

9

- discovered on aerial photographs in '90

75 m . in diameter Stonehenge-like construction

- a settlement since 5.000 B.C
- solar observatory, marking solar solstices
- reconstructed in 2005

Goseck - The Nebra disc
Bronze disc:
3.650 years old
oldest known star map
European Bronze Age
Discovered in 1999 on the
Mittelberg (252 m), 25 km from Goseck
30 cm in diameter, golden inlays
Symbols:

- Sun / Moon
-32 stars (incl Pleiades?)
- 2 arches:
angle between solar solstices
- extra arch: Sun boat, Milky Way, Rainbow?

astronomy in Egypt
There's a lot of discussion about the significance of astronomy in Egypt
Importance of astronomy:
- practical use : Heliacal rising of Sirius - flooding of the Nile
circumpolar stars - alignment of the pyramids
Egyptian world view:
Nut \& Ra

Sirius and the Nile

aligning the pyramids

From Lunar eclipses, they inferred that:

- the Earth is spherical
- the Earth is several
times larger than the Moon

The retrograde motions of Mars, Jupiter and Saturn

When a planet is opposite of the Sun on the sky, and thus visible at midnight: - its motion along the ecliptic reverses and

- its apparent brightness increases temporarily.

Ptolemy's geocentric model :
Epicycles of Mercury and Venus between the Earth and the Sun to explain the 'maximum elongation' of these planets from the Sun

Venus is only visible in the evening and morning sky.

The Ptolemaic geocentric model endured until the Renaissance due to dogmatic Christian thinking and reliance on authority.

Nicolaus Copernicus (1473-1543)
discovered shortcomings in Ptolemy's geocentric model :

- inaccurate long-term predictions
for a planet's position
- brightness variations of Mars
are too large for epicycles
- 'light of life' from a central Sun was deemed more aesthetic

Copernicus developed a heliocentric mode but still assumed uniform motions
on perfect circles with smaller 'epicyclets'.

The retrograde motion in a Heliocentric model:

Prior to the invention of the telescope, Brahe used large instruments like the quadrant to make accurate observations by-eye while he also recorded estimated uncertainties.

Brahe dismissed Copernicus' Heliocentric model Brahe dismissed Copernicus'
because, like the ancient Greek because, ilke the ancient Greek,
he could not measure a parallax for the stars...

First use of a telescope in 1609.

Decisive observations moons of Jupiter phases of Venus

Johannes Kepler (1571-1630)
postulated empirical laws for planetary motions based on accurate measurements of Tycho Brahe.

The 3 laws of Kepler for planetary motion:

- Each planet moves around the Sun in an elliptical orbit with the Sun located in one of the two foci.
- The straight line between the Sun and a planet sweeps equa areas during equal intervals of time.
- The square of the orbital period of a planet is proportional to the cube of the semi-major axis of the orbit $\left(\mathrm{P}^{2} / \mathrm{A}^{3}=\right.$ constant $)$

Kepler's First Law:

Kepler's First Law:

Each planet moves around the Sun in an elliptical orbit with the Sun located in one of the two foci.

By the way:
 an ellipse is well approximated with circular epicles
 with circular epicle

Kepler's Second Law:
The straight line between the Sun and a planet sweeps equal areas during equal intervals of time.

\qquad
\qquad
\qquad
\qquad

The validity of the empirical laws of Kepler was proven mathematically in 1687 by Isaac Newton's theory of gravity, published in
Philosophiae Naturalis Principia Mathematica

- One of nature's four fundamental forces.
- Gravity keeps the Moon in an orbit around Earth humans bound to Earth's surface, the Earth \& Moon around the Sun.
- It keeps satellites in their orbits :

A satellite launched with sufficient speed, will keep 'falling' in a circular orbit.
Kepler's empirical laws are easily derived from Newton's physical Law of Gravity!

Newton's three laws of motion:

I. An object will remain in rest or maintain a constant speed in a straight line, unless an outside force acts upon it
2. A force acting upon an object causes it to accelerate at a rate proportional to the force and inversely proportional to its mass: Force $=$ mass \times acceleration or $F=m a$
3. When object X exerts a force on object Y, object Y exerts an equal and opposite force back on X :

$$
\text { Action }=- \text { Reaction }
$$

Newton's Laws of Universal Gravity:

$$
\begin{array}{ll}
m_{1} m_{2} & F=\text { gravitational force } \\
\text { universal constant }
\end{array}
$$

$F=G \frac{m_{1} m_{2}}{d^{2}} \quad \begin{aligned} & G=\text { universal constant of gravity }\end{aligned}$ $m_{1}=$ mass of object I $m_{2}=$ mass of object 2 $d=$ distance between the two objects

