Meshing with topological guarantees

Simon Plantinga and Gert Vegter

Institute for Mathematics and Computing Science University of Groningen

Outline

- Related work
- Implicit curves and surfaces
- Interval arithmetic
- Curve approximation
- Surface meshing
- Level sets
- Results

Related work

 J.M. Snyder: Interval analysis for computer graphics (1992)

 H. Lopes, L.B. Oliveira and L.H. de Figueiredo: Robust adaptive polygonal approximation of implicit curves (2002)

Related work

- W.E. Lorensen and H.E. Cline: Marching cubes: a high resolution 3d surface construction algorithm (1987)
- K. Ashida and N.I. Badler: Feature preserving manifold mesh from an octree (2004)

Related work

- J.M. Snyder (1992), Shrinkwrap (1996), Stander and Hart (1997)
- J.D. Boissonat, S. Oudot: An effective condition for sampling surfaces with guarantees (2004)
- S. Cheng, T. Dey, E. Ramos, T. Ray: Sampling and meshing a surface with guaranteed topology and geometry (2004)
- J.D. Boissonat, D. Cohen-Steiner and G. Vegter: *Isotopic Implicit Surface Meshing* (2004)

Zero-set of smooth function $F \colon \mathbb{R}^3 \to \mathbb{R}$, where $\nabla F \neq 0$ on $F^{-1}(0)$.

Zero-set of smooth function $F \colon \mathbb{R}^3 \to \mathbb{R}$, where $\nabla F \neq 0$ on $F^{-1}(0)$.

• Example: Unit sphere: $F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$

Zero-set of smooth function $F \colon \mathbb{R}^3 \to \mathbb{R}$, where $\nabla F \neq 0$ on $F^{-1}(0)$.

• Example:

Unit sphere: $F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$

 Advantages: smooth surface, fast ray-tracing, deformable, easy blending and metamorphosis.

Zero-set of smooth function $F \colon \mathbb{R}^3 \to \mathbb{R}$, where $\nabla F \neq 0$ on $F^{-1}(0)$.

• Example:

Unit sphere: $F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$

- Advantages: smooth surface, fast ray-tracing, deformable, easy blending and metamorphosis.
- Applications: biology (cell modeling), animation (metaballs), molecular modeling.

Implicit curves

Zero-set of smooth function $F \colon \mathbb{R}^2 \to \mathbb{R}$

Implicit curve is the 'coastline' of a height function.

Interval example

Interval arithmetic

• Function $f: \mathbb{R} \to \mathbb{R}$ Inclusion function $\Box f$ with $\Box f([x_1, x_2]) = [y_1, y_2]$ such that $x \in [x_1, x_2] \Rightarrow f(x) \in [y_1, y_2].$

Interval arithmetic

- Function $f : \mathbb{R} \to \mathbb{R}$ Inclusion function $\Box f$ with $\Box f([x_1, x_2]) = [y_1, y_2]$ such that $x \in [x_1, x_2] \Rightarrow f(x) \in [y_1, y_2].$
- Example: $f(x) = x^2$ $\Box f([-1, \pi]) = [0, 9.9]$

Interval arithmetic

- Function $f : \mathbb{R} \to \mathbb{R}$ Inclusion function $\Box f$ with $\Box f([x_1, x_2]) = [y_1, y_2]$ such that $x \in [x_1, x_2] \Rightarrow f(x) \in [y_1, y_2].$
- Example: $f(x) = x^2$ $\Box f([-1, \pi]) = [0, 9.9]$
- Inclusion function is *convergent* if $w\left(\Box f(I)\right) \to 0$ for $w(I) \to 0$

2D-Algorithm

Isotopic curve approximation

- Initialize quadtree to bounding square
- Subdivide until 'magic'
- Balance the tree
- Create vertices on edges with sign-change
- Connect vertices locally:

Magic formula

The interval condition: $0 \notin \Box F(C) \lor 0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle.$ Magic formula

The interval condition: $0 \notin \Box F(C) \lor 0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle.$ Implies

- Parametrizability
- No undetected loops

Correctness

- Regular grid and constraints on function
- Removing the constraints
- Balanced quadtrees: refining to a complete quadtree does not change the isotopy

Regular grid

Constraints on the curve C:

- C does not pass through grid vertices
- C intersects edges at most once

Conclusion: at most two intersections for each square.

Removing constraints

• If function passes through vertices, shift it towards $F(x, y) + \epsilon = 0$. Symbolically: consider $F \ge 0$.

Removing constraints

- If function passes through vertices, shift it towards F(x, y) + ε = 0.
 Symbolically: consider F ≥ 0.
- If we have multiple intersections, push them through the edges.

Balanced quadtrees

Subdivide the quadtree until it is a complete tree.

Topological changes

- Initialize octree to bounding square
- Subdivide until 'magic'
- Balance the tree
- Create vertices on edges with sign-change
- Connect vertices on faces of octree
- Connect loops of edges

۲

۲

۲

۲

۲

 \bullet

Regular grid

۲

Impossible sign configurations

Triangulation of subcubes

The World a Jigsaw – March 6, 2006 – p.20/30

Gluing ambiguous faces

Results

Implicit curves $f(x, y) = x^2(1-x)(1+x) - y^2 + 0.01$ and $f(x, y) = x^2 - xy + y^4 + 0.0001$

Results

Tangle cube: $f(x, y, z) = x^4 - 5x^2 + y^4 - 5y^2 + z^4 - 5z^2 + 10$

• Instead of F = 0 consider $F = \theta$.

- Instead of F = 0 consider $F = \theta$.
- Dynamic interval condition:
 - $\theta \notin \Box F(C) \quad \lor \quad 0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle.$

- Instead of F = 0 consider $F = \theta$.
- Dynamic interval condition:
 - $\theta \notin \Box F(C) \quad \lor \quad 0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle.$
- Subdivide octree until $0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle$ or maximum depth reached. For accuracy also use a minimum depth.

- Instead of F = 0 consider $F = \theta$.
- Dynamic interval condition:
 - $\theta \notin \Box F(C) \quad \lor \quad 0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle.$
- Subdivide octree until $0 \notin \langle \Box \nabla F(C), \Box \nabla F(C) \rangle$ or maximum depth reached. For accuracy also use a minimum depth.
- Precompute $\Box F(C)$ for all leaves of octree.

• Compute initial mesh (empty for minimal θ).

- Compute initial mesh (empty for minimal θ).
- On θ -change update mesh of leaves for which θ does not pass a vertex value.

- Compute initial mesh (empty for minimal θ).
- On θ -change update mesh of leaves for which θ does not pass a vertex value.
- Remesh remaining leaves.

- Compute initial mesh (empty for minimal θ).
- On θ -change update mesh of leaves for which θ does not pass a vertex value.
- Remesh remaining leaves.
- For maximum-level leaves for which gradient variation bound does not hold, test whether $\theta \in \Box F(C)$. If so, mark leave.

Tetrahedra

Tetrahedrization for a more convenient meshing algorithm.

- Triangulate faces of octree such that adjacent cells match.
- Add vertex in cell centre.
- Connect this vertex to the triangles on the cell boundary.
- Mesh tetrahedra (0–2 triangles for each tetrahedron).

Resulting mesh is isotopic to the implicit surface.

Tetrahedrization

Tetrahedrization

Tetrahedrization

Improvements

- 1. Maintain list of octree vertices sorted on function value.
- 2. Perform extra subdivision for more accurate computation of $\Box F(C)$.
- 3. Trade-off between precomputation (speed) and memory use.

Conclusion

- Fast algorithm to mesh implicit surfaces
- Isotopic approximation (correct topology)
- Can be adapted to handle singularities and unbounded curves and surfaces