Mass and Light in the Outskirts of Galaxy Clusters

Antonaldo Diaferio Dipartimento di Fisica Generale "Amedeo Avogadro" Università degli Studi di Torino

Amsterdam, December 14th, 2006

OUTLINE

- Infall regions of clusters: personal perspective.
- Caustics in redshift space: the escape velocity.
- Measuring the mass in non-virialized regions: The caustic technique.
- Results, links and outlook.

INFALL REGIONS OF CLUSTERS: Prologue (1)

CfA slice

redshift space distortion and the spherical infall model

Kaiser 1987

de Lapparent et al. 1986

INFALL REGIONS OF CLUSTERS: Prologue (2)

Codr ⁻⁷	time		
t/t _c =0.00	t/t _c =0.25	t/t _c =0.50	t/t _c =0.75
t/t _c =1.00	t/t _c =1.25	t/t _c =1.50	t/t _c =1.75

real space

Spherical infall model: A primitive toy simulation

INFALL REGIONS OF CLUSTERS: Prologue (3)

linear scales

mildly non-linear scales

INFALL REGIONS OF CLUSTERS: Prologue (4)

radius

N

Simulated cluster in a SCDM model

Merging and substructures affect the velocity field <u>AND</u> the caustic amplitude

van Haarlem & van de Weygaert 1993

Hierarchical clustering models: *anisotropic and episodic accretion*

Colberg et al. 1999

INFALL REGIONS OF CLUSTERS

The caustic amplitude IS the escape velocity

cosmology

INFALL REGIONS OF CLUSTERS Connection to the mass profile

CAUSTIC TECHNIQUE: BASICS Example: Sky **CL0024 Redshift diagram**

(Diaferio & Geller 1997)

THE CAUSTIC TECHNIQUE

- **1. Binary Tree**
- **2.** Cut the Tree: Thresholds
- **3.** Galaxy Members: Caustic Location
- 4. Mass Profile

CAUSTIC TECHNIQUE (1): BINARY TREE <u>THE HIERARCHICAL METHOD</u>

1. Arrange the galaxies in a binary tree based on the pairwise "projected" energy:

$$E_{ij} = -G\frac{m_i m_j}{R_p} + \frac{1}{2}\frac{m_i m_j}{m_i + m_j} \Pi^2$$

rojected separation

P

THE BINARY TREE OF THE CL0024 FIELD

CAUSTIC TECHNIQUE (2): THRESHOLDS

THE HIERARCHICAL METHOD

2. Move along the main branch and compute the galaxy velocity dispersion:

Velocity dispersion along the main branch

Main branch

CAUSTIC TECHNIQUE (3): LOCATION

Candidate cluster members determine: 1. the <u>cluster centre</u> redshift diagram

Galaxy number density in the redshift diagram

$$f_q(r,v) = \kappa$$
 \leftarrow EQUATION

Caustics from the zero of the function:

$$S(\kappa, R) = \langle V_{esc}^2 \rangle_{\kappa, R} - \langle V_{R}^2 \rangle_{R}$$

2. the cluster radius 3. the cluster velocity dispersion

Members and substructures of CL0024

Galaxy velocity dispersion along the main branch

CAUSTIC TECHNIQUE (4): MASS PROFILE OF CL0024

$$GM(< r) = \frac{1}{2} \int_0^r \mathcal{A}^2(x) dx$$

CAUSTIC TECHNIQUE (6): MASS PROFILE

DOES IT WORK?

Comparison with N-body simulations

radius

Diaferio & Geller 1997

radius

Diaferio 1999

CAUSTIC TECHNIQUE (5): CAUSTICS VS. LENSING

Diaferio et al. 2005

CAUSTICS VS. LENSING

CAUSTICS

<u>Requires</u>:

Wide-field redshift

survey

Sufficiently

<u>dense survey</u>

<u>Yields</u>:

<u>3D mass profile</u>
(affected by projection effects)

LENSING

<u>Requires</u>:

Wide-field photometric

survey

- Redshift where signal
- is sufficiently strong

<u>Yields</u>:

Mass projected along the line of sight

CAUSTIC TECHNIQUE (6): APPLICATIONS

Coma

Geller et al. 1999

CAUSTIC TECHNIQUE (7): APPLICATIONS

43 stucked clusters from the 2dF

Fornax cluster

Biviano & Girardi 2003

Drinkwater et al. 2001

CAIRNS: Cluster And Infall Region Nearby Survey

8+1 nearby clusters (cz<15,000 km/s), 15,654 galaxy redshifts

Rines et al. 2003

CAIRNS: Cluster And Infall Region Nearby Survey

Mass profiles

CAIRNS: Cluster And Infall Region Nearby Survey

Casagrande & Diaferio 2006

Mass

THE MASS-TO-LIGHT RATIO

M/L increases with scale

Simulations

Observations

Ramella et al. 2004 (2MASS groups)

Kauffmann et al. 1999 (GIF sims.)

M/L: MEASURES

CIRS: Cluster Infall Regions in the SDSS

72 X-ray selected clusters combined with the 4th SDSS data release

Rines & Diaferio 2006

CIRS: Cluster Infall Regions in the SDSS Redshift diagrams (12 out of 72)

CIRS: Cluster Infall Regions in the SDSS

Mass profiles

CIRS: Cluster Infall Regions in the SDSS

Concentrations

Nbody simulations 0 (Bullock et al. 2001) 0 10 00 $z_{101} = r_{101}/a$ concentra 0 a 'n. ő Ð b. o 1 00 Virial Mass 1013 1015 1014 $M_{101} \ (10^{34} \ h^{-1} \ M_{\odot})$

Mass in the infall region

 $\Omega_{m} = 0.24 + 0.14 - 0.09$ $\sigma_{8} = 0.92 + 0.24 - 0.19$

Rines et al. 2006

THE CIRS MASS FUNCTION AND THE COSMOLOGICAL PARAMETERS

THE GALAXY-LSS CONNECTION

Moore et al. 2004

SFR vs. RADIUS

CNOC

N-body+semi-analytic model

Diaferio et al. 2001

CAIRNS: Hα vs. radius

radius

CAIRNS: Hα vs. local density

local 2D density

CAIRNS: EW[Hα] distribution vs. density

local 2D density

CONCLUSION

- The caustic technique: A mass estimator for the outer regions of clusters
- Results from the CAIRNS and CIRS cluster surveys
- Mass-to-light ratio profiles out to ~4 R₂₀₀ for 9 clusters
- NFW/Hernquist best fits to the mass profiles out to 4-5 R₂₀₀ for ~80 clusters!
- Mass function yields Ω_m - σ_8 consistent with other estimates
- The galaxy-environment connection: local density