Vriangulating Radiation

Jelle Ritzerveld
Leiden Observatory

Vriangulating Radiation

Jelle Ritzerveld
 Leiden Observatory

Vincent Icke
Garrelt Mellema Erik-Jan Rijkhorst Joop Schaye Rien vd Weygaert

Outline

O Transport theory
Onumerical methods
O New method
Oxample: Epoch of Reionization

Transport Theory

Transport Theory

O Master Equation: transport of probability in some abstract space.

$\mathbf{D} f=\mathbf{C} f$

Drift and collision (interaction) terms.

Electron, neutron \& photon transport; gas dynamics; economics; behavioral sciences; chemistry; traffic analysis.

Boltzmann Equation

O Project ME on phase space:

$$
f(\vec{\mu})=f(\vec{x}, \vec{n}, E, t)
$$

$$
\left[\frac{\partial}{\partial t}+\vec{n} \cdot \vec{\nabla}\right] f(\vec{\mu})=\left.\frac{\partial f(\vec{\mu})}{\partial t}\right|_{\mathrm{coll}}
$$

O Describes the transport of particles, which interact with each other, or with a background medium.

Every interaction has its own term σ_{i}.

Path Length

- Interaction space can be parametrised by free paths:

$$
p(s)=\frac{\mathrm{e}^{-s / \lambda}}{\lambda}
$$

Path Length

- Interaction space can be parametrised by free paths:

$$
p(s)=\frac{\mathrm{e}^{-s / \lambda}}{\lambda}
$$

- The d.f. has moments:

$$
\left\langle s^{k}\right\rangle=k!\lambda^{k}
$$

Path Length

- Interaction space can be parametrised by free paths:

$$
p(s)=\frac{\mathrm{e}^{-s / \lambda}}{\lambda}
$$

- The d.f. has moments:

$$
\left\langle s^{k}\right\rangle=k!\lambda^{k}
$$

- A Mean Free Path:

$$
\lambda=\frac{1}{n \sigma}
$$

Numerical Method

Monte Carlo

Model macroscopic system by sampling microscopic interactions.

Oend out N packets into random directions and sample the path length d.f.

- Particles move one mfp on average => interaction!

Problems

Problems

Problems

Cell size > MFP

Underresolve high density

Problems

Cell size > MFP

Underresolve high density
Overresolve low density

Problems

Cell size > MFP

Underresolve high density
Overresolve low density
Adaptive Mesh Refinement

Problems

Cell size > MFP

Underresolve high density
Overresolve low density
Adaptive Mesh Refinement
Homogeneity

Problems

Cell size > MFP

Underresolve high density
Overresolve low density
Adaptive Mesh Refinement
Homogeneity

Isotropy

New Method

New Method

$$
n_{\mathrm{p}}(\vec{x})=\Phi * f(n(\vec{x}))
$$

The Jigsaw!

O Using Euclidean recipe => lattice isotropic! Lattice QCD (Christ, Friedberg \& Lee 1982) SUSY (Kaku 1983)
Lattice Boltzmann

Adaptive

Free Path

Adaptive

Edge Length

$$
\left\langle L^{k}\right\rangle \propto n_{\mathrm{p}}^{-k / d}
$$

Free Path

$$
\left\langle s^{k}\right\rangle \propto \lambda^{k}=n^{-k}
$$

$$
n_{\mathrm{p}}(\vec{x}) \propto n^{d}(\vec{x})
$$

Adaptive

Edge Length

Free Path
$\left\langle L^{k}\right\rangle \propto n_{\mathrm{p}}^{-k / d}$
$\left\langle s^{k}\right\rangle \propto \lambda^{k}=n^{-k}$

$$
n_{\mathrm{p}}(\vec{x}) \propto n^{d}(\vec{x})
$$

Global correlation $=>\left\langle L^{k}\right\rangle=c(k) \lambda^{k}$

Transport on Graph

Monte Carlo

- Fixed grid;
- Stochastic particle movement.

New Method

- Stochastic grid;
- Deterministic particle movement.

Transport on Graph

Monte Carlo

- Fixed grid;
- Stochastic particle movement.

New Method

- Stochastic grid;
- Deterministic particle movement.

Particles move one MFP!

Radiation Transport in the
 Early Universe

What is the Reionization Era?
A Schematic Outline of the Cosmic History

Time since the Big Bang (years)
~ 300 thousand

-The Big Bang
The Universe filled with ionized gas
-The Universe becomes neutral and opaque
The Dark Ages start

Galaxies and Quasars begin to form The Reionization starts

The Cosmic Renaissance The Dark Ages end
-Reionization complete, the Universe becomes transparent again

Galaxies evolve

The Solar System forms

Today: Astronomers figure it all out!

Blowing Bubbles

Conclusion

O New method:

- Dispenses with regular grids;
- Uses adaptive point process.

O Resultant Delaunay graph has edge lengths that correlate linearly with mean free paths.

O Transport reduced to walk on adaptive random lattice.
=> Fast, physical, and flexible.

Transport

O Split into d 'most' straightforward.
O Conserve momentum on the average.

Interaction

