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Transport Theory



Transport Theory

Master Equation: transport of probability in 
some abstract space.

Drift and collision (interaction) terms.

Electron, neutron & photon transport; gas dynamics; economics; 
behavioral sciences; chemistry; traffic analysis.

D f = C f



Boltzmann Equation
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f (!µ) =
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f (!µ) = f (!x,!n,E, t)Project ME on phase space:

Describes the transport of particles, which 
interact with each other, or with a 
background medium.

Every interaction has its own term    .σi



Path Length
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• Interaction space can be parametrised 
by free paths:

〈
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• The d.f. has moments:

λ =
1

nσ

• A Mean Free Path:



Numerical Method



Monte Carlo
Model macroscopic system by sampling 
microscopic interactions.

Send out    packets into random directions 
and sample the path length d.f.

Particles move one mfp on average => 
interaction!

N
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Problems
Cell size > MFP

Underresolve high density

Overresolve low density

Isotropy

Homogeneity

Adaptive Mesh Refinement
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New Method

np(!x) = Φ∗ f (n(!x))



The Jigsaw!

Using Euclidean recipe => lattice isotropic!
   Lattice QCD (Christ, Friedberg & Lee 1982)
    SUSY (Kaku 1983)
    Lattice Boltzmann



Adaptive

〈
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Free Path
〈
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Adaptive

〈
sk〉 ∝ λk = n−k

Free Path
〈
Lk〉 ∝ n−k/d

p

Edge Length

np(!x) ∝ nd(!x)

〈
Lk〉 = c(k)λkGlobal correlation =>
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Radiation Transport
in the 

Early Universe





Blowing Bubbles











Conclusion
New method:
- Dispenses with regular grids;
- Uses adaptive point process.

Resultant Delaunay graph has edge lengths that 
correlate linearly with mean free paths.

Transport reduced to walk on adaptive 
random lattice.

=> Fast, physical, and flexible.



Transport

Split into d ‘most’ straightforward.

Conserve momentum on the average.



Interaction

〈
Lk〉 = c(k)λk

Iout = Iine−c


