

Our Sun is an ordinary yellow star.

 (orbit of Moon fits inside Sun!) $333.000 \times$ heavier than Earth - Density $1.4 \mathrm{gr} / \mathrm{cm}^{3}$(comparable to Jupiter)
Rotation period 24.5 days (more slowly near the poles)

- Surface temp. is $\mathrm{T}=5800 \mathrm{~K}$
- Power $3.9 \times 10^{26} \mathrm{Watt}$ (at Earth: $1370 \mathrm{~W} / \mathrm{m}^{2}$)

Note: I second supplies 500.000 years of energy consumption on Earth. Note: 'limb darkening' of the solar disk.

2
from the nucleus to the surface

radiation transfer takes $\sim 10^{5}$ years
distinguish: Conduction vs Convection vs Radiation

The atmosphere of the Sun

- Photosphere $\left(\mathrm{H}, \mathrm{He}^{+}\right)$, with sunspots and granulation

Chromosphere, with prominences and spicules
Corona

- Solar wind (and Coronal Mass Ejections)

Photosphere : sunspots

- relatively cool and dark areas
- visible for days to months
- indicate the rotation of the Sun
- appear within 35° latitude from the equator
appear in cycles of II, or better, 22 years
group of sunspots

can have a complex structure.

\qquad
\qquad
\qquad
\qquad
\qquad

7
\qquad
\qquad
\qquad
\qquad
\qquad

During a cycle, Sunspots first appear at higher latitudes

minima in/around I942, 1954, I963, 1974, I986, I997
Compared to:
1940/4I/42, I947, I954, I956, I963, I985/86, I997, ...

complex magnetic fields

the development of a prominence

Chromosphere: spicules
jet streams of plasma in the chromosphere

 easily visible near the edge of the Solar disk

Corona: nicely visible during a total Solar eclipse

Corona: nicely visible during a total Solar eclipse

Corona: nicely visible during a total Solar eclipse

Solar wind: - a constant stream of particles Coronal Mass Ejection (CME) \rightarrow space weather

The Solar spectrum
shows absorption lines from many chemical elements, ranging from Hydrogen, Carbon, Oxygen, Nitrogen

The amount of radiated
energy per square meter of
the surface (Flux) follows from Stefan-Boltzmann's Law:

Sun: temperature $=5800(\mathrm{~K})$
$\mathrm{F}=5.67 \times 10^{-8} \times \mathrm{T}^{4} \quad$ (Watt $\left./ \mathrm{m}^{2}\right) \quad \begin{aligned} \text { surface } & =6.09 \times 10^{18}\left(\mathrm{~m}^{2}\right) \\ \Rightarrow \text { power } & =3.90 \times 10^{26} \quad(\text { Watt })\end{aligned}$

Apart from a colour (temperature), stars have a spectral type,

 divided in: • sub-types: e.g. A0 - A9- pressure classes or luminosity classes : I, II, III, IV, V

This spectroscopic "finger print" defines the so-called spectral class: O-B-A-F-G-K-M (Oh Be A Fine Girl/Guy Kiss Me)
This is obviously related to the temperature of the photosphere! 37

Pressure Classes ($I-V$) define the so-called Luminosity Classes

Determining the intrinsic luminosity of a star requires knowledge of the distance to that star.

Using the Parallax we measure distances to (nearby) stars.
Carth's orbit
| parsec \equiv distance at which a star has a parallax angle of I arc-second.
| parsec = 3.26 light years
More distant stars have smaller parallax angles.

Similar proper motions of a group of stars can be used to determine the distance to the group.

Note the double star Mizar \& Alcor!
Single stars like our Sun are not common! Most stars are in binary systems.

Some of the brightest stars:

Star		Apparent magnitude	Distance (light years)	Absolute magnitude	Type
Sun		-26.72	-	4.8	G2V
Sirius	$(\alpha$ CMa)	-1.46	8.6	1.4	AIVm
Canopus	$(\alpha$ Car $)$	-0.72	74	-2.5	A9II
Arcturus	$(\alpha$ Boo $)$	-0.04	34	0.2	KI.5IIlp
Rigel	$(\beta$ Ori)	0.12	1400	-8.1	B8Iae
Betelgeuse (α Ori)	0.50	1400	-7.2	M2lab	
Aldebaran (α Tau)	0.85	60	-0.3	K5III	

