

The sky in motion

- Constellations
- Introduction to the night sky
- Measuring angles on the sky
- Motion of the celestial sky at different locations on Earth
- Coördinate systems
- Precession
- Motion of the Sun
- Timelapse movies (Stellarium demo)

2

\qquad

The sky is divided in 88 constellations.

7

Definition of constellation boundaries
Established by Committee 3 (Astronomical Notations) of the International Astronomical Union (IAU).

Based on the article:
Délimitation Scientifique des Constellations,
by E. Delporte, 1930
Royal Observatory of Belgium

 on the sky is the angle between the two lines in the direction of these objects, as seen by the observer

- I degree is divided in 60 arc-minutes and

I arc-minute is divided in 60 arc-seconds

Rules of thumb

The width of a
finger is ~ 1 degree.
Diameter of the
Sun and Moon :
$1 / 2$ degree $=30$ arc-minutes $=1800$ arc-seconds

The unaided eye can separate 2 stars at an angular separation of ~ 1 arc-minute. The Hubble Space Telescope can separate 2 stars that are 0.1 arc-second apart.

- The daily rotation of the Earth defines the celestial-equator and the northern and southern celestial poles.
- The polar star Polaris (α Ursa Minor)
is located, accidentally, in the direction of the Earth rotational axis.
- The celestial equator is the equivalent of the geographic equator.

Example: α Centauri is located at $\alpha=14^{\mathrm{h}} 39^{\mathrm{m}} 36^{\mathrm{s}} .2, \delta=-60^{\circ} 50^{\prime} 8^{\prime \prime}$

Right Ascension is measured along the celestial equator, increasing to east. Declination is measured along a meridian, increasing towards north.

The rotating Earth moves around the Sun in $365,25 \ldots$ days in a nearly-circular orbit.
this orbital plane defines the ecliptic

The axis of rotation is not perpendicular to orbital plane! \rightarrow the celestial equator and the ecliptic do not coincide...

The ecliptic is the plane of reference

Common sky coordinates:

Name	symbols	reference (zero point)	range
Azimuthal	($\mathrm{Az}, \mathrm{Alt}$)	horizon (north)	$\begin{aligned} & \text { Az : } 0 \rightarrow 360 \\ & \text { Alt }: 0 \rightarrow 90 \end{aligned}$
Equatorial	(α, δ)	celestial-equator (vernal equinox)	$\begin{array}{l:c} \alpha & : 0 \rightarrow 24 \\ \delta & :-90 \rightarrow+90 \end{array}$
Ecliptic	(λ, β)	ecliptic (vernal equinox)	$\begin{aligned} & \lambda: 0 \rightarrow 360 \\ & \hat{\beta}: 0 \rightarrow 90 \end{aligned}$
Galactic	($1, \mathrm{~b}$)	Milky Way (galactic center)	$\begin{aligned} & \text { l }: 0 \rightarrow 360 \\ & \text { b }:-90 \rightarrow+90 \end{aligned}$
Supergalactic	(SGL, SGB)	supergalactic plane $\left(1=137.37^{\circ}, b=0^{\circ}\right)$	$\begin{aligned} & \text { SGL : } 0 \rightarrow 360 \\ & \text { SGB :-90 } \rightarrow+90 \end{aligned}$

Seen from Earth, the Sun moves up and down in Declination between the stars, following the ecliptic.

The vernal equinox shifts along the ecliptic with astrological consequences...

The Sun shifts along the ecliptic, 1 degree per day

The heating of the surface of the Earth depends on the elevation of the Sun!

Demo Stellarium
www.stellarium.org
\qquad
\qquad
\qquad
\qquad

