# Quenched Connectivity Disorder: Spin Models on Random Lattices and Graphs

#### Wolfhard Janke

Computational Quantum Field Theory, Institut für Theoretische Physik and Centre for Theoretical Sciences (NTZ), Universität Leipzig, Germany wolfhard.janke@itp.uni-leipzig.de http://www.physik.uni-leipzig.de/cqt.html

#### Contents

- 1. Random lattices and graphs
- 2. Spin models and phase transitions
- 3. Quenched connectivity disorder
- 4. Results of Monte Carlo simulations
- 5. Summary and Outlook

*The World a Jigsaw: Tessellations in the Sciences* Lorentz Center, Leiden University, 6 – 10 March 2006





## **Motivation**

Non-perturbative quantum gravity – (at least ...) two alternative functional integral approaches (analogous to path-integral quantization):  $\longrightarrow$  Renate Loll

### 1. Discretized Regge calculus:

- (dynamically) varying link lengths
- fixed connectivities of simplicial lattices (regular or random)
- is matter part influenced by (quenched) random lattices?

### 2. Dynamical triangulations (DTRS):

- fixed link lengths
- (dynamically) varying graph connectivities
- how does matter part behave for frozen-in (quenched) connectivities?

Statistical physics point of view: Quenched vs annealed connectivity disorder

# **Random Graphs and Lattices**

Locally varying connectivity of random graphs as special case of quenched (correlated) disorder applied to spin models.

#### **Voronoi-Delaunay triangulations:**

- drop points randomly on the plane, construct Wigner-Voronoi cells and the corresponding dual bonds of the Delaunay triangulation
- Hausdorff dimension  $d_h = 2$

## $\phi^3$ quantum gravity graphs:

- dual graphs to *dynamical triangulations*
- graphs decompose into a tree of *baby universes*, Hausdorff dimension  $d_h = 4$

# **Delaunay Triangulations/Dual Voronoi Graphs**



### **Link-Flip Moves for Dynamical Triangulations**



Or using the Tutte algorithm

# **Dynamical Triangulations/Dual Planar** $\phi^3$ **Graphs**



### **Connectivity Properties**



Coordination-number distribution P(q): Monotonic vs peaked; different tail behaviour

### **Spin Models and Phase Transitions**

Ising model of ferromagnetism:

$$Z = \sum_{\{\sigma_i\}} \exp(-H_{\rm Is}/k_B T)$$

with Hamiltonian

$$H_{\rm Is} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - h \sum_i \sigma_i \ , \qquad \sigma_i = \pm 1$$

 $T = \text{temperature}, h = \text{external magnetic field}, k_B = \text{Boltzmann's constant}$ 

Potts models:

$$H_{\text{Potts}} = -J \sum_{\langle ij \rangle} \delta_{\sigma_i \sigma_j} , \qquad \sigma_i \in 1, \dots, q$$

 $\delta_{\sigma_i \sigma_j} = \text{Kronecker symbol } (q = 2 \leftrightarrow \text{Ising})$ 

### **Phase Transitions**



jumps, finite correlation length

singularities, diverging correlation length

## **Critical Phenomena**

Correlation length:

$$\xi = \xi_0 |1 - T/T_c|^{-\nu} + \dots$$

Magnetisation:

$$m = m_0 (1 - T/T_c)^{\beta} + \dots \qquad (T \le T_c)$$

Susceptibility:

$$\chi = \chi_0 |1 - T/T_c|^{-\gamma} + \dots$$

Specific heat:

$$C = C_{\rm reg} + C_0 |1 - T/T_c|^{-\alpha} + \dots$$

 $\nu$ ,  $\beta$ ,  $\gamma$ ,  $\alpha$ : universal critical exponents

#### Table of critical exponents:

| model                       | u           | lpha                 | eta      | $\gamma$     |
|-----------------------------|-------------|----------------------|----------|--------------|
| 2D Ising                    | 1           | <mark>0</mark> (log) | 1/8      | 7/4          |
| 3D $Ising^{*)}$             | 0.63005(18) | 0.10985              | 0.326 48 | 1.237 17(28) |
| 2D $q = 3$ Potts            | 5/6         | 1/3                  | 1/9      | 13/9         |
| $2D \ q = 4 \ \text{Potts}$ | 2/3         | 2/3                  | 1/12     | 7/6          |

\*) "world average" [M. Weigel, WJ, Phys. Rev. **B62** (2000) 6343]

2D Potts with  $q \ge 5$ : first-order phase transition of increasing strength (measured by latent heat or interface tension)

# **Quenched Connectivity Disorder**

Static random lattices  $\leftrightarrow$  quenched disorder in coordination numbers ???

If YES, one would expect:

1. Pure system (regular lattice) with a 2nd order transition. Uncorrelated quenched disorder is for

 $\alpha \begin{cases} < 0 & \text{irrelevant} \\ = 0 & \text{marginal} \\ > 0 & \text{relevant} \end{cases}$ 

perturbation (Harris criterion), governed for  $\alpha > 0$  by a "random" fixed point characterized by a new set of critical exponents.

2. Pure system (regular lattice) exhibits 1st order transition. Uncorrelated quenched disorder induces a

softening to 2nd order transition

Typical case verifying this scenario: random-bond Ising and Potts models

## **A** Possible Refinement: Disorder Correlations



### The Harris-Luck Criterion

#### Uncorrelated disorder:

Spin model with weak quenched bond disorder:  $J_{i,j} = J_0(1+\epsilon_{i,j})$ . The fluctuation of the mean coupling induces a fluctuation of effective critical temperatures:

$$\sigma(J) \equiv (J - J_0)/J_0 \sim \xi^{-d/2} \sim L^{-d/2}$$
  
$$\sigma(t) \equiv (t - t_0)/t_0 \sim t^{d\nu/2}$$

Disorder is relevant if (Harris, 1974):

$$d\nu/2 < 1 \Leftrightarrow \alpha = 2 - d\nu > 0$$

Generalization for correlated disorder (B "ball" of radius R):

$$\sigma(J) \equiv \frac{J(R) - J_0}{J_0} \sim B(R)^{\beta - 1} \sim L^{-d(1 - \beta)}$$

with the wandering exponent  $\beta$ . Disorder is relevant if (Luck, 1993)

$$\beta > \beta_c \equiv 1 - 1/d\nu = (1 - \alpha)/(2 - \alpha)$$

## Wandering Exponents $\beta$

 $\beta = 0.50096(55)$   $\beta = 0.50096(55)$   $\beta = 0.50096(55)$  simulation  $\beta = 0.50096(55)$  simulation fit  $1e-06 \quad 1e-05 \quad 0,0001 \quad 0,001 \quad 0,01 \quad 0,1 \quad 1$  1/B(R)

**Delaunay graphs (**500 000 sites)

- correlations decay faster than  $1/R^2$  (presumably exponentially fast)
- q = 2:  $\alpha = 0 \Rightarrow$  marginal case q = 3:  $\alpha = \frac{1}{3} \Rightarrow$  should be relevant!

M. Weigel, WJ, Phys. Rev. B69 (2004) 144208

 $\phi^3$  graphs (250000 sites)



- strong, algebraically decaying correlations between co-ordination numbers
- If  $\alpha > \alpha_c = (1 2\beta)/(1 \beta) \approx$ -1.5149  $\Rightarrow$  should be always relevant

## **Potts Models on** $\phi^3$ **Graphs**

#### **Annealed** gravity graphs:

- exact large-N matrix model solutions
- continuum CFT predictions via KPZ formula (c: central charge)

$$\tilde{\Delta} = \frac{\sqrt{1 - c + 24\Delta} - \sqrt{1 - c}}{\sqrt{25 - c} - \sqrt{1 - c}}$$

 $\Delta$ : bare conformal weight,  $\tilde{\Delta}$ : gravitationally dressed conformal weight

$$C \sim t^{-\alpha}, \qquad m \sim t^{\beta}, \quad t = |1 - T/T_c|$$
  
 $\alpha = \frac{1 - 2\Delta_{\epsilon}}{1 - \Delta_{\epsilon}}, \qquad \beta = \frac{\Delta_{\sigma}}{1 - \Delta_{\epsilon}}$ 

| Ising $(c=1/2)$ | $\Delta_{\epsilon}$ | $\Delta_{\sigma}$ | $\alpha$ | eta | $\gamma$ | $\delta$ |
|-----------------|---------------------|-------------------|----------|-----|----------|----------|
| Onsager         | 1/2                 | 1/16              | 0        | 1/8 | 7/4      | 15       |
| KPZ             | 2/3                 | 1/6               | -1       | 1/2 | 2        | 5        |

#### **Quenched** gravity graphs (replica trick):

$$[F]_{\rm av} = -[\ln Z]_{\rm av} = [\lim_{n \to 0} (Z^n - 1)/n]_{\rm av} = \lim_{n \to 0} ([Z^n]_{\rm av} - 1)/n$$

with

$$[Z^n]_{\mathrm{av}} = \left[ \left( \sum_{\{s\}} e^{\sum_{\langle ij \rangle} C_{ij} s_i s_j} \right)^n \right]_{\mathrm{av}} = \sum_{\mathrm{geometries}} \sum_{\{s^{(1)}\}} \dots \sum_{\{s^{(n)}\}} e^{\sum_{k=1}^n \sum_{\langle ij \rangle} C_{ij} s_i^{(k)} s_j^{(k)}}$$

 $\Rightarrow$  annealed ensemble of n matter copies with total central charge  $c \longrightarrow nc$  in KPZ formula. Replica limit  $n \rightarrow 0$ :

$$\tilde{\Delta} = \frac{\sqrt{1 + 24\Delta} - 1}{4}$$

Effective "dressing" due to quenched connectivity disorder

D.A. Johnston, WJ, Phys. Lett. **B460** (1999) 271

### Theoretical Predictions: *q*-State Potts Model on Quenched $\phi^3$ Graphs



KPZ + replica trick predictions

[17]

# Monte Carlo (MC) Simulations

**Example:** Finite-size scaling study of the 3-state Potts model on 256 random graph realizations with N = 500, 1000, 2000, 5000, and 10000 lattice sites.

Compute, e.g., average susceptibility  $[\chi]_{\rm av}$  and perform fits to

$$[\chi]_{\rm av} = N^{\gamma/\nu d_h} f_{\chi}(x) [1+\ldots]$$

with fractal dimension  $d_h = 4$  and  $(\beta \equiv 1/T)$ 

$$x = (\beta - \beta_c) N^{1/\nu d_h}$$

At maxima locations x = const., i.e.,

$$\beta_{\max}(N) = \beta_c + aN^{-1/\nu d_h}$$



# Recall the dynamical triangulations with $d_h = 4$



|                                         | $1/ u d_h$ | $\gamma/ u d_h$ | $(1-eta)/ u d_h$ |
|-----------------------------------------|------------|-----------------|------------------|
| regular                                 | 0.6        | 0.8666          | 0.5333           |
| replica theory                          | 0.4360     | 0.6937          | 0.2829           |
| $MC\;max\;[\mathcal{O}]_{\mathrm{av}}$  | 0.4027(25) | 0.7395(53)      | 0.2861(42)       |
| $MC \ [\max \mathcal{O}]_{\mathrm{av}}$ | 0.407(12)  | 0.7536(76)      | 0.3022(82)       |
| MC std                                  | 0.439(39)  | 0.724(78)       | 0.387(38)        |

**Results for** q = 3 [A. Wernecke, WJ, in preparation]

- clear effect of quenched connectivity disorder
- but MC results do not quite fit KPZ + replica trick
- last two lines show results of alternative procedure: Find for each realization the maxima and then average these maxima ⇒ distribution of maxima, i.e., also their standard deviation (std) ⇒ check of non-self-averaging properties!
- qualitatively similar to q = 2 and 4 results [D.A. Johnston, WJ, Nucl. Phys. **B578** [FS] (2000) 681]

|                 | w/o     | 1st order  |         |         |
|-----------------|---------|------------|---------|---------|
|                 | q=2     | q = 3      | q = 4   | q = 10  |
| $1/ u d_h$      | 0.34(3) | 0.4027(25) | 0.42(2) | 0.58(2) |
| $\gamma/ u d_h$ | 0.79(1) | 0.7395(53) | 0.75(1) | 0.71(1) |

### Theoretical Predictions: *q*-State Potts Model on Quenched $\phi^3$ Graphs



KPZ + replica trick predictions

[21]

# **3-State Potts Model on Voronoi Spheres**

#### **Previous studies:**

No qualitative effects of connectivity disorder seen for:

- 2D Ising (α = 0, i.e. marginal)
   [M. Katoot, R. Villanova, WJ, Phys. Lett. B315 (1993) 412; Phys. Rev. B49 (1994) 9644]
- 2D 8-state Potts (first-order transition) [R. Villanova, WJ, Phys. Lett. **A209** (1995) 179]

#### Recent finite-size scaling study for 2D 3-state Potts:

- spins living on trivalent vertices of Voronoi tessellation
- N = 1k, 5k, 10k, 20k, 40k, 60k, and 80k triangles
- 100 realizations per lattice size
- $T = 5 \times 10^4$  independent measurements each
- state-of-the-art histogram scaling analysis

### Results

FSS determination of  $\nu$  ( $A_{\rm max} \propto N^{1/2\nu}$ )



Fits yield  $\nu = 0.8335(26)$ , in perfect agreement with the exact regular lattice value of  $\nu = 5/6 = 0.833\overline{3} \Rightarrow$  no influence of quenched connectivity disorder detectable (... at least up to size  $N = 80\,000$ ).

Similarly:

$$C_{\rm max} \propto N^{\alpha/2\nu}, \quad m_{\rm inf} \propto N^{-\beta/2\nu}, \quad \chi_{\rm max} \propto N^{\gamma/2\nu}$$

Fits yield again agreement with the exact regular lattice values

$$\alpha/2\nu = 0.2201(27) \approx 1/5 = 0.2,$$
  
 $\beta/2\nu = 0.0617(14) \approx 1/15 = 0.066\overline{6},$   
 $\gamma/2\nu = 0.8718(12) \approx 13/15 = 0.866\overline{6}$ 

M. Weigel, WJ, Acta Physica Polonica B34 (2003) 4891; and in preparation

# Ising Model on 3D Voronoi/Delaunay Tessellations

Delaunay random lattices with  $N=2000~{
m up}$  to  $128\,000~{
m sites}$ , 96 realisations



 $N = 128\,000: \ \overline{q} = 15.5349(5) \approx 2 + 48\pi^2/35 = 15.5354\dots$ 

## Critical Exponent $\nu$



"World average" for regular lattices:

 $\nu = 0.63005(18)$ 



Combined fit results:

 $K_c = 0.0724\,249(40)$ 





$$C = \text{const.} + aN^{\alpha/3\nu} + \dots$$

Assuming hyperscaling:  $\alpha/\nu=2/\nu-d$ 

Similar FSS analyses of the susceptibility  $(\chi \propto N^{\gamma/3\nu})$  give:

 $\gamma/\nu = 1.9576(13)$ 

"World average" for regular lattices:  $\gamma/\nu = 1.9636(10)$ 

Also here, **no** indication of relevance of quenched connectivity disorder

R. Villanova, WJ, Phys. Rev. **B66** (2002) 134208

# Summary and Outlook

- Quantitative analysis of correlations in random graphs and lattices (wandering exponent)
- Quenched connectivity disorder is relevant for planar  $\phi^3$  gravity graphs but apparently not for Voronoi-Delaunay (Poissonian) random lattices
- Analytical predictions for  $\phi^3$  graphs based on KPZ formula + replica trick match only approximately

### Todo list:

- Further analytical work for  $\phi^3$  gravity graphs (CFT, matrix models, . . . )
- Generalize Voronoi-Delaunay case to link-length dependent interactions ( $\rightarrow$  Goetz Kähler)
- Study of simpler (and tunable) correlated disorder

Work supported by EU-Network ENRAGE – *Random Geometry and Random Matrices: From Quantum Gravity to Econophysics* under Grant No. MRTN-CT-2004-005616

# **Summary and Outlook**