Formation of dwarf galaxies (in voids)

or

Dwarf galaxies in the Universe Why aren't there more of them?

Matthias Hoeft International University Bremen

Gustavo Yepes

Universidad Autonoma de Madrid

Stefan Gottlöber

Astrophysikalisches Institut Potsdam

Volker Springel

Max Planck Institut für Astrophysik

Dwarf galaxies in cosmological voids?

N-Body simulations: "Yes"

Surveys: "No (???)"

Gottlöber et al. 2003

IIU^B International University Bremen z = 45.28

 $L = 20 \ h^{-1} Mpc$

The halo mass function

pc⁻³1

r°s

Nhalo (>M)

infinite (?) number of small halos

Do we see all these halos?

Bullock, Kravtsov, Weinberg

IUB International University Bremen

The galaxy dark matter connection

populate simulated dark matter distributions with observed galaxies

van den Bosch, Yang, Mo, 04

IUB International University Bremen

The galaxy dark matter connection

populate simulated dark matter distributions with observed galaxies

van den Bosch, Yang, Mo, 04

IIU^B International University Bremen

Textbook solution:

(Padmanabhan)

Textbook solution:

(Padmanabhan)

Textbook solution:

(Padmanabhan)

$nk_{\rm B}T / n^2 \Lambda V$ (GM/R³)^{-1/2}

Textbook solution:

(Padmanabhan)

 $nk_{\rm B}T / n^2 \Lambda V$ (GM/R³)^{-1/2}

Bremsstrahlung:

R = 74 kpc $M = 3 \times 10^{11} \text{ M}_{\odot}$

Cooling of primordial plasma

Cosmological hydrodynamical void simulation

Diameter=16 Mpc $\Omega_{\rm M}$ =0.03Mass resolution (gas)~2×10⁵ h⁻¹ M_☉

TreeSPH Gadget2 Radiative cooling UV-heating Star formation subgrid model feedback

Multiphase model

Yepes et al. 1997 Springel & Hernquist 2002

Aim: determine SFR $\dot{
ho}_*(
ho,T)$

IUB International University Bremen

Baryon fraction

Halos below few times 10⁹ M_☉ are *baryon-poor*

Characteristic mass scale depends on redshift

Baryon fraction

Halos below few times 10⁹ M_☉ are *baryon-poor*

Characteristic mass scale depends on redshift

Mimic the UV-background: lower T limit

Crain et al. 2006

Redshift evolution of the baryon fraction

Characteristic mass scale decreases with redshift

Redshift evolution of the baryon fraction

Characteristic mass scale decreases with redshift

Redshift evolution of the baryon fraction

mass

characteristic

M_c rises significantly with redshift

M_c rises significantly with redshift

mass

characteristic

M_c rises significantly with redshift

M_c rises significantly with redshift

Filtering Mass

$$\frac{\mathrm{d}^2 \delta_X}{\mathrm{d}t^2} + 2H \frac{\mathrm{d}\delta_X}{\mathrm{d}t} = 4\pi G \bar{\rho} (f_X \delta_X + f_b \delta_b)$$

$$\frac{\mathrm{d}^2 \delta_{\mathrm{b}}}{\mathrm{d}t^2} + 2H \frac{\mathrm{d}\delta_{\mathrm{b}}}{\mathrm{d}t} = 4\pi G \bar{\rho} (f_{\mathrm{X}} \delta_{\mathrm{X}} + f_{\mathrm{b}} \delta_{\mathrm{b}}) \left| -\frac{c_{\mathrm{S}}^2}{a^2} k^2 \delta_{\mathrm{b}} \right|$$

$$rac{\delta_b}{\delta_X} = 1 - rac{k^2}{k_F^2}$$

Gnedin & Hui 1997

Filtering mass (cont.)

$$\frac{1}{k_{\rm F}} = \frac{3}{2} \Omega_0 \frac{1}{D(a)} \int_0^a da' \frac{D}{S \, a' k_{\rm J}^2} \int_{a'}^a da'' \frac{1}{a''^2 S}$$
$$S^2 = 1 + \Omega_0 (1/a - 1) + \Omega_\Lambda (a^2 - 1)$$

 $c_{
m s}^2 = rac{3}{5} rac{k_{
m B} \langle T
angle_{
m something}}{\mu m_{
m p}}$

$$M_{
m F} = rac{4\pi}{3}
ho \; \left(rac{2\pi a}{k_{
m F}}
ight)^3$$

Filtering mass (final)

Baryon fraction: Void + Group

In dense environments the characteristic mass corresponds to that in void regions

IU International University Bremen

Tidal stripping with cool gas + stars

Gas accretion, schematically

Hot halo

Internatio

• Accretion

... more realistically shaped

1

1

"Cold mode" (Keres et al. 04) of galactic gas accretion: gas creeps along the equilibrium line between heating and cooling

1

"Cold mode" (Keres et al. 04) of galactic gas accretion: gas creeps along the equilibrium line between heating and cooling

1

"Cold mode" (Keres et al. 04) of galactic gas accretion: gas creeps along the equilibrium line between heating and cooling

Ţ

Ţ

$$k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$$

$$\frac{M_{\rm vir}}{4/3\,\pi\,r_{\rm vir}^3} = \Delta_c(z)\,\langle\rho\rangle$$

 $T_{
m entry} \ge T_{
m vir}$

$$\frac{M_{\rm c}(z)}{10^{10} h^{-1} M_{\odot}} \simeq \left\{ \frac{T_{\rm entry}(z)}{3.5 \times 10^4 \,\mathrm{K}} \frac{1}{1+z} \right\}^{\frac{3}{2}} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{\frac{1}{2}}$$

$$\frac{M_{\rm c}(z)}{10^{10} \, h^{-1} \, M_{\odot}} = \left\{ \tau(z) \; \frac{1}{1+z} \right\}^{3/2} \; \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Max gas temperature

$$k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$$

$$\frac{M_{\rm vir}}{4/3 \,\pi \, r_{\rm vir}^3} = \Delta_c(z) \,\langle \rho \rangle$$

 $T_{\mathrm{entry}} \ge T_{\mathrm{vir}}$

$$\frac{M_{\rm c}(z)}{10^{10} \ h^{-1} M_{\odot}} \simeq \left\{ \frac{T_{\rm entry}(z)}{3.5 \times 10^4 \ {\rm K}} \frac{1}{1+z} \right\}^{\frac{3}{2}} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{\frac{1}{2}}$$

$$\frac{M_{\rm c}(z)}{10^{10} \, h^{-1} \, M_{\odot}} = \left\{ \tau(z) \; \frac{1}{1+z} \right\}^{3/2} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Max gas temperature

Relate radius to mass

$$k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$$

 $\frac{M_{\rm vir}}{4/3 \,\pi \, r_{\rm vir}^3} = \Delta_c(z) \,\langle \rho \rangle$

 $T_{\text{entry}} \ge T_{\text{vir}}$

$$\frac{M_{\rm c}(z)}{10^{10} \ h^{-1} M_{\odot}} \simeq \left\{ \frac{T_{\rm entry}(z)}{3.5 \times 10^4 \ {\rm K}} \frac{1}{1+z} \right\}^{\frac{3}{2}} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{\frac{1}{2}}$$

$$\frac{M_{\rm c}(z)}{10^{10} h^{-1} M_{\odot}} = \left\{ \tau(z) \ \frac{1}{1+z} \right\}^{3/2} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Max gas temperature

Relate radius to mass

$$k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$$

$$\frac{M_{\rm vir}}{4/3 \,\pi \, r_{\rm vir}^3} = \Delta_c(z) \,\langle \rho \rangle$$

Condition for suppression

$$T_{\rm entry} \ge T_{\rm vir}$$

 $\frac{M_{\rm c}(z)}{10^{10} \, h^{-1} M_{\odot}} \simeq \begin{cases} T_{\rm entry}(z) \\ 3.5 \times 10^4 \, {\rm K} \\ 1 + 1 \end{cases}$

$$\left[\frac{1}{2}\right]^{\frac{3}{2}} \left\{\frac{\Delta_c(0)}{\Delta_c(z)}\right\}^{\frac{1}{2}}$$

$$\frac{M_{\rm c}(z)}{10^{10} h^{-1} M_{\odot}} = \left\{ \tau(z) \ \frac{1}{1+z} \right\}^{3/2} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Max gas temperature

Relate radius to mass

 $k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$

 $\frac{M_{\rm vir}}{4/3\,\pi\,r_{\rm vir}^3} = \Delta_c(z)\,\langle\rho\rangle$

Condition for suppression

 $T_{\rm entry} \ge T_{\rm vir}$

Prediction for M_c

$$\frac{M_{\rm c}(z)}{10^{10} \, h^{-1} M_{\odot}} \simeq \left\{ \frac{T_{\rm entry}(z)}{3.5 \times 10^4 \, {\rm K}} \frac{1}{1+z} \right\}^{\frac{3}{2}} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{\frac{1}{2}}$$

$$\frac{M_{\rm c}(z)}{10^{10} h^{-1} M_{\odot}} = \left\{ \tau(z) \ \frac{1}{1+z} \right\}^{3/2} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Max gas temperature

Relate radius to mass

 $k_B T_{\rm vir} = \frac{1}{2} \mu m_p \frac{G M_{\rm vir}}{r_{\rm vir}}$

 $\frac{M_{\rm vir}}{4/3 \,\pi \, r_{\rm vir}^3} = \Delta_c(z) \, \langle \rho \rangle$

Condition for suppression

 $T_{\rm entry} \ge T_{\rm vir}$

Prediction for M_c

$$\frac{M_{\rm c}(z)}{10^{10} \, h^{-1} M_{\odot}} \simeq \left\{ \frac{T_{\rm entry}(z)}{3.5 \times 10^4 \, {\rm K}} \frac{1}{1+z} \right\}^{\frac{3}{2}} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}$$

Measurement M_c

$$\frac{M_{\rm c}(z)}{10^{10} h^{-1} M_{\odot}} = \left\{ \tau(z) \ \frac{1}{1+z} \right\}^{3/2} \left\{ \frac{\Delta_c(0)}{\Delta_c(z)} \right\}^{1/2}$$

Mass accretion history

Mass accretion history

University Bremen

Baryon poor small halos

derived from the characteristic mass scales

τ:

T_{entry}: taken from the densitytemperature phase space

Good agreement in particular for the newly accreted (cooled) mass

International University Bremen

IUB

derived from the characteristic mass scales

τ:

T_{entry}: taken from the densitytemperature phase space

Good agreement in particular for the newly accreted (cooled) mass

International University Bremen

UUE

derived from the characteristic mass scales

τ:

T_{entry}: taken from the densitytemperature phase space

Good agreement in particular for the newly accreted (cooled) mass

International University Bremen

UUB

derived from the characteristic mass scales

τ:

T_{entry}: taken from the densitytemperature phase space

Good agreement in particular for the newly accreted (cooled) mass

IIUB International University Bremen

derived from the characteristic mass scales

τ:

T_{entry}: taken from the densitytemperature phase space

Good agreement in particular for the newly accreted (cooled) mass

IIU International University Bremen

The characteristic mass is "robust"

even a significantly different heat input has only little effect

IU^B

International

University

Gas accretion revisited

Total heat input by UV heating

10⁴³ -10⁴⁷ erg yr⁻¹

(Very crude estimate!)

In which reservoir does the halo cool?

International University Bremen

Summary

 \bullet Photoheating suppresses the condensation of gas in halos $< M_{c}$

• $T_{vir} < T_{entry}$ is a very good criteria for ongoing accretion

• Photoheating by UV-background is not sufficient to explain the paucity of dwarf galaxies

• Galactic feedback (even without winds) provides much more heat, and suppresses therefore accretion much stronger

