K (3.4)

where due to the condition that the Morse function is increasing, écis a full subcomplex
of K;+1. Such a chain of subcomplexes is called a filtration.

A filtration will play an important role in building the DMC as we will see in section F6r
the moment, we set the filtration aside and continue with defining a suitable digcaetient.
Actually, from the function definition above a discrete gradient follows qguturally: many
simplices have facets or cofacets which differ only by an arbitrarily smallusutno As this is
an arbitrarily small amount, the function values at such a facet-cofacetgrabe interchanged
without changing the physics. Interchanging the density values automaticakes the pair
non-critical and allows them to be combined by a gradient pair. Doing salfeimplices in
the triangulation gives (quite probably) many gradient pairs, of which safntleem will form
V-paths. The procedure above is illustrated in figure 3.17. It shouldtesirthat there are many
ways to implement a discrete Morse function and gradient field [LeWin@Q;mi etal., 2004].
Although the method explained here is not necessarily mathematically optimal sitagdoee
rather well with the physics and is computationally achievable.

3.6 Towards the persistence diagram

3.6.1 Cycles and persistence

The DMC provides us with a natural way to divide a point set (of galaxiea)cosmic structure
of voids, walls, filaments and nodes; providing us with a mathematical handieese mor-
phological components. Large galaxy catalogues contain millions of galamgsheir Morse
complexes will be enormous. For such large complexes, a simple descriptibea DMC is
not very insightful and a more systematic way to explore the structures &M@ is required.
This section focusses on two topics: (i) identifying the relevant featuitbsrma DMC and (ii)
identifying their relevance. Regarding the firshmologyhelps out by defining equivalence
relations on chains of simplices. Homology is mathematically rather involved foineria this
section we will largely gloss over it. The reader who wants to know the detaiefésred to
appendix A.2. Using homological equivalence relations, chains of simplibeh make up the
same structure in the DMC are identified. Such chains of simplices are named:

Definition 3.29 (k-cycles) Let K be a simplicial complex of dimensiah A k-dimensional
feature within such a complex is calledcecycle, with0 < k < d. In particular a:

0-cycle is an independent component, i.e. a set of simplices not linked to thd thstammplex.
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Figure 3.17: An example of a discrete gradient [Sousbié, 2011JA simplex with values for the vertices (top left), the resudti
values for the higher dimensional simplices following theadiggion of the discrete Morse function presented here (igigt) and

its stepwise creation of a discrete gradient throughousitimglex (bottom). Stepwise explanation of the discrete gradireation:

(i) initial field; (ii) the low-valued not connected vertigd and 2 are initially critical (blue dots); (iii) these vieds differ ane
amount with vertices a and b and thus are paired, vertices 4atah’t differ ane amount with any segment and thus remain
critical; (iv) vertices 5, 6, 7 and 8 are all paired with umeali segments with which they differ the smallestmount; (v) segments
a, b and c are already paired; (vi) of the segments d till h setgrerf and g turn out to be critical (green lines), the othereve
already paired; (vii) from the segments i till o, those who ever paired yet are paired with the triangle with which théfed the
smalleset amount; (viii) all triangles safe for D and H were already pdjrwhereas D and H turn out to be critical. The remaining
gradient field shows nice V-paths from triangle D to vertexnd &om triangle H to vertex 2.

1-cycle is a tunnel, i.e. a set of simplices forming a loop with a hole in the middle.
2-cycle is a shell, i.e. a set of simplices bounding an emptier 3D volume.

An example of each of thek-cycles
named explicitly in the definition is shown creation  destruction

in figure/ 3.18. As this figure also showss; ] o—P ® oI

[
cycles can be created and destroyed. To urlao(é;;.\g;gm) S €« €,

@

derstand cycle creation and destruction, let's

consider the simple 3D simpleX shown in A A

figure3.19. It consists of verticest, u,vand (o). W 5, Y A

w together with some of its cofacets. Suppose

f is a Morse function defined ovés follow- vl A A

ing the function prescription of section 3.5. In  (shell)

this prescription, a given simplex has always a i " =
higher value than its facets and a lower Valq%ure 3.18: Cycles, their creation and their destruction
than its cofacets. Using we can build a fil- [Sousbie, 2011].

tration in which the simplices enter one by

one as we take an increasing sublevel set of the furfctidine figure shows tile by tile the

*This description is called thecremental Betti algorithpcf. [Delfinado and Edelsbrunner, 1993].
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Figure 3.19: Construction of a simplicial complex, based upon [Edelsbraner et all, 2002]. Using the filtration of a Morse
function f defined over simplicial compleX, the complex is constructed simplex by simplex. The introductf every new
simplex either creates a cycle or destroys it. The text belmon dile states the index of the simplex entering the filtratiad the
vertices of the simplex, followed by a plus for cycle creatiwm minus for cycle destruction. The last step is the addifdriangle

tuv which is hidden from view by the other triangles.

construction of the simplex. The text below each tile states the index of the siemtiening the
filtration, the vertices of the simplex and a plus for cycle creation or a minusyfde destruc-
tion. In the figure we observe the following:

1. Each vertex creates a new component (snapshots 0, 1, 3, 7 amddlthus increases the
number of O-cycles.

2. Each segment either merges two components thus decreasing the néibrogcles (2,
4, 8 and 12)r creates a tunnel and thus increases the number of 1-cycles (snemshots
13 and 15).

3. Each triangle either fills a tunnel and thus decreases the number ofek-¢gnapshots 6,
10, 14 and 16pr creates a shell and thus increases the number of 2-cycles (snapghots 1

4. And although not visible: each tetrahedron would fill a shell and thosedses the num-
ber of 2-cycles.

A critical k-simplex has ordek (cf. definition 3.19), so the above can be summarized as follows.
When a simplex of orde enters the filtration either (i) &-cycle is born or (i) a8k — 1)-cycle

is destroyed. Formulated inversely: eaakcycle is created by a-simplex and destroyed by a
(m 4+ 1)-simplex. Them-simplex which creates the component and(the+ 1)-simplex which
destroys it are together calledparsistence pailand their difference in fuction value is their
persistenceﬂEdeIsbrunner etal., 2002]. We are now in a position to concretely artbedirst
question posed in the introduction of this chaptehat is a feature? A feature of a smooth
manifold is ak-cycle. To answer the second questianjch features are relevantwe need to

49



December 2013 3.6. TOWARDS THE PERSISTENCE DIAGRAM

take a closer look at the concept of persistence. We note that in thesi@tabove persistence

is defined in an intuitive manner. Using homology, persistence can be diefioee rigorously.

We refer the reader interested in a more formal definition to appendix A.Z&s8ential part of
persistence is pairing. Whighn + 1)-simplex destroyed a cycle is obvious but it is not directly
clear whichm-cycle gave birth to it. For example, when a segment merges two components
there are two vertices involved and when a triangle fills a tunnel it involves tbegments, et
cetera. The most elementary rule is the:

Definition 3.30 (Elder Rule) Consider anm-cycle destroyed by atm + 1)-simplex. The
(m+1)-simplex is paired with the cycle’s unpaired-simplex which entered the filtration latest.
l.e. them-simplex which latest entered the filtration is paired first, thus the lowestgBlde
simplices live longest.

Example 3.8.Using the Elder Rule, persistence has a very intuitive interpretation. Cartsiee
the 1D manifolds A and B and their discretizations A’ and B’ on the top of fi§L2@, together

with a Morse density function defined on them. In 1D there are only two typemedegenerate
critical points: minima and maxima. Their pairings via the Elder Rule are ingidaat the top

of the bottom figure. The persistence of each pair is shown by the gneewmsa\We see that the
persistence of a pair clearly correlates with the relevance of a feature.

A B A’
2]
21
20
S S S~ SR ~ S e S r bbb b4

B)

=B

292 .- -9 - ;3
21 - - e oo T
P : :{ l . l‘i
2 i'— o L’. A o,

Figure 3.20: Visual illustration of persistence [Sousbie, 2011]Top: 1D functions A and B with their discretizations A’ and B
Bottom: Their minima (blue) and maxima (red), paired via the ERigle. The length of the green arrows indicates the persisten
of the feature.

The Elder Rule has one caveat: it allows pairing of completely disconneictglices, one
on one side of the density field and one on the other. In physical scerudtemn an additional
constraint is added: the simplices to be paired should be connected vidiengzath.

Now we can also answer the second question posed in the introduatidch features are
relevant? The relevance of a feature is directly related with its persistence. Logispemt
features are not so relevant whereas high persistent featuresrgnehevant.
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3.6.2 Simplification

To obtain a global view on the topology of the manifold less persistent fesatarebe taken out
by cancelling low persistence pairs, a process caliegblification. Persistence pairs are formed
by critical simplices with order difference 1. Thus in 3D three types ofigtnsce pairs can
be found: (i) a minimum with a 1-saddle forms a 0-cycle; (ii) a 1-saddle withsadtile forms
a 1-cycle and (iii) a 2-saddle with a maximum forms a 2-cycle. The three tyijpesrsistence

airs require different cancellation proceduﬁes [Gyulassy and ajﬂerOOS\; Gyulassy et al.,
2006], which we will discuss now.

Actually, the minimum-1-saddle and 2-saddle-maximum persistence pairsrareetsical
to each other and they can be cancelled in an analogous way. Theillatocerocedure
is shown in figure 3.21. At image (a) the twelve 3-simplices of the complextatfday the
cancellation of the saddle-maximum pair are colored. Image (b) showsshdd?es with its
surrounding maximan andn, wheres andm are scheduled for cancellation. Effectively, the
cancellation process can be visualized as mergingnd s into n. The resulting complex is
shown in image (c). We see that the yellow cell died in the process. All adsliscs that
originally flowed to maximumn are rerouted to maximum. This is examplified by the arcs
a1, as andag in image (b) rerouted as arés, by, andbs in image (c). Rerouting is practically
achieved by inversing the gradient flow betweerands. Image (d) shows that all other discs
and arcs of the original 12 cells are rerouted as well, making three moréadlsappear.

@ Maximum
& 2-Saddle
() 1-Saddle

O Minimum

(a) (b) () (d)

Figure 3.21: A saddle-max cancellation [Gyulassy and Natarajan, 2005Gee text for explanation.

Saddle-saddle cancellations are a bit more cumbersome, we illustrate it ggirey 3i22.
In analogy with the saddle-max case four regions are effected, bclafidgty of presentation we
show only one inimage (a). The other regions behave analogeysinds, are the two saddles
which are paired and simplified. This is achieved by rerouting all arcsiand @hich flow tas,
to t; and those flowing ta; to ¢. In the process some additional arcs are created, for example
the arch betweent; andt,. Due to simplification some existing cells are reshaped, as shown
in image (c) and (e) and (f). Due to the addition of new arcs, new cellsraegetl: in image
(a) we had 3 cells but in image (b) we have 4 cells. Image (d) shows the resdted cell. In
principle, saddle-saddle cancellations can extend the number of cells in@esosignificantly.
Nevertheless the manifold is simplified as the number of critical points desreageghermore,
these newly created cells will be simplified out in a later stage, when their exasraaired
with a saddle and cancelled.

It should be noted that not all persistence pairs can be cancelled. tadue-extremum
case problems occur when two integral lines beginning at a 2-saddle fldve teame maxi-
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(a) (b) (©) () (€ M

Figure 3.22: A saddle-saddle cancellation [Gyulassy and Natarajah, 2005See text for explanation.

mum or two integral lines from a minimum flow to the same 1-saddle. Cancellatior dii s

pair will leave the integral lines flowing to the 2-saddle without final destinationthe sec-

ond case integral lines flowing away from a 1-saddle won't have arnori§uch impossible
cancellations are callestrangulationsand an example is given in the left tile of figure 3.23.
In the saddle-saddle case another type of impossible cancellation migit seedhe right tile

of previous figure. Impossible saddle-saddle cancellations occur wivefl has exactly two
boundaries, one connecting the saddles to a minimum and the other connieetgagldles to a
maximum. Cancellation of the saddles will directly connect the minimum with the maximum.
If it would be done a cell calledouchess created and such cells are not allowed by the DMC.
Persistence pairs with impossible cancellations do occur in practise, buhtieber is quite

(a) Cancellation of the maximum 2-saddle pair will) Cancellation of a 1-
lead to a strangulation [Gyulassy and Natarajan,saddle 2-saddle pair

2005] will lead to a pouch
Gyulassy et al.,
2006].

Figure 3.23: Impossible cancellations.

limited. Forcing their cancellation and reconfiguring the manifold accordinfjgnonvorks in
practise [Sousbi@, Zohl].

3.6.3 The persistence diagram

For a large simplicial complex like cosmic structure, many persistence pairsenfitiund. For
each cycle dimension, the persistence pairs indicating the birth and death ofdle can be
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grouped together in a:

Definition 3.31 (Persistence diagram).et K be a simplicial complex of dimensiehwhere

a strictly increasing Morse functiori has paired cycles in persistence pairs. Consider a 2D
diagram with on the horizontal axis the birth éftycles and on its vertical axes the death of
i-cycles, withD < i < d. Than each persistence pair related teé-aycle can be represented by
a dot in the diagram with itg:-coordinate the cycle birth-value and itscoordinate the cycle
death-value.

Persistence diagrams have several interesting properties:

Properties 3.6.

1. As every cycle is born on a lower value than it dies, persistence dreyheave only dots
in the upper left half of the plane.

2. The diagonal is a birth=death diagonal: cycles born on their die at threesenoment, i.e.
they actually don't exist.

3. The orthogonal distance from a point to the diagonal correspondsthétipersistence of
the cycle.

Example 3.9. The left panel of figure 3.24 shows the persistence diagrams of digctet2
density functions A’ and B’ of figure 3.20. In a single glance it can be #es#m\’ has only one
relevant feature and B’ two.

A persistence diagram gives much information at a glance, but 2D diagnentsfficult to
compare visually. Therefore, sometimes a 1D summary can be very uskfaé ITD summaries
that will be often used are:

1. Betti numbers indicate the amount of cycles alive at a certain sublevel set. To be counted
as cycle living at a certain threshold levebf Morse functionp, it has to be born before
p = « and die after. In the persistence diagram, this corresponds exactly tquaees
resting on the diagonal at the threshold level. In 3D space there arettules dimensions
thus three Betti numbergiy, 51 and 2. Physically, they give respectively the number of
components, tunnels and shells as function.of

2. Lifetimes are directly related to persistence. A curve showing the number of cysles a
function of their persistence provides relevant insight in the presenloa@ lived (im-
portant) and short lived (less important) features. Such a curvespames to considering
an axis orthogonal to the diagonal. Mathematically, if we have a cyglavith birth
densityp, and death density, its lifetime L(py(ok ), pa(or)) is given by:

L(py(or), pa(or)) = pd\;;b

Given the large range of density values we will usually work in log-log diagg. In such
diagrams the distance to the diagonal corresponds with the birth-dedibrirac

Liog(po(ok); pa(ok)) = logm(pd)\ébgw(pb) (3.5)
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3. (Product) mean density curvesare relevant in the context of structure formation and
show the number of cycles as function of their density. This providesrrdtion about
the number of low density and high density cycles. In the persistence didgcrre-
sponds to considering an axis parallel to the diagonal. Mathematically, usrgathe
notation as with the lifetime curves, we get for the mean deddify(p,(ox), pa(ok)):

MD(ps(or), palor)) = (b + pa) /2
In the log-log diagrams we work with here, we use the product mean denstigah

M Diog(ps(03), pa(or)) = 5(1ogio(pp) +10810(pa)) /2 (3.6)
= log; (\/ Po - Pd)

The three 1D summaries are visualized on the right panel of figure 3.2d4sinological datasets

25 T T T T 25

[ L]
° ° ,Q’ ° Born before ® Q.’
20| . 1 20 - o a o
o Betti square
@ 151 1 G 15- J
< =
3 S % e
< < T W‘% &«S‘C
g 1ol 1 g1or | p=a &V 1
© 5 )
Died after a
p=o )
51 > A e 51 > A <R
B e %o z(\é’e(\
o birth=death diagonal -~ o’ Ve
0 , | 0 ,
[i] 5 20 25 0 5 20 25

10 15 10 15
birth density birth density

@) (b)

Figure 3.24: A persistence diagram.Left the persistence diagram of figure 3.20 and right itsei® persistence measures.

hundreds of thousands of cycles will be found. Putting them all in a diagyidl give a compu-
tationally very demanding point set. Therefore, in many situations belovisetse diagrams
will be transformed to 2D persistence histograms. We obtain histograms bygpattaster of
boxes over the diagram and place each persistence point in its cardg@spbox. Subsequently
the boxes are transformed to densities, i.e. to the number of cycles in eagebbpc. It
should be noted that the exact density depends on the chosen boxckemging from persis-
tence diagram to a persistence histogram has an additional advantagjetepee histograms
can be box-wise substracted from each other. This results in a pecsistgierence diagram,
showing where and how much two persistence diagrams differ. Physittalyower of such
diagrams is that it shows at a single glance which of the two density fieldslyimdethe per-
sistence diagram has more persistent structure.

Persistence diagrams are the culmination of this chapter. Founded on a ntathlyna
sound basis, they show all physical features and their relevance igla giance. Throughout
the rest of this thesis, we will use persistence diagrams and their 1D sumonaeg ¢o analyse
the topology of cosmic structure.
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Algorithms and software

Previous chapters described the cosmic web and a topological formalisaptiore the mor-
phology of the web. Building on the concepts developed there, this chaititekplain how the
topological formalism is technically implemented. The main output will be a Discretesi
Complex (DMC, cf. definition 3.26): a mathematical structure in which all thesyoidhlls,
filaments and nodes are identified in the form of simplices, the building blodtisafete topo-
logical space. The DMC simplices can be ordered based on density gaicte,an ordered
set is called a filtration (cf. definitian 3.28). The filtration serves as basigtermine which
simplices form a persistence pair (cf. section 3.6), i.e. a feature like a g@mpor tunnel. Per-
sistence pairs are the points of persistence diagrams, the main topologidaisdbesis uses
for analysis.

In the end we are after the influence of DE on the morphology of cosmidsteud herefore,
before topology comes into play, a first step is the creation of model wa&sarhich are ruled
by different forms of dark energy. Using the galaxy distributions (i.einfpgets) from such
simulations, two different approaches exist:

1. Based on the particle positions a DMC can be computed directly.

2. The particle positions can be used to compute the density field, which is shopke
regular grid. The DMC is computed on this regular grid.

The first method is fully adaptive to the density field: high density regionsamgled in more
detail. The second method samples space at regular intervals and thus Basamples in low
density regions. In general the output of both will be analogous, imilar. Both methods
will be considered at various stages in this thesis but with a preferen¢befsecond, as low
density regions will show the largest difference between DE models.

The sequence of steps above, from data generation to persistencangidgrm a data
pipeline. A schematic illustration of the pipeline is shown in figure 4.1. In thardigrom
left to right, the following algorithms and software packages are mentioned:

1. Physically realistic particle distributions are generated by V. SpringdBGET-2, with
dark energy models by P. Bos.

2. To generate a density field on a regular grid, we use DTFE versiotly R2\hd. Weygaert,
W. Schaap and M. Cautun.
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Regular Regular
density grid DMC
grid: DTFE & filtration

I\_/Iodel Persistence Data
universes: paring: analysis
Gadget Particle PHAT ¥

position
DMC & filtr.

Figure 4.1: Graphical overview of the data pipeline.

3. The DMC directly based on the particle positions is computed using P.\Paalag@ted
version of D. Morozov’s Dionysus. The DMC of the density case follfneg P. Pranav’s
implementation of P. Bendich’s ideas.

4. The persistence pairs are identified using U. Bauer's PHAT, withtatiaps of P. Pranav.
5. Data analysis is performed with custom methods or Matlab.

In the sections below, each element of the data pipeline is considered in etaile Bor each
element we (i) explain the general idea behind the algorithm or softwargj\@)a description
of the specific implementation of these ideas in the algorithm and (iii) mention the setting
input we used.

4.1 Gadet 2: model universes

Creation of model universes can be done in two ways: using a fluid appatgn or with

N-body simulations. The first are computationally less demanding but loogeattwiracy
in highly non-linear cases (cf. section 2.5). N-body simulations on the digued are much
more computationally demanding but retain their accuracy also in the non-tloeaain. At

low redshifts structure is highly non-linear. As differences betweeiwsaDE models might
be small, we choose N-body simulations for optimal accuracy. Based oridheigition of

[Hockney and Eastwood, 1981], the general ideas behind N-bodylations are set forth in
subsection 4.111. Subsection 4/1.2 explains how these ideas are implemented\iadldy

code Gadget 2. Finally, subsection 4/1.3 gives the details of the Gadgttrjs used in this
thesis.

Within the data pipeline: the input of this step is (i) a law modeling gravitationatisffef
some dark energy model and (ii) a random number as input for the initiditemms. The output
are data cubes at various Each data cube contains the positions.gfarticles who evolved
under the gravity of matter and the DE model assumed as input.

4.1.1 N-body algorithms

N-body simulations are used to solve the N-body problem. In a gravitationsxt the N-body
problem can be stated as: suppose we hayparticles indexed by with initial positionsz;,
initial velocitiesv; and massesy;, how do the positions and velocities of these patrticles evolve
in time? The simplest and most intuitive solution is fhaticle-particle (PP) method. In this
method, time variable quantities are assumed constant on a small inferv@in each such

dt interval, the force of each patrticle on all other particles is computed. Althcogceptually
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straightforward, computation of the force of every particle on everyrghsicle require€ (n?)
operations. This is very inefficient and consequently many alternataes lheen developed.
The simplest of these is thgarticle-mesh(PM) method. This method overlays space with an
array ofm mesh points, withn << n, and approximates the force or potential values with
the mesh values. Poisson’s equation is used to relate the force to the msisg afethe mesh.
Interpolation of particle properties to mesh points goe®&s) and solving Poisson’s equation
on the mesh goes &3(m log(m)). Thus for somey, 5 € R the number of required operations
goes aswn + fmlog(m) x n, asm << n. A huge improvement but at significant cost: for
nearby particles the mesh approximation results in very limited resolution a@sllgige errors.
For far away particles on the contrary the mesh approximation can be canpitteFourier
based methods, which are near exact.

An often used approach combines the PP and the PM methodPttMamethod whichs
splits the total force;; in a short range component which uses the PP method and a long range
components which uses the PM method. Splitting is done by overlaying an adtlitinarse
mesh which determines which particles are closeby and which far awayg lirghed lists, the
overhead of storing which particles are where is minimal.

The PM method overcomes the inaccuracy of the PM method by splitting the simulation
box in a short range and long range part. Another way to deal with thiéveelaaccuracy of
the PM method is by making the grid finer on places where this is necessarperAgfid is
obtained by dividing a cell in daughter cells, and these daughter cellewteemded again in
daughter cells, and so forth. This is the basic idea befeé algorithmgBarnes and Hut,
1986], which apply the following rules:

1. Every cellis considered a (pseudo-)particle with the mass of all partidede located at
the centre-of-mass of these particles.

2. If a pseudo-cell is far away enough, it doesn’t need to be regolve
A tree is constructed as follows:

1. Begin with an empty cubical root cell that contains the system. One byloae,the
particles in the root cell.

2. If any two particles fall in the same cell, divide that cell in 8 daughter cE€mtinue until
all particles are loaded.

3. Each cell has a mass, a centre-of-mass coordinate and a link to itdelacejts.

A graphical illustration of a tree is shown in figure 4.2(a). Instead of ptpeii particles in

a different box, we can keep a few together if that grouping has oniyall ®ffect on the
accuracy. The accuracy is determined by a parantetehich determines or cell is divided

in its daughter cells. Ldtwe the length of celj and D the distance from its centre-of-mass to
particlei, than the cell is resolved in its daughter$/iD < 6 and used unresolved otherwise. A
graphical illustration is shown in figure 4.2(b).

The efficiency of Tree algorithms is determined by two things: (i) the tree @nfbice
computations. Let be the number of subdivisions required, i.e. the height of the tree[3and
the total box size. Than we can write two equations for the average sizeatiele bearing
cell:

e based on the number of divisions we can write ()" B;
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(a) The Tree structure boxing of a 3D encounter of to= 64

systems.
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(b) The Tree structure boxing of a 2D encounter (left) andaohee
computation on particle: (right). The number in the boxes
indicate the number of unresolved patrticles inside.

Figure 4.2: Three structures boxings|[Barnes and Hut, 1986].

e using that the average size of a particle bearing cell is of the order of tianticle
spacing we get= N~'/3B.

Equating both gives:
()" o« N7YV3 & hoc logy (N1/3)

This equation shows that tree construction as well as propagating maserane-of-mass in-
formation through a tree of siZzegoes asV log (V).

To find how force computations depend & suppose we increase the number of particles
by a factor of 8. In essence this means we add 7 analogous trees toriénat ttge. The 7 new
trees will give a modest numbéx;j extra terms to the force computation. But very importantly,
Aj depends ord and not onV or the size of the system. A linear increaseAn while the
number of particles increased with a factor 8 corresponds with an efficieriog(/N). Thus,
the total efficiency of a Tree algorithm goeslddog(N).

Tree methods can be very accurate. Furthermore, they have welktooi®errors in terms
of multipole moments of the mass distribution of the unresolved cells. Exactly thatiswul-
tipole algorithmsﬂGreengard and Rokhlin, 1997] use for an even more accurate anbifes
computations on special configurations. The essence of multipole algorithires Boisson’s
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equation can be rewritten as a series expansion in complex space. Cowsidgoups of sep-
arated particles, for example two groups of galaxies with stars. Both ayeaiih evaluating a
multipole expansion of the forces of one group on the other group are bpeaations. Thus for
groups of separated particles the multipole method is linear. In the most modmydyN\codes,
combinations of all methods described before are used to provide the opttedff between
accuracy and minimal system requirements.

So far we only discussed collisionless (dark matter) particles moving unelgrakitational
force. Modern N-body software packages like Gadget 2 can aldanitbegas particles, whose
motion is determined by hydrodynamics. Traditionally gas can be dealt with in ays vas we
saw also in subsection 2.5.3. In the Eulerean method space is discretizgdsasdepresented
using hydrodynamics on a (possibly adaptive mesh). The Lagrangiamaéivides the gas
into a set of discrete elements, ‘particles’. These particles have a smotghgth, over which
their properties are smoothed. Inversely, this means the properties dicdepean be found
by considering the properties of all other particles within the smoothing rahbes gives us
Smoothed Particle Hydrodynamics (SPH) and allows relatively similar treatneénebn par-
ticles and the gas (particles). In the cosmic web simulations under studynioegas is used.
Therefore, we refrain from an overview of computational hydrodyica and refer the interested
reader to [Veldman and Velicka, 2010] for an excellent introducatiotreatise on the subject.

4.1.2 The Gadget 2 code

With the general ideas behind N-body simulations discussed in the prevbsesction, we now
turn our attention to the details of the N-body code used in this thesis: Ga@l,
’fOS@ Gadget 2 is a Tree-SPH code and an upgrade of the earlier Gadge¢ 1 The public
release of Gadget 2 contains two types of physics: (i) collisionless dyeamnit (ii) hydrody-
namics.

The collisionless dynamics uses a multipole extended tree code, optionally veigth BN
method approximation for large distances. The simulation space can bothatie &lswtonian
space as an expanding space, in the last case comoving coordinatbe aeduliar potential
are used (cf. equation 2.15). Three important properties in which toesabffer are (i) the tree
structure; (if) which multipole moments are computed and (iii) the cell opening critewged.

For grouping Gadget 2 uses the standard octonal tree structurelasegn above. Al-
though alternatives to octonal trees exist (amongst others binary, toe¢shal trees have rela-
tively little internal cells and thus a low memory consumption. Also, octonal treegfi with
the parallelization strategy employed in Gadget 2.

Memory consumption is further limited by only evaluating monopole moments, instead of
higher order multipoles. Besides the obvious advantage of reducing tatabimé also makes
computations relatively fast: many nodes can be kept in the procesdwe aad as such are
quickly accessible.

Writing M and! for the mass respectively size of a cell a distan@vay from a particle
whose force is computed, Gadget 2 uses the following opening éngle

with « the size of the total acceleration obtained in the previous time step. Physicaly, th
criterium compares an estimate of the truncation error (left side of the eguatith the total

1Gadget 2 can be downloaded frdtip://www.mpa-garching.mpg.de/gadget/
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expected acceleration (right side of the equation). In this way, a limit is skétabsolute force
error introduced in each particle-node interaction. For the first time stemrtlinary opening
criterium is used. For very closeby nodes, the opening criteria abovgivavery large or even
unbounded errors. To prevent this from happening, an extra aperiterium of

’7"]' — Cj‘ S 0.6!

is implemented, withy € {1, 2,3}, ; the particle coordinates ang the geometric centre of the
node.

Walking deeper in a tree requires more computational resources. Tenpreégep walks,
space can be splitted in a closeby region, for which the tree is walked,fandwway region that
can be approximated by the PM-method. Not only does this decrease theaialitational
cost, it also increases the accuracy of very long-range force cotitiils as is shown in figure
4.3.

A SPH approach to hydrodynamics is taken, with two technical details. Firstsgore
entropy conservation the internal state of each particle is defined in tertms eftropy per unit
mass instead of the ‘default’ thermal energy. Second, as usual with trangian approach
an artificial viscosity needs to be introduced to inject entropoy in shockdraGadget 2 uses
the viscosity derived by [Monaghan, 1997], combined with an additicisabgity-limiter. The
last prevents unphysical viscosity induced excess acceleration args ftirale integration more
stable.

4.1.3 This Gadget implementation

The astrophysical input of the Gadget 2 N-body simulation consists of eoents: (i) the

initial conditions and (ii) the DE models used. For the initial conditions, a primb@&haissian

random field (cf. subsection 2.5.1) is used, evolved te 60 using the Zel'dovich approxima-
tion (cf. subsection 2.5.3). The three dark energy models used are | &PMnd SUGRA (cf.

section 2.4 for details). An overview of the DE model specific parameteiigés ¢n table 4.1.

The DE models are normalized at the cosmic microwave background using:

Dxcom(zcmB)
“MBJ 4.1
Dpe(zcmB) (4.1)

with D the linear growth factor (cf. subsection 2/5.2) aghs = 1089.

The simulations involve563 dark matter particles (no other particles) with identical masses
of 0.443 - 101°4~1 M, living in a cubic box with axes 0800~~! Mpc and periodic boundary
conditions. The general cosmological parameters are from the WMARa3 da, = 0.268,

Qp = 0.732, Q = 0.044, h = 0.74, 0g = 0.776 andn = 0.947. Snapshots are available at 8
redshifts:z = 3.80, z = 2.98, z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10 andz = 0.0.
For more details on the simulations, we refer to [Bos etal., 2012; ElG.P.,.ZBan]each dark
energy model five different realizations are used, namend run 14 FHedifferent runs of the
same DE model differ in random seed number used for the primordial @atfssd.

08DE = 08

4.2 DTFE: from particles to densities

In many situations the density field underlying a particle distribution is needadedon the
exposition of [Scha& , 2007], subsection 4.2.1 explains how to obtainétD&launay Tesse-
lation Field Estimator (DTFE) method [Schaap and Weygaert, 2000; Schaap, 2007] turns out
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Figure 4.3: Force f decomposition (top) and relative force errorA f/ f (bottom) of the Gadget 2 Tree-PM schemeé [Springel,
]. The plots are for several test particles as function of dis#ga from a unit mass particle in a box of size In the top panel,
the short range Tree force is shown as dotted-dashed lintharidng range PM force as solid line. As one can see, forazgiit
scalesrs (vertical dashed line) of the same order and slightly larbentthe mesh size (vertical dotted line), the relative esor i
only in the order of percents. The relative error can be @éesed by increasing;.

Model « wo  Wgq o8
ACDM - -1.0 0.0 0.776
RP 0.347 -0.9 0.0564 0.746

SUGRA 2259 -0.9 0452 0.686

Table 4.1: DE models parameters used in the Gadget N-body simulationss is fixed atz = 0 and is the same for all models at
zems = 1089. wy is also fixed at = 0 andw, is determined using g? fit. Cf. section 2.4 for a conceptual overview of the DE
models.

to be a natural choice for a density field reconstruction. The algorithmic implextien of the
DTFE method is dicussed in subsection 4.2.2. Subsection 4.2.3 elaboratesspetific DTFE
setting used within this thesis. The DTFE code used here returns the intethdknsities at
a regular grid. Compared with interpolation to the original particle positionsgities better

61



December 2013 4.2. DTFE: FROM PARTICLES TO DENSITIES

sampling of low density regions.
Within the data pipeline: the input of this step is a data cube containing the posifians
particles. The output is a data cube with the interpolated density field valiesegular grid.

4.2.1 From particles to densities

Consider a continuous fielfi(z), observed at positions; with valuesf;, {1, ..., N}. An often
used method to reconstrugtz) based on the observdd;} is to smooth the observed values
out. Concretely, this is done by filtering the data with a filter fucfiiz), giving the approxi-

mated field: N
p _ 21:1 fiW (x — ;)
=5 W= e

Often chosen filters are circular or spherical Gaussians. Althougbeptumally simple, both
from a practical as well as from a theoretical point of view the method isigldgvith problems.
Practically, filtering removes features smaller than the filtering function uSshsequently,
the geometry of anisotropic features with length scales smaller than the filter ofighte
in some directions. Theoretically, applying a filter means implicitely using a magged

reconstruction, which is best appreciated by simply writing out formula 4.2:

(4.2)

7 sz\i1 sz@ - xz)
M= Wi
_ Jdyf@W (e —y) 3L, 6ply — i)
[dyW(z —y) 3L, 6p(y — 1)
_ dyfy)W(z —y)p(y)
dyW (z —y)p(y)

(4.3)

with p(y) the volume density of the sampling points. l.e. the reconstructedfi(ei@d is the

real field f(z) filtered by W (z) and weighted by the mass of the sampling points. It can be
seen as a mass-weighted estimatg (@f). Unfortunately analytical calculations mostly involve
a volume-weighted estimate because stochastic integrals are volume-weighted:

o) — Jdyf(y)W(z —y)
fvolume( ) = fdyW(:E — y)

The difference between equations|4.3 4.4 is due to fact we only imaveddge of the
field at the sampling points. In essence, using a filter to reconstruct tiséydgeld confuses a
mass-weighted with a volume-weighted estimate, disqualifying this approach.

Volume-weighted reconstruction is possible using interpolation. The integudlield value
at any arbitrary point can be computed using a linear combination of fieleevaltitheN
sampling points. The linear coefficients have the two constraints: (i) theydkaom up to one
and (ii) at the location of the sampling points the interpolated values shouldlteguaeasured
values.

A huge number of interpolation schemes are available. Conceptually the dimsptesoth-
order interpolation: divide the space in regions closest to each sampling pe. a Voronoi
diagram (cf. definition 3.16), and assume a constant density within edchOfecourse this
gives discontinuities at the boundaries, which can be avoided by usingt-ariler interpola-
tion scheme. An illustration of zero and first-order interpolation is shown indig.4. In one

(4.4)
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dimension first-order interpolation is straightforward linear interpolationméme dimensions
this approach can be generalized by covering the space with a triangwidticim has the sam-
pling points as its vertices. Inside the hyper-triangles one can interpolatedre the values
at the vertices: take an arbitrary pointnside thed-dimensional hyper-trianglg with vertices
xo, ..., £4. Than the function valug(z) can be approximated with:

f(@) = f(zo) + VIl - (z — 20) (4.5)

To solve this equation we still need the the gradient funcioh It can be found by solving
equation 4.5 at the vertices, where all parts except the gradient function are known.

4’:’7 M\

<17 ‘n
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Figure 4.4: Visual illustration of interpolation schemes [seé Schaap007, chap. 4].Overview of zeroth-order interpolation
(top row) and first-order interpolation (bottom row) in 1[ff) and 2D (right).

The choice of triangulation determines the accuracy of the triangula{tiom@BEau and Weygaert,
\1996], [Schaap and Weygdért, 2b00] and [Pelupessy et al.] @98 shown that a Delaunay
triangulation (cf. definition 3.17) is the preferred triangulation, because:

e ltis fully adaptive, i.e. it automatically probes regions at maximum resolution.

e Delaunay triangles have minimal size and elongation, preferable proderteeselatively
local field.

e Linear interpolation requires the definition of neighbor intervals. For tHauay trian-
gulation such a definition rols naturally out of its dual, the Voronoi diagram.

For fields of which the measurements directly provide field values, for ebeantpen measuring
velocities or temperatures, we are done: interpolation with a Delaunay ttéioguprovides

an optimal approximation of the underlying field. Things are more complicatezhirying

to recover the density field (kg ™) based on particle masses (kg). Then, using the particle
masses and the particle positions, density vaIues have to be estimated. Anerddice for

the density estimate of particlenight bep(x;) = T -2 with V4, the volume of the Voronoi cell
corresponding to the particle. Unfortunately, it turns out such a defirdib@sn’t conserve mass
ﬂSchaap and Weygaeh, Z(bOO] and ttentinguous Voronoi cekhould be used instead. The
continguous Voronoi cell is defined as the agglomerate akdllelaunay tetrahedra containing
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pointi as one of its vertices. It has volunByr; = Zle Weor,; and is used! 4 1 times in a
d-dimensional field, giving the density estimate:

p(w;) = m(d+1)/Wyor,i (4.6)

Figure 4.5 illustrates the difference between the volumes given by the dlooetl and by
the continguous Voronoi cell. Using the point sample as density estimator possraints
on the sampling process. The procedure is only valid if the points constitatie sample of
the underlying distribution, i.e. if the points form a Poisson point proceskeotlensity field
[Weygaert and Schaap, 2009]. Therefore, DTFE density estimaegide sensitive to Poisson
noise.

Summarizing the above we obtain the DTFE method, which estimates the undedgimg (
sity) field of a set of discrete observations (of particle positions). Gely; DTFE consists of
the following steps:

1. Construct the Delaunay triangulation corresponding to the particle disnib
2. Use the Delaunay triangulation to estimate the density values at the partitierzos

3. With the previous two steps as input for linear interpolation, a repragantd the under-
lying field can be computed.

4. The field can be outputted to a regular grid.

PN S I XV L AT A - TIEEA T A T YA

Figure 4.5: The Voronoi cell (left) and the continguous Voronoi cell (rght) of a point [Schaap and Weygaert, 2000].

4.2.2 The DTFE algorithm

An excellent and efficient algorithm to obtain the DTFE field is the publicly akilaode of
[Cautun and Weygaert, 20?1] The code is written in C++ using the CGAL (Computational
Geometry Algorithms Library) library for geometrical algorithms, OpenMPparallelization,
the Boost C++ libraries and the GNU Scientific Library. The code allow®gier boundary
conditions and more detailed interpolations in interesting subregions. lopesizan be square,
cubic, redshift cone and user defined. Many scalar and gradielatr $izlds are available. The
output is a regular grid file with DTFE obtained field estimates at each grid point.

2Cautun et al's DTFE code can be downloaded ftatp://www.astro.rug.nl/ ~voronoi/DTFE/dtfe.html
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Interpolation to a regular grid can be done in two ways: (i) each grid ceditge interpolated
density value of the grid-centre and (ii) a volume average is used. Thaderethod is much
less affected by Poisson noise, especially in the high density regionsoBume averaging is
very computationally demanding. Therefore, volume averaging is implemeyntash&éom sam-
pling, using either Monte Carlo integration inside the Delaunay cells or Monie ®&egration
inside the grid cells.

4.2.3 This DTFE implementation

For this thesis, we used DTFE version 1.2 with periodic boundary condiéiodsnterpolation
option (ii). A regular output grid with as many grid cells as particles was ¢hose

4.3 DMC and filtration builders

Gadget gave us a particle distribution, which was possibly transformedeaguarly sampled
density field using DTFE. The first step in the topological part of the datlipgis the com-
putation of the DMC and subsequently its filtration. For these steps the denslitgaaticle
scenarios use different algorithms. We will discuss both.

4.3.1 Density DMC’s and filtrations

The output of Cautun’s DTFE program is a regularly sampled grid, wé&ch voxel has a den-
sity value associated to it. To build the DMC of a regular grid and compute its filtredimalgo-
rithm based on the ideas of [Bendich etal., 2010] and concretely implemiep{@danav et al.,
2013a] is used. The algorithm consists of three steps:

1. By iterated division of the datacube in 8 smaller datacubes a tree is ¢reateld akin
the procedure described in section 4.1.1 above. Although a stoppingatritan be set,
here subdivision continues until individual voxel level is reached. tRe256% = (28)3
datacubes considered here, this requires 8 subdivisions.

2. Each voxel of the tree can be seen as the set of points ‘closest’@baenter, much alike
Voronoi cells (cf. definition 3.16). Considering the set of voxel cendarvertices, its dual
Delaunay complex can be created. Note that doing this directly on the regidaiuns
into problems because each vertex has six nearest neighbors. This itriaksossible to
unambigously define the correct trianguluation, much alike the situation skkittfigure
3.12. Therefore, all voxels are slightly perturbed in the direction of the miiaigonal,
transforming the cubic cells in simple polyhedra. Concretely, the voxel goddinates
(1,7, k) are shifted in the following way(i, j, k) — (i — em,j — em, k — em), with
e > 0 but very small andn = i + j + k. The effect of such a transformation is shown in
the left panel of figure 4.6. The resulting triangulation looks the same abedlly and is
illustrated in the right panel of figure 4.6. By assigning function values ¢geedriangles
and tetrahedra as described in section 3.5, a DMC is obtained.

3. The last step is ordering all the simplices by function value. In terms of gbngppower
this is the most expensive step of the three. It can be simplified by firstiogdenly the
vertices. Than, for each vertgxhe simplices who haveas its highest valued vertex can
be added. In the filtration, they come directly after
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(a) Perturbed cubes of a regular grid. (b) The closed star (cf. properties 3.3) of a vertex.

Figure 4.6: lllustration of a perturbed regular grid complex [Bendich et al., 2010].

4.3.2 Particle DMC'’s and filtrations

The patrticle case is analogous to the density case [Pranav et al., 2018mhpler. At the posi-
tion of each particle, the density is estimated by its continguous Voronoi éefigare/4.5). The
Delaunay triangulation of the particle positions gives rises to a simplicial comiplggnsion of
the density function over the higher dimensional simplices can be done @ibeesin section
3.5 and results in a DMC. Subsequently, all simplices can be ordered tyduwvalue.

The Gadget particle simulations had periodic boundary conditions. Tdreréfie DMC and
the resulting filtration is computed assuming periodic boundary conditions las®@amputa-
tionally, this is achieved by glueing a copy of the data cube to all its 6 facesdd@s and 8
vertices and performing computations on the triangulation on the 27 data tugedker. Later
on, the triangulation is updated by identifying simplices from the opposite fatteswhich the
26 copies are discarded.

We note that computation of the DMC and its filtration is the bottleneck of the dathrgpe
is terms of hard disc memory. Although the exact size of a DMC/filtration file wgpen the
data cube under consideration, for &8> element data cubes considered here a single file can
exceed the 10 GB when stored as ASCII data, the default programtofmu8 x 5 runsx 3
DE models this requires about 1.2 TB of data storage. In one of the edaggssof this thesis
it was attempted to compute the DMC and filtration of uniform random noise digstiburhis
attempted failed when the hard disc used got out of memory after 1.8 TB ofvdatevritten to
it in a few hours. In the end, using excessive amounts of hard disc memasrgircumvented
by feeding the filtration files directly to PHAT without storing them.

4.4 PHAT: computing persistence pairs

In the previous section we obtained a filtration, here we use the filtration towtertipe cycles
and Betti numbers. First, we give a general overview of computationalgbent homology:
what is the general idea and which options are there? Subsequenthcugedo the software
package PHAT (Persistent Homology Algorithm Toolbox) used here asdribe it in detail.
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We end this section with a short note one some issues of the implementation of (He4T
within this thesis.

4.4.1 Persistent homology computation

Edelsbrunner [Edelsbrunner and Harer, 2010] more or less ddfieefield of computational
persistent homology with the introduction of the first computational homologyrigthgn. Their

algorithm is based on matrix reduction and very illustrative. It is the firstrialgn we de-

scribe. Unfortunately, its explanatory power goes at the cost of itsesflig, as fom simplices

it scales ag)(n?). Consequently, several refinements or alternative approaches\aieuked,
we describe them afterwards.

The ‘standard’ algorithm [Edelsbrunner and Harer, ?010]

Let K be a simplicial complex with simplices and suppose we have its filtration. We denote
the simplex on the-th index in this filtration witho;. Than we define an x n boundary matrix
0 which stores for all simplices its facets and cofacets in a very structurgd wa

) 4.7)
0 otherwise

i, ] = {1 if o; is a facet ol
Formulated in words: each colum indicates the facets;afnd each row indicates the cofacets
of o;. A simple simplicial complex is shown in ifgure 4.7. Its filtrationds < o5 < ... < 09,
giving the boundary matrix shown for clarity in table 4.2. Note that the boyndwetrix is
an upper triangular matrix, as by construction the faces of a simplex are@t llodices than
the simplex itself. We defindw(j) as the row index of the lowest 1 in column If the

Simplices| 01 02 03 04 05 o0 07 03 09

o1 1
g9 1

03

==
= O, O

04

05

R O rFr oo

06
o7
og 1

g9

Table 4.2: Boundary matrix for the simplicial complex shown in figure4.7. Empty matrix entries indicate zeros.

entire colum consists of zerdsw(j) is undefined. In our example, we directly see that(1),
low(2), low(4) andlow(8) are undefined antbw(3) = 2. The only operation allowed o

is subtraction of columns from left to right. Starting at the leftmost colymrwe apply this
operation as often as necessary to make surddhdyj;) # low(j) for all j # j;. Previous is
repeated for the second columin the third columnyjs up till the last columry,,, after which the
matrix § is transformed to theeduced matrix?. In our example matrix reduction is very easy:
only column 6 can be reduced by subtracting columns 3 and 5. The redaoadary matrix is
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G7=3+58+682

=1 G3=2+38
05=3+4¢
06:3+5£
og=4 0'9=4+68

Figure 4.7: A simplicial complex to illustrate the concept of boundary matrix. 0-simplices are indicated in black, 1-simplices
in green and the 2-simplex in blue. The boundary matrix is shiaviablé 4.2 and its reduced variant in tdble 4.3.

Simplices| 01 o092 03 04 05 0¢ 07 0% 09
o1 1 1

09 1

03

R O O
o O o o

04

05

R P o r oo

06
o7

og 1

09

Table 4.3: Reduced boundary matrix for the simplicial complex shown infigure[4.7. Empty matrix entries indicate zeros.

shown in table 4.3. Algorithmically, previous looks like:

Algorithm 1 Basic persistent homology computation algorithm.
R=9§
forc=1:ndo
fori=c+1:ndo
if low(j;) = low(j.) then
ji+ = jc
end if
end for
end for

Alternatively, if we let matrixC' denote the column additions required to reddd® R, we
can write previous in matrix notation @ = JC. Reduced matrix? has a straightforward

interpetation:

1. If columnj of R is zero, simplexs; has no boundary and thus represents a new cycle
which enters the filtration at index Indeed, in our example columns 1, 2, 4 and 8
correspond to vertices and thus new 0-cycles and their columns arg@®erthe start. By
reduction column 6 became zero as well. A short look at its simplicial complexunefig
‘4.7 shows that when column 6 enters the filtration, a tunnel is created i.e. @eegycle
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is born.

2. If columnj of R is non-zero simplex; has facets and thus connects two components
or fills a hole. Either way, a cycle dies. Let raw= low(j) indicate its highest valued
facet, than all other faces of; entered the filtration at an earlier stage than Then,
pairing via the Elder Rule (cf. definition 3.80) implies that simplieeando; are paired.
Thus for non-zero columyj the cycle born at = low(j) dies. In our example simplex
corresponding to the non-zero columgunites components; ando, and is paired with
the latter. Analogouslyrs unites{oi, o203} with o4 and is paired with the latter, etc.

Persistent homology (cf. appendix A.2) follows directly: the number af zeltumns that corre-
spond tok-simplices gives the rank af;, and the number of non-zero columns that correspond
to k-simplices gives the rank d;. Using equation A.5 their difference givels. The birth,
death and persistence of cycle-classes follows directly froniithe(j), j) pairs.

Although conceptually very simple, the double for-loop shows the algorithid (is?),
which is not very efficient. Furthermore, the memory requirements also asén?). Both
become quickly prohibitive for large datasets. Some direct efficiencyadieg were provided
by ﬁEdeIsbrunner and Harer, ZCMO] themselves. For large datasetgains many zeros. Thus
a sparse matrix representation in the form of an array of simplices with ézoleret containing
linked lists to its facets saves both space and time. In some situations usingcdpemifiedge
about the simplicial complex allows further simplifications. Nonetheless, fgelgeneral sim-
plices the effect of these upgrades is only marginal. For large datasegseffioilent algorithms
are a necessity. So far, three such algorithms have been developed.

The ‘twist’ algorithm [Chen and Kerber, 2011]

The twist algorithm improves upon the standard algorithm by a key obseamvafi@lement
i = low(j) appears as pivot in a reduced column, simpléxpaired with simplex < j. Thus,
simplexi creates a cycle and its column is zero. For example, in the simplicial complex of
figure[4.7 we have amongst othéosv(3) = 2 andlow(7) = 6 and indeed, 2 & 3 and 6 & 7 for
persistence pairs. Wee see in table 4.3 that columns 2 and 6 are zero.

In the standard algorithm this doesn’t save any operations becausercoka j and thus
columni was already zero. Yet by changing the order of reduction such thia¢h@dimensions
are reduced first (still from left to right) many operations can be salredarge datasets, for
up to half of the columns reduction is avoided by this technique. Howeveringiple this
algorithm still scales a®(n?).

The ‘row’ algorithm [Ibe Silva et al., \2011]

The basic operations above were column operations but in principle usingperations are
possible as well, resulting in the same outbut [De Silva etal., 2011]. Usingpanations is

in particular efficient ifcohomologyinstead of homology is used. Cohomology is the dual of
homology and uses the maps on simplices instead of the simplices itself. For exdmpte

a chain of simplices ang(c) a function that mapsto O or 1 (forc is not present respectively
present in a simplicial complex), thamis a basic element of cohomology just as groups of
simplices are the basic elements of homology. Cohomology is homeomorphicefafitidn
'A.11) to homology, i.e. in the end they give rise to equivalent structureséime datasets the
row algorithm is remarkably faster than the standard column variant. Why taislisvhether it
can be predicted a priori is an area of active research [Chen arhxdeK@Olﬁ].
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The ‘chunck’ algorithm [Bauer etal, 2013]

The chunck algorithm is basically a parallelization of the twist algorithm. It iste®f three
steps:

1. The matrix is divided in local blocks and these blocks are reduced.
2. The already reduced rows and columns are taken out.

3. The remaining (relatively small) matrix with global persistence pairs is estiteeits final
form.

The chunck algorithm incorporates the key idea of the twist algorithm. Funtre, it imple-
ments another efficiency trick based on the following observation: if simpleas paired with
simplexi < j, simplex; cannot be paired again thus the rest of the row can be set to zero
directly. An important choice within the chunck algorithm is which chunck siagsta Generi-
cally, for a dataset with simplices the authors choose a chunck siz¢/of giving \/n separate
chuncks.

On multi-core computers, the chunck algorithm is orders of magnitude fastetlle other
methods above.

4.4.2 Persistent homology with PHAT

All the methods above have been implemented in the publicly available library Bre
code is written in C++, requires a boundary matrix as input and gives tisésfance pairs as
output. Which of the algorithms discussed above is used is up to the usesdmtthe chunck
algorithm, the OpenMP library is used for parallelization.

4.4.3 This PHAT implementation

The dramatic increase in processing speed of the chunck algorithm cesnpitin the standard
algorithm has been noted while processing the astronomical dataculsgdered in this thesis.
For a 2586 particles or density gridpoints dataset, the standard algorithm requiredthzore
month. (The exact time is unknown, as power failures, disc errors amriefailures never
resulted in complete computation o£a63 data cube with the standard algorithm.) The chunck
algorithm used later computed the persistence pairs of the same datasetthariahsee hours.

We note that the persistent homology computation is the bottleneck of the daliagipe
terms of computational power and RAM. Although the chunck algorithm reduéss than three
hours, this was on a 160 hyperthreading CPU machine. The RAM requiteiwen exceed 150
GB.

4.5 Data analysis

The persistence diagrams obtained from PHAT are analysed using adatenvin C++ and
compiled with Unix Red Hat gcc version 4.4.7. Some code snippets froms[léteﬂ;.l 2007]
were incorporated. On occasions, Matlab 2013 was used in additionofélege, algorithms
and code were run on Unix machines of the Kapteyn Astronomical Instite wigmic Linux.

Data cube visualizations are generated with Yisit

SPHAT can be downloaded viattps://code.google.com/p/phat/
Vislt can be downloaded viattps://wci.llnl.gov/codes/visit/
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CHAPTER D

Stability of persistence diagrams

Experimental data contains measurement errors and simulations might alam aorcertain-
ties. For example, the Monte Carlo integration used at the DTFE implementatmimireduces
small uncertainties. Homology and persistence are only useful if theyoaefluenced by these
kind of uncertainties too much. This chapter will look at the way persisteraggaims are in-
fluenced by small uncertainties in the input. Subsequently, various methgdsuacertainties
out will be compared. First, section 5.1 expounds the mathematical resulisesbia this di-
rection. As this is a new field of mathematics the mathematical results are only quéeage
small perturbations result only in small perturbations of each point of tregtence diagram.
However, a persistence diagram consists of many points. How smalllpetiturs of each point
will influence the diagram as a whole is unknown. Therefore, a petiorbanalysis is carried
out: varying amounts of particles are perturbed by various distanceb@onbtained persistence
diagrams are compared with the unperturbed case. The details of theisaalythe resulting
persistence diagrams are discussed in section 5.2.

Persistence diagrams have quite some low persistent features, eitheomivisignificant
ripples in the large density waves of the field. Several ways to take out feasures thus
nicinﬂ the persistence diagram are explored in section 5.3. The results ofyseéotions are
combined in section 5.4 and a discussion and conclusions are presergetian §.5.

5.1 Mathematical results

For persistence diagrams to be useful as analytical description ofvaliseal (and even sim-
ulated) data they have to tstable small changes in input data should result in only small
changes in the persistence diagram. The concept of stability is visually itecirafigure 5.1.
ﬂCohen-Steiner etal., 2007] showed stability for each point in persistdiagrams for a broad
class of tame functions (defined below). for each point in the persisthageam the distance
the point is moved by a perturbation is bounded by a supremum-norm. In thisrse/e work
towards their result following [Edelsbrunner and Harer, i010, chdp]. The material in the
sections uses quite some topology. For users less acquainted with topa@aggyvise to read
the chapter 3 on topology first.

Iwithin this thesis, the termicingwill be used as an aggregate term for various ways of smoothing or sjinglif
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/

Figure 5.1: Visual illustration of stability of persistence diagrams [Cohen-Steiner et all, 2007]A small change in density (due
to a small change in particle positions, left) results in a $otenge in the corresponding persistence diagram (right).

To explore whether persistence diagrams are stable, we need a way to@giatances be-
tween two diagrams. LeX andY be two persistence diagrams with two points- (1, z3) €
X andy = (y1,y2) € Y. In topology, a well known distance measure between two point sets is
the:

Definition 5.1 (Hausdorff distancé ).

du(z,y) = max{sup inf || — Y|/, sup inf ||y — ||} (5.1)
reX YeY yey zeX

Informally, the Hausdorff distance is the largest distance from a poit¥ ito the closest point
inY. So, two persistence diagrams are close in Hausdorff space if for altgpim X there is a
pointinY closeby, and vice versa.

with ||z — y|| = max{x; — y1,x2 — y2} the supremum-norm. Adding the restriction that we
only look at bijections between the persistence diagrafm$ : X — Y, the Hausdorff distance
can be refined to the:

Definition 5.2 (Bottleneck distance)

dp(X,Y) = inf sup|lz —y(2)ll0 (5.2)

zeX

Essentially this is the Hausdorff distance with the additional constraintghat~(x) € Y for
somer € X.

Example 5.1. Figure|5.2 shows a superposition of two persistence diagrams, onéstingof
white and the other of black points. The bottleneck distance is half the sidé lgfithe squares
illustrating the bijection.

We remark that by definition of the supremum-norm the bottleneck distanckesatis
1. dp(X,Y) >0
2. dp(X,Y)=0e X =Y
3. dp(X.Y) = dp(Y. X)
4. for another persistence diagréfrwe can writedp(X,Y) < dp(X,Z) + dp(Z,Y)

Consequently, the Bottleneck distance defines a metric (cf. definition Adljhais really is a
distance.
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Suppose that our persistence diagram
comes from functiong, ¢ defined over a sim-
plicial complexk. We letf,g : K — R be
monotonicly increasing along the filtration of
K (cf. definition 3.28). This allows us to de-
fine the straight-line homotopy (cf. definition °
A.10) F : K x [0,1] — R by: .

death
O
)

F(o,t)=(1—1t)f(c) + tg(o) (5.3)

which interpolates betweeli and g. The s
homotopy changes function values and thus birth
changes the values of critical points. Con-

sequently, it changes the persistence of per- N _ ,
Figure 5.2: Visual illustration of the bottleneck distance

sistence pairs. With increasing time, a pefqelsbrunner and Harer, [2010] A superposition of two per-
sistence pair{gb Ok +1} will start to wander sistence diagrams, one with black and one with white piortie. T

. . . bottleneck distance is half the side length of the squahestri&t-
around in the perS|stence dlagram becausei the bijection. The maximum distance is given by the black
birth and death value change. When the funasd white point top-left.

tion values change enough, persistence pairs

might even be paired differently. Alternatively critical simplices might become critical, af-
ter which their persistence pairs disappear. The last happens eattigspints who are quickly
smoothed out, i.e. which have low persistence and are close to the diagonal.

Every timet; that the pairing is reordered or persistence pairs disappear, a netiofiltra
order can be established féi(c,t). Furthermore, for a finite simplicial compleX there is
only a finite number of time8 = ¢ty < t; < ... <t, < t,11 on which the filtration is reorderd.
Within each intervalt;, t;+1) the pairing is constant. Stacking persistence diagrams for each
new ordering on top of each other, we get a three dimensional pergsteEgram with the third
axis corresponding to time. An illustration of such a persistence diagranash figure 5.3.

For a given persistence pair, we can drawn lines between their valugsradt;, 1. In case
the persistence pair changes partners with another persistence pagr,emdimg at;; will
continue in a different direction but it will continue. In case the persigtgrair ceases to exist,
it is connected with the diagonal. Diagonal points are not continued.

Thus, each persistence pair gives rise to a
path monotonically increasing in The path

is either born onX or on some interpolated M
persistence diagraii, in betweenX andY’. (=10

—
-

Paths either survive t& or die on the diag- /
onal at an earlier interpolated persistence dia-
gramF;,. Each path element is calledvane t=0.5 :
and a multiset of path elementyvimeyward b@\‘g !
The fact that the paths are connected from birth

birth to death is very important, as it allows us

to see how far points wande_r on the dlagrarlgl'gure 5.3: A vineyard [Edelsbrunner and Harer,12010]. Two
To so exactly so, we quantify the path of @aths of the straight-line homotopy between the monotonic-fun

persistence pair by- tion f andg. One vine lines the entire time, while another vine
' dies att = 0.5.
p(t) = (1=t) (f(or), f(ok+1),0)+t (9(ok), 9(0k+1), 0)
(5.4)
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Its change in time is given by:

Op/0t(t) = (9(or) — fok), 9(okt1) — flok+1),1) (5.5)

If we project the endpoints of each part of the path bacRéywe can measure how far the pair
has wandered off:

Ip(tiv1) — ()| = (tiv1 — t;) max{g(ox) — f(or), g(ohk+1) — flok+1)} (5.6)

We use this to measure the distance between the funcfianslg using thel ., norm:
If = glloc = max|f(e) — g(o)] (5.7)

Clearly this is also an upper bound on the slope of any line segment in theihayd therefore
an upper bound on the,, norm between the end-points of any vine. This gives us the:

Theorem 5.1(Stability theorem for filtrations)Let K be a simplificial complexandl, g : K —

R two monotonic functions along the filtration &f. Let X andY be two persistence diagrams.
For each dimensiow, the bottlenck distance between them is bounded above Wy theorm.
le.dp(X,Y) < [|f — glloo-

Although for the purpose of this thesis the stability theorem for filtrationscasfiwe shortly
continue with a generalization of theorem for a much broader class didnsaefined as:

Definition 5.3 (Tame functions) Let X be a triangulable manifold. A functiofi : X — R is
tame if it has a finite number of critical valieand the homology groupdy,(f~!(—o0, a]) are
finite-dimensional for alk € Z anda € R.

Example 5.2. Morse functions on compact manifolds and piece-wise functions on finité-simp
cial complexes are both tame functions.

Consider a rising sublevel set of a tame functjon X — R. Each critical value changes
the topology of the manifold. In analogy with filtrations of a complex, the inéngasublevel
sets of the manifold create a sequence of homology group connected by Dexpte for each
dimensiond the mapf(‘j’b : Ha(X,) — Ha(Xp) as the map from theé-th homology group at
sublevel set to sublevel seb > a. Than in a manner comparible with the construction of the
vineyards above we can create sequences of homology classesaeassing sublevel sets of
X. From there we can again relate back tolthenorm and obtain the:

Theorem 5.2(Stability theorem for tame functions)et X be a triangulable topological space
with continuous tame functiorfsg : X — R. The functiong andg define persistence diagrams
X respectivelyY. The persistence diagrams satigfy(X,Y) < || f — g/|cc-

Basically, the proof follows the same lines as the exposition prior to the stabilityethrefor
filtrations. We don'’t state the proof here as it is technically involved andlinettly relevant for
this thesis. We refer the interested reader to [Cohen-Steiner et al., Hfifi[stability theorems
above are based on the, norm. Stability results of persistence diagrams for gerigyalorms
are found as well [Cohen-Steiner et al., 2\010]. Unfortunately theyired.ipschitz functions,

2Technically, a finite number dfiomologicalcritical values is required. For a Morse functignon a smooth
manifold, as we consider here, the homological critical valueéajincide with its classical critical values.
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i.e. functions that satisfyf(z) — f)y)| < C||z — y|| for some constanC € R. In general
density fields don't satisfy this condition, so we refrain from further gtigation at this point.
When the stability theorems are applied to this thesis, we can state that uncearnainty

measurement value will have a bounded effect on the persistencerdiagitee data pipeline
as such should be stable. However, previous doesn’t say anythouy #ie group behaviour
of the thousands of points of which our persistence diagrams consist. tAsidirection no
mathematical results exist, we continue with an experimental perturbation isralydentify
possible group behaviour.

5.2 Experimental stability - perturbation analysis

Previous section tells that uncertainties in galaxy positions, be it measuremanalysis in-
duced, will have a limited effect on each of the points in the persistenceadiagfowever, it
doesn't tell how all these tiny uncertainties change the diagram as a Witweefore, a pertur-
bation analysis is performed. We take a density field and perturb a centalamafractionf,
of the patrticles by a predefined amoukp in a random direction. We put the perturbed fields
through the data pipeline and compare the resulting persistence diagramsg¥itbteer and
the unperturbed case. To distinguish between variations due to intrinsiemeness and differ-
ence in( f,, Ap) pair values, for eaclif,, Ap) pair the procedure is repeated several times. A
Mersenne Twister random number genergte used to determine which particles to move in
which direction.

Concretely, the following specific experimental values were chosen:

e The data pipeline is computationally very intensive, so instead of a full 306} dlignsity
field a 75 Mpé subbox is considered. As the influence of perturbations might depend on
density, we choose a high and a low density subbox. The high and lowydsakboxes
are selected by visual inspection from a Gadget LCDM simulation (run 14).

e The influence of perturbations might also depend on the density varidtita the sub-
box. The density distribution variance is monatically increasing with time, thubdtr
density subboxes the earliest£ 3.8) and latest{ = 0.0) available times are considered.
The resulting four density fields are shown in figure 5.4.

e Furthermore, there might (and is) a difference between the particle arsitydease, so
we analyse both.

e For all density fields we takg, € {10°,10%5,10,10%5, 102} and forAp the same values
times the interparticle distance witkyy.

e For each(f,, Ap) pair ten realizations are computed.

Summarizing the variables above, we get a total of 2 density subbo®esmesx 2 for parti-
cles/IDTFEx 5 f,’'s x 5A,’s x 10 repetitions = 2000 experiments. The resulting 2000 persis-
tence diagrams can be analysed in several ways. We use Betti cud@sammaries because
they are both directly embedded in mathematical theory and representgiligaitires.

The default C++ Mersenne Twister 19937 with a seed coming from thes@nelard random number generator,
whose seed in turn came from the system time.
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(c) LCDM low d late time (d) LCDM highd late time

Figure 5.4: 3D rendering of the LCDM subboxes.

5.2.1 Particle perturbation analysis

Figure 5.5 shows, 5 and3; for LCDM at both times when all particles are perturbed. Inter-
estingly, increasing perturbation magnitude doesn’t increase the sareawld the Betti curve
of the unperturbed case. Instead the curves are systematically shiftedifferant position,
such that the difference between two highly perturbed curves is smallettibadifference of
either with the unperturbed case. With increasing perturbation magnitudearlyeime curves
increase at lower density regions and decrease at smaller densitystelgrobably because par-
ticle spreading destroys dense structures but consequently creatgsres at lower densities.
The later time curves also show the near disappearance of Betti cuthieéghest densities but
behaviour at lower densities depends on Betti numbergggshown here) an overall decrease
is visible: apparently for more evolved density fields particle spreadingrdoseate additional
components at lower densities but the particles are just absorbed in ttiagegises. 31 in-
creases for middle ranged densities @adshows a drastic increase at middle ranged densities
for strong perturbations.
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Figure 5.5: Betti curves for particle perturbation analysis. In order of priority in case of overlapping points: Betti eas for
non-perturbed case (black) and perturbed cases, withrpation magnitudes df- sjpq (dark blue),10°- - sjpq (sky blue),10* - sjpq
(green), 1015 - sjpq (vellow) and10? - sjpq (red). For each of the Betti curves above, all ten realinstiare shown for the high
density field. The Betti curves for the low density field atesfiow, as their behaviour is analogous to the high densdg.daeft to
right: increasing time and top to bottom: increasing Betti disien.

5.2.2 DTFE perturbation analysis

The Betti curves of the density field are much less influenced by pertunisatidrobably the
method which generates the density field absorbs quite some of the chamgigdual particle
position. Globally, where there is an effect it is analogous to the particks eaan be seen in
figurel 5.6. From these graphs we see that a perturbation up to aroyedcEht doesn't visibly
perturb the diagram. Perturbations of'®0or larger do give a different curve. The influence
of the magnitude of the perturbation goes down with increasing Betti numidee. intrease
mentioned fors; and s for middle ranged densities in the particle case disappearsiFamd
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Ap < 1-sipg there is a high density knee, but this disappears for higher Betti numbe:targer

perturbations.
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Figure 5.6: Betti curves for density perturbation analysis. In order of priority in case of overlapping points: Betti eas for
non-perturbed case (black) and perturbed cases, withrpatton magnitudes df- sjpq (dark blue),10°-5 . Sipd (Sky blue),10" - Sipd
(green), 1015 . sipd (vellow) and10? - sipg (red). For each of the Betti curves above, all ten realizatiare shown for the high
density field. The Betti curves for the low density field atesfiow, as their behaviour is analogous to the high denssg.dzeft to

right: increasing time and top to bottom: increasing Betti digien.

5.3 Nicing persistence diagrams

For modest perturbations the results of previous section are encagyragich perturbations
don't influence the Betti curves very much. For larger perturbatiorts 8aves systematically
shift to other positions. Furthermore, persistence diagrams or Betticeoumnt cycles, ‘but
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not all cycles are created equal’: some live very long whereas otheeraund just for a short
while. Short-lived cycles are not that relevant: they represent snstlifes or noise and for
proper analysis can better be taken out. This section discusses seagsalo do so, i.e. to
nice a persistence diagram. A classical way to take out small featusesasthingthe diagram.
Technically, this often means convolving diagram with an approriately chasection. We
smooth the input field and discuss how this influences the topology in subséclid. One
of the huge advantages of a persistence diagram is that the relevaag®iot can be inferred
directly from the diagram. A more topological approacimianifold simplification discarding
all points whose persistence paif = [oxor+1] (cf. definition/A.27) has a density ratio or
difference smaller than a certain threshold value and rearranging theahdaagtordingly. We
consider this approach in subsection 5.3.2. Betti numbers are one of theisefid topology
measures. Their definition can be generalizegduosistent Betti numbersvhich also gives a
topological measure of importance of features. In subsection 5.3.3 whisskfinition to nice
the persistence diagrams.

5.3.1 Smoothing the input field

The classical way to nice a density field is by convolving it with a smoothingtimmcA natural
and often used smoothing function is a Gaussian, which we will use herelasNaturally
particle positions can’t be smoothed, so this approach only works forehsitg case. If the
density field would be continuous, a Gaussian smoothing function has soqgue @md attractive
properties:

1. Itis the solution of the diffusion equatio%g = %g% with initial condition L(z;0) =

f(@).

2. Increment of scale space parametayill not lead to additional local extrema or additional
Zero crossings.

3. Causality: foroy > o1 thanL(z; 02) depends only ot (x; o).
4. Itis shift invariant and doesn’t depend on image values.

The numerical density field is computed on grid points. Although it is an appeadion of
the continuous density field, it consists of a set of discrete values. An yt@ifiproach might
be to sample the Gaussian at grid point centres, but the attractive prepsdstee won't be
retained. To retain them, tliBscrete Gaussian kernbhs to be usetﬁ [Lindebéqu. 1990], defined
as:

Definition 5.4 (Discrete Gaussian kernel\t indexn and scale space parameteythe discrete
Gaussian kernel is given by:
T(n,o)=e 7I,(0) (5.8)

with 7,,(o) the modified Bessel function of integer order

Here, we use a 3D normalized discrete Gaussian filter to smooth the densityfieldliter
is cut off in each dimension when the size of the filter reaches the limit of nuahedcuracy.
Figurel 5.7 shows the high density field for various values ofThe low density field is not
shown as it behaves analogously. Observing hat0.25 only marginally smooths the density
field and thatr = 2.0 almost homogenizes it, we choose smosth {0.25,0.50,1.0}.
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(a) Unsmoothed. (b) Unsmoothed.

(c) Smoothingr = 0.25. (d) Smoothingr = 0.25.

0

(e) Smoothingr = 0.50. (f) Smoothings = 0.50.

0

(h) Smoothingr = 1.0.

(i) Smoothingos = 2.0. (j) Smoothings = 2.0.

Figure 5.7: The effect of smoothing on the density fieldThe high density field smoothed with a discrete Gaussian vetlous
values foro. Left: earliest available time:(= 3.8) and right: today{ = 0).
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In this subsection, we taken the LCDM 0-cycles for the high density fieldeae#rliest
time as reference case. Figure|5.8 shows its Betti curves. Smoothing invedop of the Betti
curve and decreases its range. Probably because a lot of smalles ayelaveraged out. The
difference between the non-perturbed and perturbed cases rernairgtee same for small and
moderate smoothing's. Only for largec’s, the most perturbed Betti curves come closer to their
less perturbed brethren. The last could be explained by noting thaasicger also increases
the ‘threshold level’ of persistence pairs being taken out. As increagirigrpation magnitude
generates more low persistence pairs (cf. section 5.2), highly perttigbasi will be stronger
influenced by smoothing. Interestingly, increased smoothed makes theBe&sdess smooth.
Compared with this reference case, 1-cycles and 2-cycles show thefaoialthough less
pronounced. The low density and later time Betti curves respond anadgsmoothing.
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Figure 5.8: The effect of smoothing on density Betti curvesBetti curves of the LCDM high density field at= 3.8 for various
smoothings’s. Line colors as in figure 5.6.

5.3.2 Manifold simplification

In a persistence diagram a line perpendicular to the birth=death diagainedties the lifetime
of a feature (cf. sectidn 3.6). An intuitively nice way to delete low-perstdtsatures is simply
to remove all points in the persistence diagram closer to birth=death diagamahthertain
minimum £, .,:». This corresponds to simplifying the manifold such that all features whose
lifetime is smaller than this value are cancelled out. For a persistenceypair [oxo11],
in a loglog persistence diagram the distance from the birth=death diagamasponds to the
persistence ratio

7(qr) = pp(ok+1)/pp(0%) (5.9)
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In a ‘normal’ axes persistence diagram, the distance from the birth=deatbhngdibcorresponds
to the persistence difference:

d(qr) = pp(or+1) — pp(0k) (5.10)

Both might have their uses so we compute both, starting with the peristence ratio.

Ratio simplification

Cosmic structure has a large density range so within this thesis we mainly uskog legresen-
tation of persistence diagrams. This makes ration simplification the most intuitivéifsatipn

to consider. If we know the ratio distribution function(fgy ), a certain significance-threshold
can be set and all points below this threshold ignored. In the particle dase tlon-trivial from
the start. In the density case we might derive the ratio distribution functlotnrgdrom the
DTFE density distribution, which is excellently approximated b i lScI"-]200

dp(\) = 12443 -8c=6/A g} (5.11)

Defining X andY as random DTFE density variables tgr andoy 1 respectively, we can write

for their their joint distributionf (z, y):

PY =yl X =z=>y)
Jo P(Z = 2)dz

flx,y) =P(X =2,Y =y) = P(X =x) (5.12)

where in the second equality (i) we took into account that for a persistesice; we have
r(qx) > 1; (ii) we assumed the amount of points is very large such that taking out@né p
doesn’t change the distribution and (iii) the denominator is for normalizatiiggihg in equa-
tion/5.11 multiple times gives:

fla,y) = 194078 A (5.13)
f 2—8e=6/2(z '

with € [0,00) andy € [z,00). Now we can define the ratio distributid = Y/X with
cumulative distribution’(r):

F(r)=P(r < R) = P(Y <uX|X > 0)

/ / f(z,y)dxdy (5.14)
B 1944/ / wsesle Vg
> Jo Jo Jo z78e76/2dz

This is a very nasty expression and quite likely incorrect: the only assumpéidomok above was
r(qr) > 1 but pairings are not that random. In general, very low density pointmare likely
to get paired with very high density points, and slightly low density points ares rhilaely to
get paired with slightly high density points. The exact pairing, howev@edds on the detailed
characteristics of the density field. There has been some preliminaryalesedhis direction
in the case of Gaussian fields (cﬁ [Feldbrugge et al.]) but this hasrdeetn inconclusive
and doesn’t apply to strongly nonlinear fields like we discuss here.efdrey; the best way to
procede might simply be obtaining(r) from experiment.
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Removing small features actually serves two goals: (i) removing little persistelats from
the persistence diagram and (ii) get out noise. The DMC is based onraglaiangulations
and these are in particular sensitive to Poisson noise (cf. 4.2). Poisg@will mainly have
low persistent features. Therefore, when we proceed with some epasah, manifold sim-
plification allows at the same time in an analytical way. First, we create a ran@isaoR
particle distribution, compute its persistence diagram and determiré(its experimentally.
Then, we set a given small probability that a cycle is actually Poisson ndlse.persistence
value corresponding to this probability can be found fréifr) and all cycles with smaller a
smaller persistence value can be simplified out. Hence, we have simplifieceamuistd the
persistence diagram in one go!

Following this route, we create mock Poisson distributions for 75 Mpoxes with on
average 64 particles, determine their correspondingft¢r) and use this to set a simplification
threshold level. The mock catalogues are created in the following way:

1. Draw from the Poisson distribution with= 64 a random variable which determines the
number of particles in the box.

2. The particles are distributed within the box using a random uniform disisitou

Technically, the C++ Boost library Poisson distribution and uniform distidioare used, again
with a Mersenne Twister random number generator. Of course thetpersgsdiagram with a
random amount of randomly placed particles is very random. To get aroidén intrinsic
variation 100 mock Poisson catalogues were made. Their cumulative ratibutisins 7'(r)
are displayed in figure 5.9 showing the following features:

e There is huge difference between the density and particle case. Tleeo$lBguicie(r) iS
much lower than the slope fdfye() and consequently the first reaches up to an order of
magnitude higher ratio’s. A probable cause is that the particle case is muclsemsigve
in the high density regions and so several very high density peaks might\&4th DTFE
these tiny very high density patches are smeared out.

¢ In the density case the 1-cycle and 2-cycle curves cross wherea®#ss'dhappen for
the particle case. We have no intuitive explanation to offer at this point.

e Although there is some spreadf(r), especially at large values, the spread is modest.

o Differences aside, both the particle and density graphs clearly shogeadacess of low
persistent points.

We set three significance values;(r) = 0.1, F»(r) = 0.01 and F5(r) = 0.001. The cor-
responding threshold values ofare tabled in table 5.1. Using these thresholds, all persistence
pairs with a smaller ratio are cancelled. For completeness, we note thab[é@] followed
this approach as well and defines thresholds ‘in analogue with the Gaussia’ by using an
inverse error function. However there is not a Gaussian anywheiighity so we refrain from
this approach. The resulting Betti curves for the particle and densityatasthown for a repre-
sentative case in figures 5/10 and 5.11 respectively. We directly seéedtestsing simplification
threshold lowers the Betti curves as many low-persistent cycles aredakeflso directly vis-
ible is the changing difference between the non-perturbed and slightiyrped cases and the
more perturbed cases with increasing simplification threshold levels. Bothdgrarticle and
density case highly perturbed fields are (much stronger) influenceampyjification than less
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Figure 5.9: Cumulative probability F'(r). The F(r) graphs show the probability of the existence of a persistgadr with ratio
equal or larger than. Mazarine: O-cycles; sky-blue: 1-cycles and green: 2es;dior 100 mock Poisson distributions.

Sign. values density particles

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles
0.1 0.21240.002 0.156 +0.002 0.142 +£0.002 | 0.628 +£0.004 0.282 £ 0.002 0.202 4 0.002
0.01 0.344 +0.004  0.252 4+ 0.002  0.262 + 0.004 1.08 4+ 0.002 0.424 +0.002  0.320 £ 0.006
0.001 0.430 +0.010 0.286 +0.002  0.340 + 0.010 1.50 +0.034 0.480 + 0.002  0.396 + 0.010

Table 5.1: r threshold values. Threshold values of persistence ratidor several cycle dimensions and both the particle and
density case at various significance values.

perturbed fields. As possible explanation we offer that increasingrpatian magnitude gen-
erates more low persistence pairs (cf. section 5.2). Thus highly pedttidbes will be stronger
influenced by simplification, analogously as with smoothifigand g, show similar behaviour

as 3. The increase off; and 3, at middle ranged densities disappear at high simplification
thresholds.
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Figure 5.10: The effect of ratio simplification on particle Betti curves. Betti curves of the LCDM high density field at= 3.8
for various simplification ratios, particle case. Line calas in figure 55.
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Figure 5.11: The effect of ratio simplification on density Betti curves. Betti curves of the LCDM high density field at= 3.8
for various simplification ratios, density case. Line colassn figuré 5.6.
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Difference simplification

The persistence ratio follows swiftly from the log-log persistence diagrarmlberms of physics
the difference instead of the ratio is more intuitive. Therefore, the anaisige is repeated for
the cumulative difference distributiaB(d), which is shown for the Poisson mock distributions
in figure'5.12. Compared with'(r) we see thaf)(d) decreases much steeper and the graphs
for different cycles don’t cross. The values corresponding to dimeesthresholds as before are
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(a) 64 particle case. (b) 64 density case.

Figure 5.12: Cumulative probability D(d). The D(d) graphs show the probability of the existence of a persist@air with
difference equal or larger thah Mazarine: O-cycles; sky-blue: 1-cycles and green: 2ag;dior 100 mock Poisson distributions.

tabled in table 5.2 and the corresponding Betti curves are shown in figur@sand 5.14. At
first glance the similarity with the ratio-simplified Betti curves is most striking. Cansid the
graphs in more detail some differences emerge between both methods of satiplifican be
found. Compared with ratio-simplification, difference-simplification:

e is ‘more effective’ on small densities and ‘less effective’ on high derssitie

e consequently, spurious high density features are dealt with less eflgcind inversely
for spurious low density features;

e is less sensitive to perturbations, i.e. the higher magnitude perturbatiossdig\closer
to the smaller magnitude perturbation curves;

e |lowers the Betti curve less with increasing simplification thresholg@foabout the same
for 51 and much more fof,.

Sign. value density particles

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles
0.1 —0.070 £0.004 —0.456 £0.004 —0.726 +0.004 | —0.078 £0.005 —1.004 +£0.002 —1.520 % 0.004
0.01 0.202 £ 0.008 —0.252+0.004 —0.510 £ 0.006 0.418 £+ 0.002 —0.820+0.002 —1.368 £ 0.006
0.001 0.350 + 0.016 —0.194 +0.004  —0.428 4+ 0.008 0.790 4+ 0.026 —0.666 + 0.012  —1.304 4+ 0.008

Table 5.2: d threshold values. Threshold values of persistence differedc®r several cycle dimensions and both the particle and
density case at various significance values.

For both simplification methods, compared with smoothing a few important thingbecan-
ticed:

e simplification increases the minimum density value of Betti curves, whereastlsimgo
mainly decreases their maximum value;
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Figure 5.13: The effect of ratio simplification on particle Betti curves. Betti curves of the LCDM high density field at= 3.8
for various simplification differences, particle case. Lawdors are as before. Line colors as in figure 5.5.

o simplification results in much smoother Betti curves than smoothing;

e especially difference simplification has a much stronger effect on higéiraimbers.
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Figure 5.14: The effect of ratio simplification on density Betti curves.Betti curves of the LCDM high density field at= 3.8
for various simplification differences, density case. Linéocs are as before. Line colors as in figurel 5.6.

5.3.3 Persistent Betti numbers

In a log-log persistence diagram ratio-simplification corresponds withiiggaitl points whose
distance to the birth-death diagonal is smaller than some value. For Betts¢hiseorresponds
graphically to removal of the lowest persistent corner of a Betti sqsaethe green triangles
in figure/5.15. Specifically for Betti numbers, persistent Betti numbersi@finition A.26) give
another method to indicate their longevity. Graphically, persistent Betti nuiavdverobtained
by moving the Betti square left-upwards. To see how this subtle changesisgeace measure
influences Betti curves the analysis above is repeated for persistéhtBwes. Given the
limited differences between ratio and difference simplification, we only cengiigk ratio case.
Using the threshold values found for ratio simplification we plot the persi&etit curves in
figures 5.16 and 5.17 for the particle and density case respectively.

Look again at figuré 5.15. In persistence diagrams the difference eetvatio simpli-
fied Betti curves and persistent Betti curves are a horizontal and alergctangular’ region.
The horizontal region corresponds with low-birth low-death points andéhtcal region with
high-birth high-death points. That persistent Betti numbers leave thgs®seout is clearly
reflected in the persistent Betti curves. They resemble these of ratio siapdificieatly for a
low simplification threshold but with increasing threshold ‘loose’ the low and Hignsity tails.
Furthermore, the height of the Betti curves drops sharper. Thesetefiecome even stronger
for 51 and,, the last almost completely disappears for a high simplification threshold.
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Figure 5.15: Simplification vs persistent Betti numbers Graphically, Betti numbers given by the number of points ia th
Betti square in a persistence diagram. Simplification takésheubottom-right corner of this square, here indicated withgreen
triangles. Considering persistent Betti numbers corregpuarith moving the square upwards. The difference betweeni§ication
and persistent Betti numbers are the colored ‘rectanglesgsponding with low-birth low-death and high-birth higkath points.
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Figure 5.16: The effect of ratio simplification on particle Betti curves Persistent Betti curves of the LCDM high density field at
z = 3.8 for various simplification ratios, particle case. Line cslas in figure 5.5.

5.4 Summary

Data used for persistence diagrams may contain errors, be it due tatinseal uncertainties or
due to data-processing methods. For tame mathematical functions it is knemmbertainties
will change individual points in the persistence diagram. Yet it is until noknown how

systematic uncertainties in many or all data points will influence the persistéangpeih as a
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Figure 5.17: The effect of ratio simplification on density Betti curves.Persistent Betti curves of the LCDM high density field at
z = 3.8 for various simplification ratios, density case. Line colassn figuré 5.6.

whole. To get an handle on this both for the particle and density case a éigiiydand low-
density region were selected. At an early and late time the particles insidgertuebed with
various magnitudes in arbitrary directions. The following observationdeanade:

1. The mathematical results of the influence of errors on individual poietsadid for the
densities under consideration. (But these results don't tell how theadiiegs whole is
influenced.)

2. Betti curves are relatively robust against perturbations up to 10 %.

3. Perturbations of predefined magnitude in random directions don’téeadpread of the
Betti curves around the unperturbed case but to a systematic shift. énadyéims shift is
downwards for high densities and upwards for (very) low densities.

4. For the particle case, large perturbations can lead to irregular chantje Betti curves.
The density case seems much more robust against irregularities.

5. Besides these irregularities, the effect of perturbations decrgdadeincreasing Betti
number.

Persistence diagrams contain a wealth of information. Raw diagrams conggralaounts
of noise as well in the form of low persistent features and noise. Sevethods are available to
nice the diagrams: (i) the classical method of smoothing; (ii) ratio-simplificatiirdifference-
simplification; and in case of Betti curves (iv) persistent Betti curveseboh of these methods,
the persistence diagrams were niced and the analysis above was repaaethows us:
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1. All nicing methods have the same quantative effect: irrelevant featusesancelled,

lowering the height of the curve and influencing its lower and upper debsitpdaries.

. None of the nicing methods decreases the difference between théunbed and highly

perturbed cases systematically. Often, nicing the diagram even incthastiference.

. Interesingly, nicing diagrams has the same quantative effect onlpetians as time evo-

lution: the Betti curves of highly perturbed cases are reduced much memehbse of
little perturbed cases. This probably means that both have the same effaug: Structure
is enhanced and small structure surpressed.

. Classical smoothing influences both the lower and upper densities dries)dthe latter

more than the first. Persistent Betti numbers also strongly influence botidades.
Ratio-simplification mainly influences the lower densities and difference simpidfica
even more.

5.5 Discussion and conclusions

From the summary observations above, two things need further attentiat, tRé choice of
perturbation type might influence the resulting changes in the persistergrardial.e. the ob-
served systematic shift of the Betti curves might be caused by the choigertarbing particles
a set size in random direction. This type of perturbation will disperse lglatgstered groups
of particles and thus mainly destroy structure. We've seen that persstiggrams are very
sensitive to the amount of structure. Consequently, the systematic shéit imedeasing pertur-
bations might mainly reflect the loss of structure rather than anything elstheFsupport to
this idea is lended by the enhanced decrease under increasingly striioggs of large pertur-
bation magnitude Betti curves. For a general analysis as here the tdyperof perturbations
sufficies. It reflects where persistence is most senstive for (ste)cind illustrates that up to
quite large perturbations the persistence diagrams are not much influeRoedpecific and
strong observational biases in future applications, it might be worthwhilepeat this analysis
perturbing the particles in specific way.

Second, which nicing method is to be used? The ideal nicing method will havellineihg
properties:

1.

2.

3.

4.

it cancels out the points corresponding to ‘irrelevant features’;
by doing so it enhances the differences between features we aesiatein;
it decreases the effect of perturbations;

is not very computationally demanding.

Let’'s consider these points one by one.

1.

All methods cancel out ‘irrelevant features’ but each methodseteéin irrelevant feature
in a different way. Simplification defines ‘relevant’ intuitively as having dhsdeath ratio
or difference above a certain threshold. Persistent Betti numberg defievant’ based on
the density ratio after which a point seizes to be in the Betti square. In @dassioothing
‘relevant’ depends in a non-trivial way on the environment.
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2. Strikingly, these different definitions of relevant give analogossiltse but also some ma-

jor differences can be found. In particular, classical smoothing argigpent Betti num-
bers cancel out the low and high density tail of Betti curves quite fast.r loatewe will
see that it is especially this lower tail which is of interest.

. Unfortunately none of the methods decrease the effect of perturbathostly, nicing

even increases the effect of perturbations, as perturbations ¢enevee low-persistent
structure which is easier niced out.

. Smoothing is done on the density field and only afterwards the filtrationecanrmputed

and the persistence diagram created. As particularly the last one is theitediomal
bottleneck, with smoothing it is difficult to ‘play around’ with various nicing telds.
The other nicing methods use the persistence diagram itself which makegymagimd
easier. Furthermore, smoothing is only applicable to the density case.

Since simplification: (i) performs in general terms as good as the other meffipldas an intu-
itive definition of ‘relevant’; (iii) doesn’t cancel out density tails too fa$t) is computationally
efficient and (v) is applicable to both the particle and density case, in thefriss thesis sim-
plification will be used as the default nicing method. In this thesis we mainly cenkigd-log
persistence diagrams, making ratio simplification the logical choice.

Things brings us to the conclusions of this chapter:
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1. Persistence diagrams (as represented by Betti curves) are -eatezkpvery sensitive to

the presence of structure.

2. Persistence diagrams are robust against uncertainties up to atléast 1

3. Persistence simplification is an excellent, intuitive and computationally efficiethod

to take out irrelevant features and noise. Whether ratio or differénggification is used
depends on the specifics of the situation under consideration. As we maimsjder
log-log persistence diagrams here, ratio simplification is the logical choice.



CHAPTER O

On the persistence of LCDM

In chapter 3 topology was introduced. Topology is an abstraction of gepmkéowing us to
describe the cosmic web in terms of its morphological components: voids, filallsents and
nodes. The main tool introduced there for topological analysis ipénsistence diagrar(cf.
definition 3.31). A persistence diagram is a set of points indicating the bidlleath densities
of physical features in a density field. The difference between the bidluaath density values
of a feature is a measure for its relevance and is callggkitsistencécf. section 3.6).

Chapter 4 explained the step from topology to computational topology ampdestashowed
that the data pipeline developed in chapter 4 is stable. Furthermore, ciiahtewed the well-
behaved-ness aimplification(cf. section 5.3): a topological analogue of smoothing that can-
cels low persistent features.

In this chapter we apply the topological machinery developed so far olhl8dDM simu-
lation (cf. subsectioh 4.1.3 for details). In section 6.1 we describe thégasuhe following
way:

1. avisual impression and interpretation of the persistence diagramsiis give
2. two 1D summary curves are parametrized,;
3. the effects of simplification are considered.

Subsequently we investigate how the persistence diagram changes wwitection 6.2. We
do so by computing it at several other snapshots of the simulation, eaddifedrant > value.

We results are described in the same way as above. We round up thisrchigiptsummary
observations and conclusions in section 6.3.

6.1 The reference case: LCDM at = O(run 15).

In total this thesis uses 3 DE models realizations< 8 redshifts is 120 files. This large amount
of data precludes investigation of each individual file. Therefore vpdyag different strategy
and compare all results with respect to a reference case. As referase we choose LCDM
run 15 atz = 0 because:

e LCDM is the standard cosmological model (cf. the introduction of chapter 2)
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e computation of the structure clustering parametefcf. equation 2.33) for LCDM shows
that run 15 has the median of all runs. This holds for alt.

e at lower z structure is more evolved and thus a possible dark energy imprint on cosmic
structure will be largest.

A visual impression

Figure[6.1 gives an impression of the cosmic structure in LCDM (run 15) at 0. Large
filaments connecting massive nodes are clearly visible, just as enormots rexgipns devoid
of anything. Figure 6.2 shows the basic persistence measures for LEDM=a0 (run 15).
The persistence diagrams are displayed on the left. All diagrams show rhartyliged fea-
tures near the birth=death diagonal and more long lived features fanegr. With increasing
dimension the cycle density shifts from late-born late-died to early-borrearig-died. This is
understandable: the 0-cycles are related with components whereasytbled and 2-cycles are
related with tunnels and shells, lower density regions inside componentexidrededness of
the 0-cycle persistence diagram might incorrectly suggest there aredrogdes, but this is not
the case. There are 288731 0-cycles, 587153 1-cycles and 225@#4les in the persistence
diagrams below. |.e. on average every component has around twdg@amaeone shell.

On the right of figure 6.2 three 1D summary-graphs of the persistenceadiadcf. figure
'3.24 and the text above the figure) are shown:

1. The Betti curves (top) visualize the number of components, tunnelshextid alive at a
certain density threshold.

2. The lifetime ratio curves (middle) give the amount of cycles as functionedf lifietime
ratio.

3. The product mean density curves (bottom) show the amount of cydiescmn of mean
density.

The Betti curves behave qualitatively analogous to the Betti curves fuprevious chapter.
With increasing dimension the curves shift to lower densities and becomevgballacreasing
dimension shifts the lifetime curves strongly to lower rations and the mean densitgscto
lower densities.

Parametrization of 1D summary curves

On the eye, the shape of the mean density curve of figure 6.2 resembled ¢hktg-normal
distribution quite well. This can be connected with known properties of thaicatensity field.
[Coles and B., 1991] found that the large scale matter distribution is quiteapetbximated by
a lognormal distribution. Interestingly, the shape of the Betti curves rdsertiie shapes of the
mean density curves and are thus lognormally distributed as well. Betti csimeesthe amount
of cycles alive at a certain density threshold in the rising sublevel seteT®@o fundamental
reason known to us why the amount of cycles should follow the same beinagdhe density
field.

A lognormal distribution is a distribution of a variable whose exponent is nibynis-
tributed. The lognormal probability density functigia(x|u, o) can be obtained in a straight-
forward way from the normal distribution using variable transformation:

exp <_<1M—M>2> 6.1)

202

fln(37|M7 U) - 330'\1/%
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Figure 6.1: Density field of LCDM at z = 0 (run 15).

with 1 the mean and the standard deviation. It has both mathematically and physically nice
properties: (i) for small fluctuations it approximates arbitrarily close a &andglistribution; (ii)

the density remains always positive; and (iii) many nice properties of thesgaudistribution

can be computed analogously for the lognormal distribution. If the Bettesiamd mean density
curves are resembling a lognormal distribution, than their exponents folloovraal distribu-
tion. To check how strong the lognormality is, we fit both exponents with a Adadis@ibution.

The two panels of figure 6.3 show the Gaussian fits of the Betti curve and degesity curve
exponents. Although the Gaussian fits agree quite well, they seem a bidkéth respect to

the Betti and mean density curves. This suggests to try a fit with a skewetahdistribution,
defined as:

F(ls, 0, 0) = 20(z|n,0) / ot |, o)t 6.2)

with ¢(x|u, o) the normal distribution and the skewness parameter. The skewed normal dis-
tribution gives a visibly better fit, see figure 6.4. For the Betti curves the dités near exact.
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Figure 6.2: Persistence measures for LCDM at = 0 (run 15). Left: persistence diagrams for various dimensions. Right: 1D
summaries of the previous. Colors indicate different cyafeatisions: red (0-cycles), yellow (1-cycles) and blue (2es)c

The effects of simplification

Many features close to the birth=death diagonal might be Poisson noiseramgthey are low
persistent features which are of limited relevance (cf. subsection 5Qf8n, density fields
are smoothed to remove such low persistent features. The topologitagaaaf smoothing is
simplification (cf. section 5/4). To investigate the effect of simplification on tnesdy field,
we simplify the manifold according to the prescription of subsection 5.3.2. Tétesfep in the
prescription is setting a significance value indicating the maximum probability tiesitare is
actually Poisson noise. Thresholds have been computed fqaticle distributions but as the

97



December 2013 6.1. THE REFERENCE CASE: LCDM &E 0

0.04 T

',7\ - O-cycles
0.035} ] \ —fitted curve |-
\/ B - 1-cycles
0.03f [ —fitted curve |
; / ] - 2-cycles
£ 0.025 I \ —fitted curve ||
S |
S
P 0.021 B
[
Q
€ 0.015 B
a
0.011 B
0.0051- B
Tty L L
—2.5 0.5 1 2 25 3
mean density
(a) Gaussian fit of mean density curves.
0.045 T
- O-cycles
0.041 —fitted curve |
- 1-cycles
0.0351 —fitted curve |7
- 2-cycles
0.031 —fitted curve ||
‘S 0.0250 E
)
o
b 0.02r B
0.0151 i
0.01- B
0.005F / B
L . . .
—95 -1 -0.5 0 0.5 1 15 2 25 3 35

log( density )

(b) Gaussian fit of Betti curves.

Figure 6.3: Gaussian fits to LCDM (run 15) atz = 0. In each diagram from right to left i.e. from high to low deresst O-cycles,
1-cycles and 2-cycles.

threshold depends on the amount of particles, we have to recompute tteoldefor the 256

case considered here. To do so, ten Poisson mock catalogues witth6> are created. Their
cumulative ratio distributior¥’(r) and cumulative difference distributioR(r) are computed.

The thresholds for the significance values 0.1, 0.01 and 0.001 canfxifotable 6.1 and(r)

and D(r) are plotted in figure 6/5. For comparison, both the Poisson mock catalogdes| a
LCDM runs atz = 0 are shown. The figure unambiguously shows that the density fields extend
up to far larger densities than the Poisson mock catalogues and thus cdotaimoae structure.

The differences between the LCDM realizations themselves is minimal.

Sign. values persistence ratio persistence differenaé

0-cycles 1-cycles 2-cycles 0-cycles 1-cycles 2-cycles
0.1 0.212+£0.000 0.156 £0.000 0.142 £+ 0.000 | —0.072 £0.004 —0.460 +0.002 —0.726 + 0.000
0.01 0.344 +£0.000  0.252 £+ 0.000 0.262 £ 0.000 0.202 £ 0.004 —0.250 £0.000 —0.508 £ 0.000
0.001 0.436 +£0.002  0.288 +0.000  0.342 £ 0.002 0.354 £ 0.002 —0.194 £ 0.000  —0.429 £ 0.004

Table 6.1: Simplification threshold values. Threshold values of persistence ratigleft) and persistence differende(right) for
several cycle dimensions for Z5@articles, density case.

Figures 6.6 and 6.7 show how the persistence diagrams, Betti curves, lifaiives and
mean density curves evolve with increasing simplification threshold. Ratio sirafitiic(cf.
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Figure 6.4: Skewed Gaussian fits to LCDM (run 15) atz = 0. The skewed Gaussians are visibly a better fit than the ondinar
Gaussians shown in figure 6.3. In each diagram from rightfte.ée from high to low densities: 0-cycles, 1-cycles andy2fes.
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Figure 6.5: Cumulative density distributions. The graphs show the probability of the existence of a peysi® pair with a ratio
or difference equal or largerrespectivelyl. LCDM simulations at: = 0: red (0-cycles), yellow (1-cycles) and blue (2-cycles).
The Poisson mock catalogues of 25farticles: dark red (0-cycles), orange (1-cycles) and tark (2-cycles). For all dimensions,
the LCDM curves show significantly more persistent structilitee differences amongst the LCDM curves themselves is niblgig

subsection 5.3.2) does exactly what is was meant to do: shifting the birth=diagtimal up-
wards. Due to the shape of their distributions, figrthis goes mainly at the expense of the low
density tail; for3; the burden is spread relatively evenly between the low and high density tail
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Figure 6.7: The effect of ratio simplification on 1D persistence summarycurves. 1D persistence summary curves for LCDM
atz = 0 (run 15). The colors indicate different cycle dimensionst (@-cycles), yellow (1-cycles) and blue (2-cycles). Btah
means higher simplification threshold, with the followingspst (i) not simplified, (ii)p(cpoisson = 0.1, (iii) p(cpoisson = 0.01
and (iv)p(cpoisson = 0.001. Here,p(cpoisson = « indicates that the probability of a cycle to be generated diggen noise is
equal or smaller than.

and; for g2 the high density tail is severely diminished. Also the Betti curves behave sis wa
expected from previous chapter: with increasing threshold they lowdntlglignd partly loose
their tails. Similar effects can be seen in the mean density curves, where siatigifibas a
much stronger effect. The direct effect of ratio simplification has a trgfi@ct on the lifetime
curves (not shown here): the graphs get cut off at threshold level.
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6.2 Time evolution

Cosmic structure evolves with time, so for different values @fe expect to see differences in
the persistence measures. To investigate the influence of time evolutionnsidexd_CDM run
15 at eight redshiftsz = 3.80, z = 2.98, z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10
andz = 0.0.

A visual impression

Figure 6.8 illustrates the evolution of the density field withThe top-left tile shows the density
field atz = 3.80. Although the seeds of cosmic structure are discernible, structuresfased
and the density differences limited. The bottom-right tile showing 0 gives a completely
different view. Pronounced structures with a large density differaneeiscernible. To see how
this structure evolution is reflected in persistence diagrams, figure 6.9% dmw persistence
diagrams and its 1D summary graphs evolve in time. A distinct time evolution is visilifle: w

(a) LCDM z = 3.80. (b) LCDM z = 2.05.

(c) LCDM z = 0.507. (d) LCDM z = 0.00.

Figure 6.8: LCDM time evolution. Density field of LCDM 15 for varioug. Structure clearly evolves whendecreases.

decreasing the persistence diagrams fan out from close to the middle and near thealiagon
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6.2. TIME EVOLUTION

all directions. The effect seems strongest at highlaut it could be the effect of time sampling.
The 0-cycles mainly migrate upwards along the diagonal, contrary to 2-wyltlgh mainly
move downwards; 1-cycles spread quite evenly upwards and dodswdaturally, the spread
is also reflected in the mean density curves and (to a lesser degree) inttheuBges. The
lifetime ratio increases in time to higher densities, quite strong for O-cyclesrapnalgghtly for

2-cycles.
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Figure 6.9: Persistence diagram time evolutionPersistence diagrams for LCDMat= 0 (run 15). Left: 0-cycle time evolution,
color indicates logarithmic excess of later time (red) orieatime (green). Right: 1D persistence summaries with red/(les),

yellow (1-cycles) and blue (2-cycles). Brighter means lower
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Parametrization of 1D summary curves

Throughout time evolution a skewed lognormal remains an excellent fit ®omian density
and Betti curves. Fits for the latter curves for various values afe shown in figure 6.10.
The plotted skewed Gaussians have 4 parameters: mestandard deviatior, the skewness

0.06] 22000 ) |
—fitted curve
- z2=0.25
0.05f —fitted curve | 7
— - z=1.00
g 0.04- —fitted curve | |
[3} - z2=3.80
<|3‘ ——fitted curve
—
a

log( density )

Figure 6.10: Skew Gaussian fits to Betti curves for various redshiftsAbove 1-cycles are shown, fits for 0-cycles and 2-cycles
are analogous. The height of the curves descreases witbadgngz. Note the excellent fit for alt and all dimensions.

parameterny and the scaling parameter (The last is a pre-multiplication factor to correct for
bin size.) With time the skewed Gaussians evolve and these parameters.chiangssess
whether there is any trend in the evolution of these parameters figure @W4 #he evolution

of the best-fit parameters in time. Forando a trent corresponding with observations above is
evident. With timeo increases for all dimensions, whergascreases for 0-cycles, decreases
for 2-cycles and remains about the same for 1-cycles. More interesihgps is the behaviour
of the skewness parameter which surprisingly doesn’t increase with time but shows rather
eccentric behaviour. As for all the number of bins is the samegdoesn’t show any evolution,
as expected.

The effects of simplification

Ratio simplification might influence the persistence diagrams differently fiowsepochs. As
ratio simplification is an important tool to nice the manifold, it is important to undersifand
this is indeed the case and by how much. Figure 6.12 shows Betti curve tirhgi@vdor
increasing simplification threshold, with brighter color indicating lowelf = goes up the Betti
curve peaks go down, an effect that becomes stronger with incresisipgjfication threshold.
For the highest simplification threshold (bottom right panel) the differeeteden the lowest
and highest: peak has become almost an order of magnitude. This suggests that atlower
structure is less pronounced, as it simplifies away easier.

Note also that in the unsimplified case the Betti curve peaks of all dimensioesabaut
the same magnitude. On the contrary, at the highest simplification level coetbicere the 2-
cycle peak decreased about an order of magnitude with respect tactfudeOpeak. This can be
explained by the lower range of densities of 2-cycles, which makes theiispence relatively
low as well. The mean density curves and lifetime curves (not displayed)tbieossame pattern.
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Figure 6.11: Parameter time evolution of skewed normal fits
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Figure 6.12: Betti curve time evolution under increasing simplificationthreshold. Colors indicate different cycle dimensions:
red (0-cycles), yellow (1-cycles) and blue (2-cycles).giter means lower andp(cpoisso) = x indicates that the probability of a
cycle to be generated by Poisson noise is equal or smallercthan
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6.3 Summary and conclusions

First, as reference case LCDM (run 15)at 0 is described in detail:

1. The 1-cycle persistence diagram has an extended inveskape along the birth=death
diagonal. The 0-cycle diagram fans out towards higher births and hitga¢hs, whereas
the 2-cycle diagram goes in opposite direction.

2. The Betti curves and product mean density curves follow nearlyt exa&kewed log-
normal pattern. The lifetime curves are monotonically decreasing, espebially-cycle
and 2-cycle curves decrease quite fast.

3. Ratio simplification effects the persistence diagrams as expected byrigugth the diag-
onal. Consequently, the lifetime curves abruptly loose their lowest denditigale Betti
and mean density curves mainly shift downwards. Their 0-cycle andl2-ggriants also
loose their low respectively high density tail.

With time structure evolves. For LCDM run 15, the persistence diagrams afailable epochs
(from z = 3.8 to z = 0) are computed and compared, showing us:

1. Intime persistence diagrams fan out. 0-cycles mainly migrate to higher den2itigcles
mainly to lower densities and 1-cycles spread quite evenly in both directidwis spread
also clearly shows from the mean density curves and to a lesser degned¢hie Betti
curves, in the form of shifting: values and increasing. Interestingly, no trend seems
to be visible in the skewness parameterin time, the lifetime ratio increases to higher
densities, quite strongly for 0-cycles and only slightly for 2-cycles.

2. Simplification enhances the effect of time evolution, as earlier epochthiareed out
much more than later epochs. This suggests that at earlier epochs ssuatearless
persistent.

We conclude:

1. Persistence diagrams are a great tool to describe structure evothggrare very sensi-
tive to structure and structural evolution.

2. The skewed normal distribution is an excellent model for Betti curvesosmological
matter distributionsy, ando have clear patterns, the skewness parametest.

105



CHAPTER [

Topological dark energy differentiation

Dark energy determines the global evolution of the universe. (Dark) msaittgore powerful on
smaller scales and runs local affairs. As such it is dark matter that deterthmdetailed shape
of cosmic structure. But perhaps the tentacles of dark energy ruredéegm we think and it
mingles in local affairs as well. If so, it will not leave the shape of cosmicchtine untouched.
Different flavors of dark energy might leave a characteristic imprint @ngo structure. In
the future, such an imprint could than be used to put constraints on dargyemodels. The
previous chapter gave an extensive overview of the shape of LCDbspence diagrams and
how they are influenced by simplification and time evolution. Based on the intuidored
there, in this chapter we will or different DE models leave a different immninthe shape of the
cosmic web.

The three dark energy models considered here are the three modeleexpleection 2.4:
LCDM, RP and SUGRA. For each dark energy model five realizationa\aiable, named run
14 to run 18. Each dark energy model is considered at eight redshifts:3.80, z = 2.98,

z = 2.05, z = 1.00, z = 0.51, z = 0.25, z = 0.10 andz = 0.0. Combining previous gives

3 DE modelsx 5 realizationsx 8 redshifts is 120 files. This large amount of data precludes
investigation of each individual file. Therefore we apply a differerdatstyy and compare all
results with the reference case LCDM (run 15} at 0 (cf. section 6).

Three questions will lead us throughout this chapter:

1. Using persistence, can we distinguish between various dark enedplsvai the same
in real space?

2. If the answer to the question of the previous point is positive, do therdiites remain
visible if we transform to readshift space? If so, we might be able to usgspence to
observationallydistinguish between various dark energy models. In the future, this could
lead to topology induced constraints on dark energy models.

3. Using persistence, can we distinguish in real space between vaddusrergy models
at the same structure clustering parametefcf. equation 2.33)? If so, this suggests DE
has a ‘local’ effect on structure formation. Various DE models will resudtincture with
intrinsically different topology.
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The first and third question both consier structure in real space. Téméngal lies in the fact
that for different DE models structure evolves differently in time, i.e. thetionog(z) depends
on DE model:og(z) = os(z,DE). Therefore, topological differences between two models at
somez might be the combination of two separate effects: (i) different rates aftsireievolution
and (ii) intrinsic topological differences between the structure.

Of course, considering and og effects separately is only useful dk(z) differs notably
between various models. To see whether this is the cage, DE) w.r.t. og(z,LCDM) is
shown for the three dark energy models in figure 7.1. The figure cleaolysthat for smaller
z (z < 1) the models differ from each other significantly, making a separate treawhéms
z andog effects necessary. Furthermore, we observe that for hi§tdGRA evolves fastest,
but it is quickly overtaken by RP. Later LCDM takes over from both modets lzecomes the
fastest evolving model. We note that for largehe o differences between the models become
smaller. This is understandable as:at; g structure is identical for all models (cf. subsection

4.1.3).
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Figure 7.1: os(z, DE) with respect to os(z, LCDM) for the three dark energy models considered here.The values are
averaged over the five realizations, with the error bargatitig the variance.

For each of the three questions stated above, the different DE modelswitirapared in the
following way:

1. avisual comparison of the similarities and differences is given;

2. the effects of simplification, i.e. topological nicing of the density field (efction 5.3),
are considered;

3. we describe the statistical test setup used to determine whether differghany) are
statistically signicant;

4. the results from the statistical tests are presented.

An overall summary is given in section 7.4 and a discussion and conclusiemsesented in
section 7.5.

7.1 Real space identical redshift

For the three dark energy models under consideration snapshots of tiee distribution in
real space at the sameare directly available (cf. subsection 4.1.3). In subsection 7.1.1 we
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inspect their similarities and differences visually, followed by an investigaifahe effect of
simplification in subsection 7.1.2. The statistical test procedure is explainetl hand the test
results are presented in subsection 7.1.4.

7.1.1 Visual inspection

Plotting the persistence diagrams of various models and runs directly ismpollwinating, as
the differences turn out to be small. Instead, we use persistence ddédgeagrams (cf. section
13.6): the bin-wise difference of a diagram with another diagram (theenefe case). Persistence
difference diagrams are a great tool to investigate the pattern of diffesefror several SUGRA
models at = 0, their persistence difference diagrams are shown on the left of fig2ir&\Vithin
the persistence difference diagrams red indicates an excess of the/SkiGdel and green of
the LCDM reference case. As we see from the figure, for all dimensi@i3M. has clearly
more low-birth low-death cycles. Especially for 2-cycles this effect issiant across several
runs, cf. the bottom three persistence difference diagrams.

The persistence difference diagrams show the difference patterjusbas important is the
magnitude of the difference. This is better shown using the 1D summarysc(invparticular
the Betti and mean density curves), shown on right of figure 7.2. Thesagdhat the difference
between LCDM and SUGRA might have a pattern, but in general is very soralbared to the
function values. Only careful examination shows a systematic shift of LG®Nards lower
densities at the low density part of the curves. Furthermore, for Oy®M seems shifted
towards higher densities at the highest tail end. SUGRA has an oppokdgitwer: at lower
densities it is slightly shifted to higher densities whereas the high densityl@teyldt is shifted
slightly to lower densities. RP lies nicely in between both models.

The relative shift of LCDM to lower densities might be attributable to a diffestage of
structure evolution. At = 0 structure is most evolved in LCDM and we saw in section 6.1 that
structure evolution causes persistence diagrams to fan out, exactly widtserve. Physically
we can interpret it as follows: structure evolution makes empty regions enapiicthe most
dense peaks much denser. This explains both the shift of the low dendiiLi&il to even
lower densities and the shift of its high density tail in the opposite direction.

7.1.2 The effects of simplification

Simplification of the manifold supresses noise or small features, thus if tieeatiffes described
above are mostly small and insignificant simplification will take them out. By dangjrapli-
fication might enlarge the effects of more persistent features. To se¢hieombserved differ-
ences abide under simplification, figre 7.3 shows the Betti curves witheisiogesimplification
threshold. The differences observed in the non-simplified case séeistrthey neither become
more nor less prominent.

7.1.3 Statistical analysis / test setup

To test whether the small but apparently systematic differences betweearities DE models
are significant, we perform a two-taild¢blmogorov-Smirnov (KS) two-sample tesh each
pair of dark energy models and runs. The KS test is chosen becausw®it-jgarametric and
sensitive to shape as well as location. For completeness we note that tbissémdDarling test,
more or less a weighteld®-norm variant of the Kolmogorov-Smirnov test, is more sensitive
to local differences [Feigelson and G., 2012]. However, as the KShassenough statistical
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Figure 7.2: Comparison of persistence diagrams at = 0. Left: representative persistence difference diagrams grgen an
excess of the reference LCDM run 15 and red an excess of aradhle energy model. Stronger colors means larger excess, the
numbers next to the color bar indicate the (negative) powehekxcess, so note that the green color bar is inverted.t:RIgh
summary curves for LCDM (blue and LCDM run 15 black), RP (ye)lamd SUGRA (red). As can be seen from the 1D summary
curves presented earlier: cycle dimension decreases fifoto kght curve set.
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Figure 7.3: Betti curves atz = 0 with increasing simplification threshold. Betti curves for LCDM (blue and LCDM run 15
black), RP (yellow) and SUGRA (red), with increasing simpétfion thresholdp(cpoisso) =  indicates that the probability of a
cycle to be generated by Poisson noise is equal or smallerithAs can be seen from the 1D summary curves presented earlier:
cycle dimension decreases from left to right curve set.

power for our purposes and is much better known within the astronomisahcmity, we use it
here. As zero hypothesis we take that each DE pair has the same urgldigtiibution and as
alternative hypothesis we take the opposite.

Unfortunately, the KS test can’t work with binned data as it is based atingeanempiri-
cal distribution function An empirical distribution function requires an ordering of data points
based on their function value. The points we consider here are the pomigearsistence dia-
gram. Each of these points has a lifetime and mean density, thus we can test l#atinmean
density in the KS test. In other words: we can test the difference betwe&mkfcurves or mean
density curves of various DE models, as both curves represent a syrofadividual points
properties. Betti curves, however, do not. A Betti curve gives the muraobcycles alive at a
certain density threshold, but this is a global property of the diagram eeslrbt relate directly
back to individual points. Individual points don’t have a ‘Betti valussaciated to them (other
then their dimension) and thus cannot be ordered based on their ‘Betti. v@bnsequently, on
Betti curves no KS test can be performed.

It would be interesting to continue with a Kruskal-Wallis (KW) tdgb identify any group
differences between the DE models. Unfortunately the KW tests requirdeallstributions to
be identically shaped and scaled, a requirement not satisfied herefdreeunfortunately, we
cannot proceed in this direction.

The Kruskal-Wallis test is a non-parametric variant of ANOVA.
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7.1.4 Statistical analysis / results

We test the significance of the difference between each pair of DE moaeleuas atz: = 0
using (i) lifetime curves and (i) mean density curves. For both, we give €iXelst outcomes
(HO acceptation or rejection) foravalue of 0.01 and (ii) the more nuanced test statistic values.

Testing lifetime curves

A visual representation of the KS test outcomes is shown in figute 7.4. vVidie dimension
increases from left to right and the simplification threshold increases toprno bottom. Re-
jection of HO (yellow) means the lifetime curves originate from significantly dgfft models,
where non-rejection of HO (black) means they do not.

Let’s first consider the unsimplified case, i.e. the top row. For O-cycldsraparticularly
for 2-cycles a clear pattern is visible: in general SUGRA differs sigmifigafrom LCDM as
well as from RP. A few RP runs also differ significantly from LCDM ruisfferent runs of the
same model are never significant. Interestingly, the 1-cycles shownearpztiern: only a few
significant results are found, mainly between different runs of the sandelmo

The statistical significance changes in a non-trivial way with increasindisicagion thresh-
old. For 2-cycles, the statistical significance of the pattern decreaseswaitasing simplifi-
cation threshold, whilst for 1-cycles the statistical significance of the pattereases. For
0-cycles the effects of simplification are more ambiguous.

More nuanced outcomes than acceptation/rejection are provided by tlstatistic values
itself, shown in figure 7.5. The results are analogous to those of the teshees, but patterns
are more easily found.

Testing mean density curves

We repeat the analysis above for the mean density curves, the resuitsoane in figure 7.6
for HO acceptation/rejection and in figure 7.7 for the corresponding tesétic values. Results
reveal again an unmistakable and significant difference between tioeivaark energy mod-
els, even stronger than the lifetime curves did. Without simplification, almostiadl differ
significantly from each other, also those of the same underlying DE model.riiitly simplifi-
cation threshold the contrast between the various DE models increasedifiGatign levels of
p(epoisson = 0.1 andp(cpoisson = 0.01 (middle rows) show a near perfect model differentation.
The contrast between the various DE models also strenghtens with ingrdasiension (left to
right).
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Figure 7.4: Two-tailed Kolmogorov-Smirnov two-sample test outcomesdr lifetime curves / real space identicak. For each
pair of dark energy models and runs we test whether the cutves-a0 have statistically different persistence diagrams and thus
topology. If a pattern between the various DE models is \gsilil suggests DE models result in different topological citrce

atz = 0. The zero hypothesis states the underlying topology isticln the alternative hypothesis that they are differefit.
p-value of 0.01 is used. From left to right: increasing cydlmehsion. From top to bottom: increasing simplification thoégh
p(cpoisson = x indicates that the probability of a cycle to be generateddigg®n noise is equal or smaller thanTable indicators:

Ln, Rn and S stand for LCDM respectively RP or SUGRA ruw¥10.
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Figure 7.5: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for lifetime curves / real space identicat. The
test setup is analogous to that described in the text or ieap&on of figuré 7.4. From left to right: increasing cyclengnsion.
From top to bottom: increasing simplification threshold. @aioidicators: b, Rn and S stand for LCDM respectively RP or
SUGRA runm+10.
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Figure 7.6: Two-tailed Kolmogorov-Smirnov two-sample test outcomesdr mean density curves / real space identical. The
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Figure 7.7: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for mean density curves / real space identical
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115



December 2013 7.2. REDSHIFT SPACE

7.2 Redshift space

Observations are made in redshift space, which produces distortionky indiine line of sight
direction, cf. [Hamilton@B] for an overview. Such distortions might ierfice the topology
and thereby the pattern we found in the statistical tests. To see whether tlisdd ithe case, we
repeat the analysis of previous section in redshift space. For thisaihstesing the simulations
we described in subsection (cf. section 4.1.3) we use an analogousirud) for which linear
redshift distorted boxes are readily available. Run 6 is identical in alectspsafe for (i) other
initial conditions and (ii) slightly different values. Although the latter prohibits direct compar-
ison of run 6 simulations with the other simulations of this thesis, we can compadédfdrent
DE models of run 6 with each other. For each of the DE models, 4 redstidtigid simulation
boxes are avaiable. The boxes differ in ‘observational position’ godm) (75, 75, 75) Mpc; (b)
(225,75, 75) Mpc; (c) (200, 0,100) Mpc and (d)(50, 75,200) Mpc; with (0,0,0) Mpc one of
the box corners. This gives us a total of 3 DE modeld observational positions 12 snap-
shots. For each of these snapshots, the persistence diagram is canpstézsection 7.2.1 we
inspect the similarities and differences of these persistence diagramiyyiglbbwed by an
investigation of the effect of simplification in subsection 7.2.2. The statisticaptesedure is
explained in 7.2.3 and the test results are presented in subsectian 7.2.4.

7.2.1 Visual inspection

Proceeding along the same lines as in the real space case, sevasiépegsdiagrams have
been plotted on the left of figure 7.8. A clear distinction between LCDM an@BA is visible,
consistent throughout dimensions (the top three persistence diagrathbe@veen different
distorted positions (bottom three persistence diagrams). In addition to thieitdwlew-death
tail also visible in real space, LCDM seems to have a more pronouncedhiptrigh-death tail
as well. Whether this comes due to redshift distortions or slightly differeriues cannot be
answered at this point. Because differences in observational posétaraily introduce some
extra spreading, the 1D summary curves on the right show only the dueges on distortions as
observed from position (a). Comparing (only the general) charactsridtibe curves with their
normal space variants, we see that (i) the redshift curves hereupacimuch less high densities
and (ii) skewed lognormality is lost due to ‘bumps’. As we saw in section 6.2dogallity is
preserved under evolution, thus the loss of lognormality is a redshift distortion effect. Retdshif
distortions spread the highest density regions in the line of sight directiengharacteristic
‘fingers of God'. This probably explains both observations. A smalledéice between the
curves of various DE models is visible at low densities.

7.2.2 The effects of simplification

The simplified Betti curves for all DE models all positions are displayed in diguf. The
spread due to observations from different positions as mentioned &bclearly visible. More
careful inspection shows that the low density differences between DElmack robust under
simplification. Interestingly, the ‘bumps’ in the Betti curve are not. Whereamiticular the
2-cycles show a bump in the higher density region, this bump is almost completgiified
out at the highest simplification threshold considered here. This directly isnpiét the cycles
responsible for this bump are mainly of low persistence.
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Figure 7.8: Comparison of persistence diagrams in redshift space at = 0. Left: representative persistence difference dia-
grams, with green an excess of the reference LCDM run 15 anairestcess of another dark energy model. Stronger colors means
larger excess, the numbers next to the color bar indicatentgafive) power of the excess, so note that for green the bakis
inverted. Right: 1D summary curves for LCDM (black), RP (yefland SUGRA (red), all at position (a). As can be seen from
the 1D summary curves presented earlier: cycle dimensionassdrom left to right curve set.
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Figure 7.9: Betti curves in redshift space, at identicak with increasing simplification threshold. Betti curves for LCDM (blue
and LCDM run 15 black), RP (yellow) and SUGRA (red), with ieasing simplification thresholg(cpoisson = « indicates that
the probability of a cycle to be generated by Poisson noiegusl or smaller tham. As can be seen from the 1D summary curves
presented earlier: cycle dimension decreases from lefyht curve set.

7.2.3 Statistical analysis / test setup

The test setup for the statistical analysis is identical to the setup for thepeead sase described
in subsection 7.1.3. Instead of using several runs of the same DE modelewoae run of each

DE model, distorted from several positions. In the real space case tiedeesity curve turned

out to be the most sensitive tracer. Furthermore, it turned out that th&déstic outcomes and
test statistic values showed an analogous pattern, but using the latter a patsemore easily

distinguishable. Therefore, for compactness we restrict ourselveg testing the difference

between mean density curves and only show the test statistic values.

7.2.4 Statistical analysis / results

The test statistic values are shown in figure 7.10 with increasing from lefjlioand simplifi-
cation factor increasing from top to bottom. Focussing first on the unsimptified (top row)
we see the various DE models are clearly distinguishable, specificallyldscgnd 2-cycles.
Now taking into account the effects of simplification, we notice that it affe@ssthtistical pat-
tern much stronger than in the unsimplified case (cf. figure 7.7). This is in litheprevious
subsection, where we saw complete bumps disappearing under simplifi¢airdicycles sim-
plification almost completely destroys any pattern, whereas for 1-cycte2-aycles the pattern
becomes stronger. For 2-cycles some extra strong lines at the rowslanths associated with
positiond are visible. Only this position gives extra strong lines, so the extra strengtabably
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due to a different point of view (literally) rather than anything else.
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Figure 7.10: Two-tailed Kolmogorov-Smirnov two-sample test statisticvalues for mean density curves / redshift space iden-
tical z. The test setup is analogous to that described in the text tireircaption of figure 714. From left to right: increasing
cycle dimension. From top to bottom: increasing simplificatioreshold. Table indicators:nl, Rn and S stand for the LCDM
respectively RP or SUGRA run at observational positionwithn € {a, b, ¢, d}.

7.3 Real space identical clustering parameter

In section 7.1 we found a significant difference between DE models atathe s But this
doesn’t imply the models also differ significantly at the same stage of struetotation. To
consider the latter, we need to compare the persistence diagrams from elsralbduns at iden-
tical og values. Unfortunately, the available Gadget snapshots are atfiaddes. We therefore
use binwise interpolation or extrapolation to obtain the persistence diagrahessgtvalues of
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LCDM run 15, using a 2nd degree polynomial. For LCDM run &§¢'¢ are very similar to
LCDM run 15) and SUGRA run 18s¢’s are very different from LCDM run 15) the interpo-
lated/extrapolated Betti curves for all epochs are shown in figure 7.1 Ve low redshifts
some of the extrapolated curves start to behave irregular, probalkdyidgethe extrapolation
breaks down there. For LCDM run 17 the differences between-theesed original and interpo-
lated Betti curves are more or less negligible. For SUGRA run 18 with siallthe contrary,
the differences between original and interpolated Betti curves arer [drge the differences
between successive time steps of one of them.

log(betti's)
log(betti's)

B W Y 25 3 35 T —— 25 3 35

Ul'cs)g(delnsityl)'5 ()I'c5>g(dtelnsity1)'5
(a) Betti curves LCDM run 17. (b) Betti curves SUGRA run 18.

Figure 7.11: Interpolated Betti curves. Betti curves of at fixed are directly avaible from the Gadget snapshots, coloreddn r
(0-cycles), yellow (1-cycles) and blue (2-cycles). Usinigwise interpolation or extrapolation, the Betti curvedigéd og are
determined, colored green (for all cycles). Brighter meanefa.

In analogy with the real space identical redshift case in section 7.1, steénfapect differ-
ences visually. Than, we turn to statistical analysis.

7.3.1 Visual inspection

A selection of representative persistence difference diagrams cotngiaicenticalog values is
shownin the right columrof figure 7.12. The same difference diagrams compared at identical
values are showim the left columrof the figure. We observe the following:

e For the O-cycle diagram (top row), the pattern visible in the identicedse disappears in
the identicalsg case.

e For the 2-cycle diagrams (rows 2-4) the identieatase shows a consistent pattern, but
the consistency of the pattern is lost in the identicatase. In the diagram on the second
row (right column) we see a SUGRA excess at lower birth and lower deatiereas in
the diagram below SUGRA displays an excess at intermediate densities. botthe
row SUGRA shows an excess at higher births and higher deaths.

The identicaleg 1D summary curves (not shown here) agree with previous observattus
are nearly indistinguishable one their complete density range.
7.3.2 The effects of simplification

To investigate the effects of simplification, figlire 7.13 shows its effect oB#ie curves for
increasing simplification threshold. In analogy with the equakse, simplification doesn't
seem to have any effect on the presence of patterns.
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Figure 7.12: Persistence difference diagrams at identicat (left) vs identical o (right). Representative persistence difference
diagrams, with green an excess in the reference LCDM run 15ezhan excess another dark energy model. Stronger colors means
larger excess, the numbers next to the color bar indicatentéga(ive) power of the excess, so note that for red the caloisb
inverted. Left: difference diagrams at identiealright: the same difference diagrams at identieal In case of the identical
structural differences between LCDM and SUGRA are visilbleese structural differences disappear in the identigatase.
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Figure 7.13: Betti curves at identical og with increasing simplification threshold. Betti curves for LCDM (blue and LCDM run

15 black), RP (yellow) and SUGRA (red), with increasing siifigdtion thresholdp(cpoissoy = x indicates that the probability of

a cycle to be generated by Poisson noise is equal or smalles:th&s can be seen from the 1D summary curves presented earlier:
cycle dimension decreases from left to right curve set.

7.3.3 Statistical analysis / test setup

The interpolated Betti curves have all the same Any statistically significant differences
between them are solely attributable to DE induced intrinsic topological diffesein structure.
Unfortunately, binning makes it impossible to define an empirical distributioctimm and thus
the KS test (or related measures) cannot be used. We therefore switebason’s)? test.
The y? test has three main disadvantages: (i) it is in general less sensitive th&®$ trest
ﬂWaII and Jenkins, 20d)3]; (ii) test outcomes might depend on birf sind; (jii) the number of
empty cells should be limited. To mediate the second disadvantage, we note Betticurves
the power of the density is approximated reasonably well by a normal digbrb{cf. section
6.1). Therefore, we can use Heald’s optimal bin widitHeald, 19814], defined as:

1/5
ox =0 (20>
n

with o the cycle density standard deviation anthe number of cycles. To counteract the third
disadvantage we cut all Betti curves near the end of their tails. This will mesats more
trustworthy, but at the price of further reduced sensitivity.

2The shear size of our sample makes this effect probably limited, though.
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7.3.4 Statistical analysis / results

To see how well the? test detects differences, we first apply it to a more known case. The top
row of figure' 7.14 shows thg? values at the sameg analogously with the tests performed in
section 7.1. Again the models are unmistakably distinguishable: SUGRA diffgkdy with
LCDM as well as with RP. Differences between LCDM and RP are smallerdéfetences
between several runs of the same model are very small. Apparently, gittioen? test might
not be sensitive as KS tests, it is still sensitive enough to detect the diffacels.

We now proceed with a comparison between the interpolated Betti curves,ths bottom
of figurel 7.14. Note that the values of thé statistics decrease by a factor 2 till 3. Hardly any
pattern is left. Only for a few specific combinations of LCDM and SUGRA ruhs 0-cycles
show slightly largen? values, but they are far from convincing. We therefore concludéttisat
unlikely that different DE models generate intrinsically different structapslogy.
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Figure 7.14: x2 two-sample test statistic values for Betti curves at idential z (top row) and identical o (bottom row). For
each pair of dark energy models and runs we test whether tlvestiave statistically different persistence diagrams aod t
topology. In the top row we compare curvesat 0, in the bottom row we compare a¢ = 369.591. Thisog value corresponds
to theosg value of LCDM run 15 at = 0. To top row shows a pattern whereas the bottom row does nét.stiggests that the DE
models result in intrinsically identical structure topojod he differences at the identicalease are solely attributable to different
rates of structure evolution. Table indicatorst,IRn and S: stand for LCDM respectively RP or SUGRA rur¥10.

We note that interpolation/extrapolation creates additional uncertainty.eftiner in this
section we make no statements about the statistical significance of the disequesaf a pattern.

7.4 Summary observations

Dark energy rules the global evolution of the universe, but it might mingleaal affairs as
well. If so, it may leave a distinct imprint on the topology of cosmic structuresé®whether
such imprint exists the persistence diagrams of the three DE models codsid#ris thesis are
computed and compared.

Differences between the topology of cosmic structure induced by diff&E models con-
sists of two independent factors: (i) the rate of structure evolution vageseen DE models
and (ii) DE models might each result in intrinsically different structure topplddne first and
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the second effect can be found by comparing persistence diagraiiffecdrit DE models at the
samez respectively at the sams.

Comparison of persistence diagrams of several DE models at thezsaamms us:

1. Some structural differences are visible in the low birth low death tail of éhsistence di-
agrams: LCDM is shifted consistently to slightly lower densities than RP, whil & IS
is shifted to slightly higher densities. The differences are quite small coehpafenction
value. Physically, they might be caused by the difference in the rate ofsteLevolution.
The observed differences are robust under simplification.

2. The lifetime curves and in particular the mean density curves show a stdtistigaif-
icant difference between the various DE models. Mean density 2-cycleeemediate
simplification thresholds give the most pronounced difference.

Thus, in real space at a giverit is in principle possible to distinguish between DE models based
on persistence diagrams. To see or whether these differences anbsdswvablewe repeat part
of the analysis above in redshift space:

1. Again LCDM persistence diagrams are systematically shifted to the low birtldéath
tail of persistence diagrams, in particular for 2-cycles. Contrary to thkespace case,
a high density effect seems visible as well. The observed differeneeslbunst under
simplification.

2. The transformation from real space to redshift space severelytdigie topology of cos-
mic structure, as is visible from in particular the Betti curves and mean densitgs
The most prominent differences between the redshift space verditivesse curves com-
pared with their normal space counterparts are: (i) the excess of lositglegycles and
(i) the presence of ‘bumps’. With increasing simplification threshold thesgisibecome
smaller, implying that they are caused by low persistent cycles.

3. The mean density curves show a statistically significant difference bettlve various DE
models, especially for 1-cycles and 2-cycles. The difference is tologer simplification.

Hence, using persistence it is in principle possible to observationally eliffiete between vari-
ous DE models!

The observed dissimilarities of the cosmic structure might be due to one orfiibthfollowing:
(i) different structure formation rates and (ii) intrinsic topological diffezes. To determine
the magnitude of the latter, the persistence diagrams of several DE modedssaintlerg are
compared:

1. Visually, the structural differences between persistence diagrawexiofis DE models
largely disappears and isn’t recovered by simplification.

2. Statistical tests seem to confirm previous.

The DE models here don't result in intrinsically different structure topgplog
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7.5 Discussion and conclusions

Three aspects of the analysis above require some more thought:

1. Throughout this chapter, for computational efficiency all computatmasvisualizations
of complete persistence diagrams were done on a 2D histogram insteadarfginel
point diagram. Mathematically this is not shown to be equivalent, but sometigaisn
suggests neither the presence nor the magnitude of any patterns areciedusy the
specific choice of any reasonable bin size.

2. Of more pressing concern are thetests performed on Betti curves in section 7.3. Tech-
nically, they? test demands that every point is put in one bin and that the choice of bin is
independent for all points. These conditions are not met for Betti suevpersistent cycle
will contribute in many Betti curve bins and consequently these bins are aepémdent.

The x? test performs quite well in the equalease though. Furthermore, a short exper-
iment with mean density curves shows they exhibit the same pattern as the Begs.cu
Thus not strictly meeting the mathematical requirements doesn’t seem to hgvarge
effects.

3. Inthe discussion of chapter 5 we claimed that specific types of petitumbanight influ-
ence persistence diagrams in different ways. In that chapter we eomaittlom pertur-
bations of predetermined magnitude and here we studied redshift peidagoaA short
comparison of the resulting Betti curves learns us that these differetuiripations in-
fluence the persistence diagrams indeed in different ways, supporéngaim above.
Consequently, perturbation results for one type of perturbation hdydimited value for
other types of perturbations.

With the previous thoughts in mind, we conclude:

1. The first and second questions posed in the introduction of this chegrtdye answered
with a definiteyes At fixed low z different DE models result in significantly different
structure topology, both in real and redshift space. In principle, thisemakssible to
observationally distinguish between dark energy models based on thsistpace dia-
grams!

2. The effects above can be found both from lifetime curves and meaitylearves, al-
though these curves are not sensitive at all cycle dimensions and sintilifitiaresh-
olds. Mean density 2-cycles distinguish the DE models nearly flawlesscialpdor
intermediate ratio simplification thresholds.

3. At fixed og, the persistence diagrams of the DE models investigated here are (nearly)
indistinguishable. Thus LCDM, RP and SUGRA don't result in intrinsicallyedént
structure topology.
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CHAPTER 8

Discussion & conclusions

8.1

1.

Overall conclusions

Homological discrete topology is a natural choice to describe the steuchape and
connectedness of the cosmic web. It visualizes topology using a DiscoegeMomplex
and provides analytical handles via persistence diagrams (cf. sectjon 3.6

. Persistence diagrams are (i) very sensitive to the presence of stractd (ii) robust

against uncertainties up to at least 10 %.

. Persistence simplification is an excellent, intuitive and computationally efficiethod

to take out irrelevant features and noise.

. Persistence diagrams of the cosmic web in an LCDM universe=ai have the following

characteristics:

(a) The 1-cycle persistence diagram has an extended invatsape along the birth=death
diagonal. The 0-cycle diagram fans out towards higher births and hagweths,
whereas the 2-cycle diagram goes in opposite direction.

(b) The Betti curves and product mean density curves follow nearlgt exskewed log-
normal pattern. The lifetime curves are monotonically decreasing, espettially
1-cycle and 2-cycle curves decrease quite fast.

. With time structure evolves. For the persistence diagrams of the cosmidarelh.GDM

universe, this is visible as follows:

(a) Intime persistence diagrams fan out. 0-cycles mainly migrate to highdatidena-
cycles mainly to lower densities and 1-cycles spread quite evenly in bothidirec
This spread also clearly shows from the mean density curves and to adegsee
from the Betti curves, in the form of shifting values and increasing of their
skewed lognormal fits. Interestingly, no trend seems to be visible in the slsswn
parametery.

(b) Simplification enhances the effect of time evolution, as earlier epoehthemed
out much more than later epochs. This suggests that at earlier epodtsrssiare
less persistent.
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6. Comparison of the cosmic web topology of LCDM, RP and SUGRA unéglesarns us:

(a) At fixed low z (= < 1) the different DE models result in significantly different
structure topology, both in real and redshift space. In principle, thiemphssible
to observationally distinguish between dark energy models based on treéteece
diagrams!

(b) Mean density 2-cycles at intermediate ratio simplification thresholds abett®E
model differentiators.

(c) Atfixedog the persistence diagrams of the DE models investigated here are (nearly)
indistinguishable. Thus LCDM, RP and SUGRA don’t result in intrinsicallyedlif
ent structure topology.

8.2 Methodological discussion

Two aspects regarding the topological analysis within this thesis warrarg atiention:

1. In section 3.6 we discussed impossible cancellations (cf. figure 3.23tinybar). The
topological algorithms used within this thesis (cf. sections 4.3 and 4.4) prm&d€icient
information to determine whether a simplification is possible (i.e. allowed). Toweref

all simplification are carried out whether possible or not. Although the p&age of
mited [Snﬁﬂe

impossible cancellations is expected to be low and their relevance li
Prana3], a more detailed study of the effects of carrying out isitlesancellations
would further substantiate the conclusions of this thesis.

2. Of more fundamental nature is the structure the Discrete Morse Comglexiétini-
tion[3.26)imposen the Cosmic Web: every 1-simplex connects two 0-simplices, every
2-simplex is surrounded by 1-simplices, etc. From observations we krig\gthot nec-
essarily the case in the real universe, for example some filaments just grarimddle
of a void. As such the Discrete Morse Complex is an idealized structure. chaliifi ex-
cluding simplices of the Discrete Morse Complex from analysis might be an ouitn
current algorithms don’t provide such options yet. (Note that artificiallsheking sim-
plices is not the same as simplification, as after simplification the manifold is resedctu
such that all conditions imposed by the Discrete Morse Complex remain sajisfied

8.3 Where to go from here

As direct follow-up of this thesis, we suggest the following:

1. Here we showed that series of pair-wise statistical tests display paittelinating the
difference between various DE models. A non-parametric group tesbvotsie statistical
significant difference between a set of runs of one DE model andésets from another
DE model could not be performed, as the conditions for the Kruskal-Wafltsate not
met (cf. subsection 7.1.3). In section /6.1 we noted the good fit of a loghaonthe
Betti curves. It would be interesting to fit the Betti curves of all DE modelsualsmwith
lognormals and perform a classical parametric ANOVA test on these fits.

2. Very recently, the branch of statistical topology developed discretddgyp hypothesis
testing [Robinson and Turner, 2013; Turner, 2013]. Such hypisthests compare two
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8.4. POPULAR SCIENTIFIC SUMMARY

persistence diagrams using iMasserstein metri@lso called the Earth mover’s distance).
Informally, the metric can be described as a ‘minimum effort’ required to ghame
persistence diagram in the other. Unfortunately, the algorithms for sucst are not
publicly available yet (and writing them is beyond the scope of a master thééien the
algorithms become publicly available, we recommend to repeat the analysis asiog
the complete persistence diagram instead of a 1D summary curve.

3. In this thesis we based our analysis on the density field but other cosidi Ifie the
velocity field can be used as well [Cautun et al., 2013; Hoffman et aI..ﬂZ(IHxaoeating
the analysis of this thesis using the velocity field instead of the density field veuld

useful.

More fundamentally, how a specific (density) function gives rise to aipeersistence
diagram is poorly understood. That is, we can calculate the persistegrarm of the function

algorithmically with the data

ipeline described in chapter 4 but we cannoicpital calculate

it from more basic principles.

[Feldbrugge etal.; Pranav et al., ‘ZOJKBN]q!E first steps in this

direction, but a lot of work remains to be done.

From a visualization perspective, several ways to visualize the cosmiexigtl{cf. section
2.6). Comparison of the visual output of these methods with the visual od&iwered by
discrete topology (in the form of the Discrete Morse Complex, cf. definiti@6)3would be

insightful.

8.4 Popular scientific summary

A popular scientific summary of this thesis will be published in the PeriobiekQNwel

,2014].
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APPENDIX A

Mathematical background

A.1 Topological essentials in 10 minutes

Since the dawn of civilization geometry is closely related to astronomy. In atytitfue Greek
used geometry to describe heavens and as such developed vemgta@sironomical models
far beyond their time. In the many centuries that followed geometry remainselglconnected
to astronomy. At the beginning of the 17th century geometrical astrononiyg pgavided an
astronomical breakthrough: following classical tradition, Kepler statedalws of planetary
motion in geometrical terms. His work not only provided strong supportééobentric model,
Newton also used it as evidence for his general laws of motion. In moders,tigiestein’s
general relativity basically asserts a relation between the geometry atgpaand the mass
distribution. General relativity was proved to be correct by astronorolzsérvations.

Basically a geometric property is a property unaffected by translationtation of a coor-
dinate system, such as the orbit of planets around the sun, the influemes®bn spacetime or
the height of a mountain. Here we directly see one of the limitations of geomat(imalicite)
coordinate system (technically: a distance metric) is required. Topoldagyesethis constraint
by letting go the requirement of a distance metric and only requiring a notiameaf™ or 'far’,
without specifying exactly how near or far. As such, topology is sometirassribed as ‘rubber
sheet geometry’. objects may be twisted, deformed or stretched withownofhg topology.
Contininuing the examples above: the presence of a peak in a mountaindpads@ topolog-
ical property of the height function, just as the presence of a potengihlimthe graviational
field function. Here we see at once both the advantage of as well astthdayer of abstrac-
tion added by topology over geometry. The geometric property of peaktheitj in general
change: in the winter snow might heighten the mountain peak and in time erosidowet
it. However, the topological property not concered exact distanceains invariant: there is
a mountain peak. Below follows a very short crash course of the most famdopological
concepts required for this thesis.

Our story begin§ [Katok and Sossinsky; Sutherland, QOOS] as marngsstormathematics
begin, with a definition:

Definition A.1 (Metric space) A metric spacg M, d) is a non-empty set/ on which a distance
functiond is defined. Take,y € M, thand(z,y) must satisfy:

1. d(z,y) >0V zx,y € X,
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2. d(z,y) =0& 2 =y;
3. d(z,y) = d(y, z);
4. d(z,z) < d(z,y) + d(y, 2)

Example A.1(Euclidean space)R™ with the normal Pythagorean distance
d(z,y) = /> i (z; — yi)? is a metric space.

Example A.2. R? with the distance functiod(z, i) = cos(z)-sin(y) is not a metric space as the

distance function violates all demands: (1) it can become negativel((2y) = 0 < = = y;
(3) it is not symmetric i and y and (4) is violated as well, take for example= 1 and

(z,y,2) = (0,0,7/2).
In ann-dimensional metric we can define an:

Definition A.2 (Openn-ball B?(a)). Given metric spacélM, d), a pointz € M ande € R,
the opem-ball B?(a) is the set

Bl(a) = {x € M|d(z,a) < €}

Note: sometimes the number in front of the ball denotes thetead of the dimensiomn. Here
we usen as for our purpose specific valuese«dire not so relevant, but the dimension is.

Analogously, one can define a:

Definition A.3 (Closedn-ball B.(a)). Given metric spacéM, d), a pointz € M ande € R,
the closedh-ball B.(a) is the set

B (a) ={z € M|d(z,a) < €}

In essence, a closed ball is an open ball with boundary. From nowrdass mentioned other-
wise with the terrm-ball we will refer to a closed:-ball.

Example A.3. ConsiderR™. An open 1-ball isB?(a) = (a — €, a + €) and a (closed) 1-ball is
B(a) = [a—¢€,a+¢€]. l.e. the open and closed balls are open respectively closed line segments
An open 2-ball is the interior of a disc with radiusentered at: and a (closed) 2-ball the disc
with boundary. A (closed) 3-ball is a sphere with boundary, et@:ball is a point and an open
0-ball doesn't exist.

Subsequently, we define an:

Definition A.4 (Open subsel/ C M). A subsel’ of n-dimensional metric spack/ is open in
M if for anyy € U there exists am(y) > 0 such that an open-ball with BY,) (y) € M.

Example A.4. Any open ballB?(z) C M is openl, which one can see by taking a smaller
open ballB§(y) and choosé = e — d(x,y). The situation is visually illustrated in figure A.1.
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Using open sets, we can let go of a distance metric and define a
general:

Definition A.5 (Topological space)A topological spac&T’, s)
is a non-empty séf and a fixed collection of subsetsatisfying:

1. Tesandg € s;

2. the intersection of any two setsdiis again ins; Figure A.1: An open ball in an open
ball.

3. the union of any collection of sets is agairsin

The collections is called a topology fofl” and the members of
are called open sets af Thus U € s’ and ‘U open ins’ mean
the same.

Example A.5 (Metrizable spaces)Any metric spacé)M, d) gives rise to a topological space
(T, s) by settingl’ = M and choosing fok the open subsets on the metric space as defined via
definition A.4. A topological space on which a metric can be defined is ma#izhote that a
metrizable space doesn’t necessarily have to allow a unique metric.

Just like a simple vector space, a topological space can have a basis:

Definition A.6 (Topological basis)Let (T, s) be a topological space. A basis feis a subcol-
lection B C s such that every set inis a union of sets frons.

Naturally, between topological spaces we can define functions which matement of
one space to another space. Topology is used to define closeby avebfawithout worrying
about exactly how closeby or how far away, and as such allow contindeformations of space.
Therefore, we need to have a notion of continuity:

Definition A.7 (Continuity at an element)Let (71, s1) and (7%, s2) be two topological spaces,
f 11 — T5 a map between them amdan element of;. Thenf is continuous at. € s; if for
anyU, € sy such thatf(a) € U,, there existd/; € s; such thate € Uy and f(Uy) C Us.

Just as in real analysis, continuity at an element can be extend to contihaifyrection:

Definition A.8 (Continuous topological functions)Consider the situation of continuity at a
point. f is continuous (with respect te; and s2) < it is continuous at every point (every
element) off;.

Above we mentioned that topology is concerned with the general shapgicég, we now make
that a bit more precise using:

Definition A.9 (Homotopic functions) Let7; and7: be two topological spaceg, g : 71 — 15
two continuous functions anb(¢) over [0, 1] C R. We say thayf and g are homotopic if there
exists a continuous functioR : X x I — Y such thatf'(z,0) = f(z) and F(z,1) = g(x).
Intuitively, the previous means that two functions are homotopic if they catolnuously
transformed in each other. The intervalis used to indicate how far in the transformation
proces we are. Homotopy is illustrated in figlre A.2.
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Figure A.2: A homotopy transforms f in g [Adams and Franzosa, 2009].

Example A.6. Define the continuous functidn: R x I — R by F(x,t) = x —t. ThenF(z,t)
is a homotopy between the identity m&f:) = = and the magy(x) = « — 1, which translates
the entire graph downward by one element.tAscreases from 0 to F'(x, t) slowly translates
the identity map downwards.

Example A.7. Consider the unit dis®? c R2. The identity map on the unit disgidD? — D?
and the constant mag, : D? — 0 are homotopic. Using polar coordinates, a possible homotopy
between them is given y((r, p),t) = ((1 — t)r, ).

Homotopic functions can be continuously transformed in each other. Usaigfanctions
we say when topological spaces are continuously transformable in daah $paces for which
this is possible are called:

Definition A.10 (Homotopy equivalent spacesjwo topological space$; and T, are homo-
topy equivalent if there exists two continuous mgps7; — 15 andg : 15 — T3 such that
g o f is homotopic to the identity mapzgdon7; and f o g is homotopic to the identity mapg
on7Ts.

Example A.8. Any n-ball is homotopy equivalent witR™ and with any pointp. To see why
p is homotopy equivalent witR"™, define the zero-map : p — 0 € R™ and the point map
g :R"™ — p. Theng o f = id, is the identity on the point whereas the mag o g : R” — R"
is homotopy equivalent to the identity®® by the homotop¥'((r, ¢),t) = ((1 — t)r, ).

As the example above shows, homotopy can lead to ‘loss of information’pambclearly
contains less information thanradimensional space. To prevent this, the idea of homotopic
functions and homotopy equivalence can be sharpened by demandiegome relation:

Definition A.11 (Homeomorphisms)A homeomorphism is a one-one correspondehcé; —
T, such that bothf and f~! are continuous.

Definition A.12 (Topological equivalence)Two topological spaces; and1; are topologically
equivalent if there exists an homeomorphism between them.

Here we see why continuous deformations don’t change topology. Asdsmvery open set is
mapped one-one to another open set in a structure preserving way thegtodoesn’t change.
Such mappings are not influenced by deformations, stretching or twistohg@iopology is
neither.
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Example A.9. Clearly, any topological equivalent spaces are homotopy equivalemiedls
whereas the converse is not necessarily true. As counterexample ttér statement: in
example A.8 was shown th&t' is homotopy equivalent with a point. But B§ and a point
don’t allow a one-one mapping they are not topologically equivalent.

Example A.10. Leta, b, ¢,d € Rwitha < bandc < d. Any two open intervalg:, b) and(c, d)
in R are homeomorphic. To see this, consider the funcfioria, b) — (¢, d) given by:

f@)=c+{(x—a) (d=c)/(b—a)}

which maps any open interval {@, b) to an open interval ir(c, d). Since bothf and f~! are
continuous(a, b) and(c, d) are homeomorphic.

Example A.11. A famous example: a donut and a coffee cup are topologically equivakent, a
can be seen by the continuous transformation of the one in the other illusirefigdre/ A.3.

Figure A.3: Topological equivalence of a coffee cup and a donuit [Adams arFranzosa; 2009].

Example A.12. In fact, all of the objects in figure A.4 are topologically equivalent to a coffee
cup or donut and thus to each other.

Figure A.4: All objects above are topologicall equivalent to a coffee goor donut [Adams and Franzosa, 2009].

Example A.13. The objects in figure Al5 are not topologically equivalent. By continuous de-
formation it is impossible to change a sphere in a donut, as continues tramsfions can't
create the central hole inside. Analogously, neither a sphere nor ata@mube transformed in

a brezeln, which has two holes.

As the saying goes: you can'’t always have your cake and eat it tamngGo topological
spaces was motivated by the wish to look at certain properties of spaceutvitisidering
detailed values. But this has an important downside: almost all calculusdeelsrare lost in the
process. Therefore, in physics in general and in this thesis we will maiokydor-manifolds:
topological spaces that locally resembiedimensional Euclidean spade :Gibllo]. For
example, a 1-manifold locally resembles a line, a 2-manifold a plane, a 3-ma8iofpace,

et cetera. Then for the full space we have the generality allowed by mpdiat locally our
intuition and calculus techniques fardimensional Euclidean space can be used. To formalize
previous we define an:
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SIS

Figure A.5: Topologically inequivalent objects|[Giblin, 2010]. The objects are topologically equivalent because theyt ¢an’
continuously deformed in each other.

Definition A.13 (n-manifold). Ann-manifold is a topological spa&ewith a countable basis
such that every point a¥/ has a neighborhood that is homeomorphic to an opéyall. A map
¢ between the neighborhood on the manifold and the epball is called acoordinate chart

Actually, the idea is rather intuitive and a prime example we encounter in eaetifd is the
surface of the Earth. The 2D-surface of the Earth is spherical, ballyat seems flat and can
be approximated by a plane. To give some more mathematical examples:

Example A.14. Any surface of two variables in 3D Euclidean space is a 2-manifold. Angeam
is given in figure A.6.

Figure A.6: The torus as an example of a 2D surface in 3D spadeée, 2003].The neighorhood’ on the torus is homeomorphic
to a disc, withy indicating the coordinate chart.

Example A.15. Then-sphereS™, then-torus R™ and the real projective planRP(n) are n-
dimensional manifolds.

Example A.16. Let F' : R™ — R be a continuously differentiable function and dédbe a non-
critical value of F. ThenF~!(c) is a manifold of dimension — 1, if it is non-empty.

The existence of local coordinates on manifolds allows local use of calc@ilobal analysis
is still out of reach if there are no differentiable coordinate transformstimiween the local
patches. This leads to the following definition:

Definition A.14 (Smoothn-manifold). A smooth manifold is a manifold with a collection of
charts that (i) cover the entire manifold and (ii) at their intersection are stmo@. infinitely
differentiable.

'Formally: a topological Hausdorff space, meaning that for everyqiaipintsp, ¢ € M there are disjoint open
subsetd/, V' C m such thap € U andq € V. l.e. p andq are in some sense separable. In (astrophysical) practise,
the Hausdorff condition is almost always satisfied.
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Example A.17. Following example A.14, figure A.7 shows the idea behind a smooth manifold.
Two different neighborhoods and V' induce two different charte and . If at their inter-
sectiony and+) are smooth and the entire torus is covered with neighborhoods induciiy su
charts, the manifold is smooth.

Figure A.7: Anillustration of a smooth manifold [Lee, 2003] Two neighorhood#/ andV of the torus are shown, together with
their chartsp ande. If the entire manifold is covered with such charts and atrtimérsection both are smooth, the manifold is a
smooth manifold.

Sometimes, it is convenient to map properties of one smooth manifold to anothisrcan be
done using a:

Definition A.15 (Diffeomorphism) A diffeomorphism is a function between two manifolds
which is a bijective smooth map with a smooth inverse.

Example A.18. Obviously every diffeomorphism is a homeomorphism, but the inveesa'tio
have to be true.

Here we developed enough basic topology for our purposes belderested readers with a
taste for more are referred to any of the references within this appendix.

A.2 Chains and homology in 10 minutes

The DMC provides us with a natural way to divide a point set (of galaxiea)cosmic structure
of voids, walls, filaments and nodes; providing us with a mathematical handieese mor-
phological components. Large galaxy catalogues contain millions of galargegheir Morse
complexes will be enormous. For such large complexes, a simple descript@mDMC is not
very insightful and a more systematic way to explore the structures of the BkQuired. Here
homoIogy\[GiinrH 2010; Poincare, 1904] helps out by defining conleess using equivalence
relations. This appendix gives an elementary introduction to the field, $edusn homology
on triangulated spaces. Homological equivalence relations are baggdugntheory, therefore
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it was unavoidable to use some basic ideas from group theory. Readamsiliar with group
theory are referre98] for a physics focussed irttimaLto this field of mathematics.

We start with the building blocks of the DMC: simplices. To describe structfrsignplices
we need a way to describe large groups of them, which we can do using:

Definition A.16 (p-chains) Let K be a simplicial complex of dimensieh A p-chainc is a
formal sum ofp-simplices inK, written as

Cc = Zaiaz- (Al)

Here,o; are the simplices and; the coefficients. In principle the coefficients can be real num-
bers or even more general elements, but here we restrict them tolonddhtegers: 0 (off) or

1 (onbi. This allows us to think of a chain as the setpesimplices with coefficients; = 1.
Naturally, forp < 0 or p > d thep-chain consists only of the neutral element.

p-chains have intuitive properties:

Properties A.1.

1. Just as with polynomials, addition is defined component-wise. Sphyjfica= > a;o;
andd = b;o; than

Because the coefficients are integers modulo 2, adding two chains acgizdly their
difference.

2. The neutral elemefit= > 0o;
3. Due to addition modulo 2 the inverse element afactuallyc itself, i.e.—c = c.
To relate chains of different dimensions to each other we define the:

Definition A.17 (Boundary of go-simplex) The boundary of a-simplex is the sum of its facets.
More formally, leto, = [uo, ..., u,| be ap-simplex spanned by the vertices, ..., u,, then its

boundaryo,o is defined as:
P

dpo = Z[uo,...,aj,...,up] (A.3)
j=0

with the hat indicating that vertek; is omitted.

Example A.19. Consider the 1-simplex = [ug, u1]. Its its boundary is the 0-chain given by
do = u1 — ug.

Example A.20. Consider the 2-simplex = [vg, v1, v2] @s shown in figure Al8. Its boundary is
the 1-chain given byo = [vg, v1] + [v1, v2] + [v2, Vo).

2Restricting the coefficients to modulo 2 gives the convenient propertahahain is its own inverse, see below.
In a more general setting, an simplex needs to be given an orientaticem f@&row’ indicating in which direction to
add the simplices.
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From previous definition follows directly:

Definition A.18 (Boundary of gp-chain) The bound- vO
ary of ap-chain is the sum of the boundaries of its sim-
plices. More formally, let = > a;0; be ap-chain,

than its boundary is
Ope =Y ai0,0; (A.4) Q

Clearly, the boundary maps g-chain to a(p — 1)- vl v2
chain, so it can be thought of as a functiép: C, —
Cp—1. Taking the boundary commutes with addition,

i.e. for twop-chainsc andd we have Figure A.8: The simplicial complex of example
p A.19 2010]. A 2-simplex, with the arrow

indicating the direction in which we take the bound-
Op(c+d) = Z(ai—i—bi)apap = (Z a; + Z bi> Op0op =af)pC+0pg

From group theory we know this is the defining property of a homomamtsed, is a homo-
morphism. We define the the boundary of a vertex to be 0.

Example A.21. Consider the simplicial complek consisting of two triangles' andt? shown
in figurelA.9. We have:

R(T) =0t +t*)=(a+te+d)+(b+c—e)=a+b+c+d

This corresponds to the geometrical idea that the boundary of the simgmmaplex are their
outer segments. Taking the boundary of the diamand b + ¢ + d), we get:

o(a+bt+c+d)=(q—-p)+(r—q+(s-—1)+(p—5 =0

Figure A.9: The simplicial complex of example A.21 ZGiinnJ 2010]. A simplicial complex, with the arrows indicating the
direction in which we take the boundary.

Using the boundary operator, we can define a:

Definition A.19 (p-boundary) A p-boundary is gp-chain ¢ that is the boundary of & + 1)-
chaind, i.e.c = ddwithd € Cp,4.

Example A.22. In previous example A.21, the diamofd-+ b + ¢ + d) is a 1-boundary of
simplicial complex’. The boundary of the diamond is zero.

Chains with zero boundary turn out to play an important role in homology awe been given
their own name:
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Definition A.20 (p-cycle). A p-cyclec is ap-chain with empty boundary, i.€¢ = 0.

Example A.23. In previous example A.21 the 2-chaih+ ¢ is not a 2-cycle, as its boundary
Oo(t' +1t2) = a+b+c+d# 0. The diamonda + b + ¢ + d) is a one-cycle however, as
Oi(a+b+c+d)=0.

In the examples above we sawe that applying the boundary operator &vieggro, something
which turns out to be true in general:

Lemma A.1 (Fundamental Lemma of Homology),d,1c = 0 for everyp and every(p + 1)-
chaind.

This lemmia is one of the fundamental properties that makes homology worén @ie impor-
tance of the lemma, the proof is amazingly simple.

Proof. The boundary),,ic consists of allp-facets ofc. Every (p — 1)-face ofc belongs to
exactly twop-facets, which cancel each other out. Therefgy@,,1c) = 0. O

Consider again the properties pfchains: (i) the sum of twe-chains gives another-chain;
(ii) there is a neutral ‘zerp-chain’; and (iii) everyp-chain has an invergechain (here actually
being the chain itself). This are the defining properties of a group, slgawaip-chains actually
form the:

Definition A.21 (Group ofp-chainsC,(K)). The group(C,(K),+) is the group ofp-chains
together with the addition operation. In notation, addition is usually understogdicitely.

The group is associative because addition is associative and Abeliandeeaddition modulo
2 is Abelian.

p-boundaries are a special kind of chains, thus the spthiundariesB,(K) C C,(K). Ob-
serving thatd commutes with addition, we can say tit is not just a subset df, but it is a
subgroup:

Definition A.22 (Group of p-boundariesB,(K’)). The subgroup op-boundariesB,(K) C
C,(K) is the image ofp + 1)-st boundary homomorphism, i.8, = im(d,1). SinceCy
is Abelian, so iB,,.

Analogously the subset gfcyclesZ, also form a subgroup:

Definition A.23 (Group ofp-cyclesZ,(K')). The subgroup gf-boundariesZ,,(K) C C,(K) is
the kernel of the-th boundary homomorphism, i.B,, = ker(d,1). SinceC, is Abelian, so is
Z,.

Different p-chain,p-cycle andp-boundary groups are related via the boundary operator and
together form thehain complex which is illustrated in figure A.10.

The chain complex follows from a triangulated. It describes the structutrddesn’t give
direct information on general topological properties. But we can usehihi@ complex to extract
such information. To intuitively understand why, we let go mathematical rigjos moment and
consider figure A.11 below. The 1-cyclesa’ andd bound an area of the surface which is
shaded in grey, although it would be possible to use the complementary @Egiaell. By
continuously deforming the cycles without leaving the surface, it woulddssiple to shrink
them to a pointi.e. a 0-cycles. On the contrary, such a thing isn't possithle¢he 1-cycles, v’
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Figure A.10: The chain complex|[Edelsbrunner and Harer, 2010].It consists of chain, cycle and boundary groups connected
via the boundary map.

Figure A.11: A sphere and torus with several cycles, based upon [Giblin, 2@].

andec, which reveals the presence of 2D tunnels. &tre tunnel is the center of the torus (the
‘donut hole’) and forb andd’ the tunnel is the ‘torus tube’.

By continuously moving the shrunken poimtover the surface of the circle, we can let it
coincide with shrunken point’ but not with shrunken point, revealing thatz anda’ lie on
the same surface and bind the same object, whlles on another surface and binds another
object. Because the 0-cycleaanda’ bind the same object we can say they are in a certain way
equivalent, whereas andd bind another object and thus are not equivalent. l.e.: cycles which
bind the same object are equivalent and the other way around: the nomhean-equivalent
cycles gives the number of different objects. This suggests that binpak the quotient group
Ho = Zy/Bo, we can use 0-chains to reveal an intrinsic topological property: the euofb
different objects.

By continuous deformation and continuous movement over the surface tafrths, segment
b can be transformed in segmeéftshowing that they form a boundary for the same tunnel. On
the contraryp cannot be continuously transformed irtehowing thath andc¢ don’t bind the
same tunnel. So in a certain manrieanddb’ are equivalent antlandc are not. l.e: cycles which
bind the same tunnel are equivalent and the other way around: the noimben-equivalent
cycles gives the number of tunnels. Again, it seems the quotient dtpup Z, /B; allows us
to use 1-chains to reveal an intrinsic topological property: the numbenoéts.

The above can be generalized to arbitrary dimensionsp-thequotient grougH, = Z,,/B,,
tells something about the number@flimensional tunnels also calléwles An exception is
p = 0, here it gives the amount of objects. Denotidgs generated by’ witth = {generating elements
we formalize previous by defining the:
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Definition A.24 (Homology groupH,,). Thep-th homology grouH,, = Z,/B,, i.e. thep-th
quotient group.

If K consists of: simplices, the number of elementsp(K’) is 2" and its rank (the number
of elements in the smallest generating set).i8othZ, andB,, follow the same structure, giving
us a concrete way to compute the rank of phila homology group, defined as its:

Definition A.25 (p-th Betti numbers,).
By = rank(H,) = rank(Z,,/B,) = rank(Z,) — rank(B,) (A.5)

For p = 0 the Betti number gives the number of components ang fer0 it gives the number
of p-dimensional holes in the manifold under consideration.

Example A.24. Consider again figure A.11 above. There are two separate comporieass

Hy = {a,d} and 5y = 2. The sphere doesn'’t have any tunnels but the donut has two seperate
tunnels enclosed by respectivéland ¢, giving us: H; = {b,c} and 3; = 2. Note that the
surface of the spher& encloses its 3D volume, $bis actually the boundary of the volume of
the sphere. Analogously, the surface of the tdfus the boundary of the volume of the torus.
ThusHy = {S, T} and 3z = 2.

Example A.25. Figure|A.12 shows a 2D manifold approximated by a simplicial complex. Fol-
lowing [Feldbrugge et aﬂl.] we compute the chain, cycle and boundaryggaexplicitely, fol-
lowed by its homology groups. Directly from the figure, we can see thathiie groups are

Figure A.12: A manifold approximated by a simplicial complex, based uporfFeldbrugge et al.]
generated by:

Co={A,B,C,D,E,I,J,H}
C, = {AB,AC,AD,BC,CD,DE, HI,1J,JI}
Cy = {ABC}

Which of the chains are cycles? By definition any point has zero bouagargany closed loop
of segments as well. For a 2D surface to have zero boundary it needslmse a 3D volume,
obviously impossible in a 2D manifold. Thus we get:

Zo = Co (A.6)
Zi = {AB + BC + CA,AC + CD + DA, HI + 1] + JH}
Z; = {0}
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Any combination of two vertices which bind a segment form a 0-boundahaaalogously any
combination of three segments binding a triangle form a 1-boundary. A@&ioundaries need
to bind a 3D volume which is impossible in a 2D manifold. This gives us:

Bo={A+B,A+C,A+D,B+C,C+D,D+E,H+I H+JI+J}
B, = {AB + BC + CA}
By = {0} (A.7)

When two elements differ by an boundary elenbeat B;, we can continuously transform an
element oveb to another element. When two elements don't differ by a boundary elemseat th
is a hole somewhere and a continuous transformation is not possibleeféherwe partition

all elements ofZ; in subsets which differ by an element®f Obviously, all points in the
same structure can be reached via boundaries. One dimension highér- BC' + C' A) and
(AC+CD+ DA) clearly differ by the first, itself a boundary element. Or more intuitively, the 1-
cyclestAC+CD+DA)and(AB+BC+CD+DA) = (AB+BC+CA)+(AC+CD+DA)

can be continuously transformed into each other. The above leads to:

HOZ{AvH}
Hi={AC+AD+CD,HI + HJ +1J}
Hy = {0}

Counting generating elements we see that the Betti numbers are givén-by2, 5; = 2 and
[2 = 0. We could have seen this intuitively by observing that the manifold consist® of tw
components with two 1D holes (tunnels).

Before we continue to the next section a note about mathematical rigor. linttligve
explanation of homology classes and Betti numbers, we wrote thingsdikedntinuous defor-
mation and continuous movement over the surface of the torus, sego@nbe transformed in
segment’ [and thereforeb is homologous t@']”. Actually, mathematically this comes closer
to a description of homotopy (cf. definition A.10) thantafmology Two cycles are homotopy
equivalent if they can be continuously transformed in each other andlbgous if there ex-
ists a manifold of higher dimension of which they are both the boundary. rRooth compact
surfaces embedded in 3D Euclidean space the differences betweetopgraond homology are
limited. As we consider the first much more intuitive than the latter, we used a hitrobtopy
in our intuitive description. Differences do occur, however. Condigleexample a toroidal coil
with n. windings, as shown in the left part of figure Al13. On the torus, the coibmdtopy
equivalent withn - b + ¢ of the cycles of figure A.11 but the coil still has = 1. To see why,
note that if you cut the torus alorigor ¢, they both bind the torus surface. Analogously, if you
cut the torus along the coil, the coil also binds the torus surface. In marplmated spaces the
differences between homology and homotopy become much more importantjculpa when
it comes to measuring holes. For example homotopy misses the 2D hole givea ngitte
of the torus, whereas we saw above it was picked up by homology. Orotiteary, homol-
ogy doesn’t detect the varying structures of complements on knots in BBxeas homotopy

does |Weissteirh, 2013a]. F&? the intuitive picture of homology measurimgholes is correct
[Edelsbrunner and Harer, 2010, par IV.1].

If homotopy is more intuitive, why didn't we use this equivalence relation atstef ho-
mology? The most important reason is computational efficiency. Homologgdmpared with
homotopy much faster algorithrﬁs [Edelsbrunner and Harer, 2010, dhalbowing its practical
use for cosmological datasets.
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(a) [Brandisky] A toroidal coil with thelb) [Weisstein, 2013b] The trefoil knot
endpoints connected. Although for is one of the simplests knots and the
illustrative purposes the coil is lifted unique prime knot with three cross-
as a thick line above the torus sur- ings. The homology on its com-
face, it should be seens as a 1-cycles plement doesn'’t detect the varying
wrapped around it. structure in the knott.

Figure A.13: Examples where homotopy and homology differ.

A.3 Formalizing persistence

In the main text persistence was defined intuitively. Here we formalize pamsisusing homol-
ogy, building upon the definitions developed in appendix A.2.

Let f be a strictly increasing Morse function on simplExwith m simplices. Starting with
an empty set, we add the simplices/éfone by one in order increasing function value. This
gives us the filtration (cf. definitian 3.28):

o= KgCKiC..CK,,=K

Each of the subcomplexes will give rise to several homology gréyp&f. definition A.24),
whose ranks gave us the numbepafimensional holes. To consider how the homology changes
while the subcomplex increases in size, we can define an inclusion map feoomdterlying
space K| to | K|, with ¢ < j. The inclusion between the underlying spaces induces a homo-
morphism between the homology groups:

fi7  Hp(KG) — Hyp(K5) (A.8)

Connecting these homomorphisms between all stages of the filtration, we gquense of
homomorphisms:

0=H,(Ko) — Hy(K1) = ... = Hy(Kp) = Hy(K) (A.9)

At each stage the homology might change because some new classemaaadeome other
classes become trivial or merge. For exampley le¢ a cycle class which is born at stag# the
filtration and dies at stagebecause it merges gtwith an older component. Then the sequence
of homomorphism and the life of can be illustrated as in figure A.14. (Note that merging of
~ with an older component results in the deathyas in accordance with the Elder Rule, cf.
definition 3.30.) Collecting the classes that are born and which die at arebefrertain stage in
the filtration gives us the:
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Definition A.26 (p-th persistent homology groups ;). Let K be a simplicial complex on which
a filtration is defined and Iefp’J be a homomorphism between fhéh homology group of stage
i and stagej in the filtration. Then the-th persistent homology groups ; are the images of
the homomorphisms induced by inclusion:

H” im f” (A.10)
for 0 <7 < j < n. The corresponding-th persistent Betti numberﬁ};’j are the ranks of these

(T

By7 = rank H}/ (A.11)

\/\' \/\7)/

j-1
Hp

i1 i

¥
. H, H

H p

Figure A.14: Persistent homology groups [Edelsbrunner and Harer, 2010] The cycle class is born in subcompleX<;. At
stagej of the filtration its image merges for the first time into the imafelg(K;_1). When this happens the class is paired and
dies.

Now we can define:

Definition A.27 (Persistence)Consider the setup of definition A|26. Denote for each stage in
the filtration the function value of the simplex being added wijththis gives us a sequence
of function values; < a2 < ... < a,. We set the value corresponding to the empty set
ap = —oo. Then, ify is born atK; and dies ati;, its persistence is:

persistencé€y) = a; — a; (A.12)

Intuitively, persistence is the difference between the birth and death vathe ofitical simpli-
cies composing the cycle. l.e. persistence gives the lifetime of the cycle sg#tte¢o a rising
sublevel set of the function.
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