Voronoi fluid particles

Pep Español

Departmento Física Fundamental, U.N.E.D, Madrid, Spain

Lorentz Center, March 9th, 2006

Intro	Continuum fluid particles	DISCRETE FLUID PARTICLES	Results	Conclusi
-------	---------------------------	--------------------------	---------	----------

Collaboration with Mar Serrano (J. Stat. Phys. 05)

Gianni de Fabritis Eirik Flekkoy Peter Coveney

Conclusion

Introduction

• Physicist view of fluid modelling.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Introduction

- Physicist view of fluid modelling.
- The Voronoi tessellation is a natural framework for the construction of fluid particle models.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Introduction

- Physicist view of fluid modelling.
- The Voronoi tessellation is a natural framework for the construction of fluid particle models.
- Discrete differential operators naturally emerge.

Results

CONCLUSION

Continuum hydrodynamic equations

Inviscid Euler equations (reversible)

$$\partial_t \rho = -\nabla \rho \mathbf{v}$$
$$\partial_t \rho \mathbf{v} = -\nabla \rho \mathbf{v} \mathbf{v} - \nabla P$$
$$\partial_t s = -\nabla s \mathbf{v}$$

CONCLUSION

Continuum hydrodynamic equations

Inviscid Euler equations (reversible)

$$\partial_t \rho = -\nabla \rho \mathbf{v}$$
$$\partial_t \rho \mathbf{v} = -\nabla \rho \mathbf{v} \mathbf{v} - \nabla P$$
$$\partial_t s = -\nabla s \mathbf{v}$$

Eulerian point of view.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Continuum hydrodynamic equations

Lagrangian coordinates are the solution of

$$\partial_t \mathbf{R}(\mathbf{r},t) = \mathbf{v}(\mathbf{R}(\mathbf{r},t),t)$$

with initial condition

$$\mathbf{R}(\mathbf{r},0) = \mathbf{r}$$

Continuum hydrodynamic equations

Lagrangian coordinates are the solution of

$$\partial_t \mathbf{R}(\mathbf{r},t) = \mathbf{v}(\mathbf{R}(\mathbf{r},t),t)$$

with initial condition

$$\mathbf{R}(\mathbf{r},0) = \mathbf{r}$$

The Jacobian $\mathcal V$ of $\mathbf R \leftrightarrow \mathbf r$ satisfies

$$\frac{d}{dt}\mathcal{V}(\mathbf{R}(\mathbf{r},t),t) = \mathcal{V}(\mathbf{R}(\mathbf{r},t),t)\nabla \cdot \mathbf{v}(\mathbf{R}(\mathbf{r},t),t)$$

$$\frac{d}{dt} = \partial_t + \mathbf{v} \cdot \boldsymbol{\nabla}$$
 substantial derivative

This is the equation for the rate of change of an infinitesimal volume that is transported by a flow field $\mathbf{v}(\mathbf{r}, t)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Continuum hydrodynamic equations

Introduce extensive mass $M(\mathbf{r},t) = \rho(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, momentum $\mathbf{P}(\mathbf{r},t) = \rho \mathbf{v}(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, and entropy $S(\mathbf{r},t) = s(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$ fields.

 dt^{\sim}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Continuum hydrodynamic equations

Introduce extensive mass $M(\mathbf{r},t) = \rho(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, momentum $\mathbf{P}(\mathbf{r},t) = \rho \mathbf{v}(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, and entropy $S(\mathbf{r},t) = s(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$ fields.

In terms of these extensive fields Euler's equations become

$$\partial_t \rho = -\nabla \rho \mathbf{v}$$

$$\partial_t \rho \mathbf{v} = -\nabla \rho \mathbf{v} \nabla P \implies \frac{d}{dt} \mathbf{R} = \mathbf{v}$$

$$\frac{d}{dt} M = 0$$

$$\frac{d}{dt} \mathbf{R} = -\mathbf{v}$$

$$\frac{d}{dt} \mathbf{R} = \mathbf{v}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Continuum hydrodynamic equations

Introduce extensive mass $M(\mathbf{r},t) = \rho(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, momentum $\mathbf{P}(\mathbf{r},t) = \rho \mathbf{v}(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$, and entropy $S(\mathbf{r},t) = s(\mathbf{r},t)\mathcal{V}(\mathbf{r},t)$ fields.

In terms of these extensive fields Euler's equations become

$$\partial_t \rho = -\nabla \rho \mathbf{v}$$

$$\partial_t \rho \mathbf{v} = -\nabla \rho \mathbf{v} \mathbf{v} - \nabla P \implies \frac{d}{dt} \mathbf{R} = \mathbf{v}$$

$$\frac{d}{dt} M = 0$$

$$\frac{d}{dt} \mathbf{R} = -\mathbf{v}$$

$$\frac{d}{dt} \mathbf{R} = \mathbf{v}$$

$$\frac{d}{dt} \mathbf{R} = \mathbf{v}$$

$$\frac{d}{dt} \mathbf{R} = 0$$

$$\frac{d}{dt} \mathbf{R} = -\mathbf{v} \nabla P$$

$$\frac{d}{dt} \mathbf{R} = 0$$

Remarkably simple!! Suggests the concept of fluid particle.

Fluid particle dynamics

We divide the fluid in N portions. A fluid particle is a small moving thermodynamic subsystem of the whole system characterised by

$$\mathbf{R}_i, \mathbf{V}_i, \mathcal{V}_i, m_i, S_i, \mathcal{E}_i \quad i = 1, \dots, N$$

Fluid particle dynamics

We divide the fluid in N portions. A fluid particle is a small moving thermodynamic subsystem of the whole system characterised by

$$\mathbf{R}_i, \mathbf{V}_i, \mathcal{V}_i, m_i, S_i, \mathcal{E}_i \quad i = 1, \dots, N$$

The independent variables are $x = \{\mathbf{R}_i, \mathbf{V}_i, S_i\}$ because

$$egin{array}{rcl} M_i &=& ext{ctn.} \ \mathcal{V}_i &=& \mathcal{V}_i(\mathbf{R}_1, \cdots, \mathbf{R}_N) & ext{geometry} \ \mathcal{E}_i &=& \mathcal{E}(\mathcal{V}_i, S_i, m_i) & ext{thermodynamics (ideal gas)} \end{array}$$

・ロ・・母・・ヨ・・ヨ・ ・日・

Fluid particle dynamics

We divide the fluid in N portions. A fluid particle is a small moving thermodynamic subsystem of the whole system characterised by

$$\mathbf{R}_i, \mathbf{V}_i, \mathcal{V}_i, m_i, S_i, \mathcal{E}_i \quad i = 1, \dots, N$$

The independent variables are $x = \{\mathbf{R}_i, \mathbf{V}_i, S_i\}$ because

$$egin{array}{rcl} M_i &=& ext{ctn.} \ \mathcal{V}_i &=& \mathcal{V}_i(\mathbf{R}_1, \cdots, \mathbf{R}_N) & ext{geometry} \ \mathcal{E}_i &=& \mathcal{E}(\mathcal{V}_i, S_i, m_i) & ext{thermodynamics (ideal gas)} \end{array}$$

How to formulate the dynamics for $x = {\mathbf{R}_i, \mathbf{V}_i, S_i}$?

Fluid particle dynamics

Postulate the following dynamics

$$\dot{\mathbf{R}}_i = \mathbf{V}_i, \qquad \dot{M}_i = 0, \qquad \dot{S}_i = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Fluid particle dynamics

Postulate the following dynamics

$$\dot{\mathbf{R}}_i = \mathbf{V}_i, \qquad \dot{M}_i = 0, \qquad \dot{S}_i = 0.$$

Impose conservation of total energy

$$E = \sum_{i} \left[\frac{M_{i}}{2} \mathbf{V}_{i}^{2} + \mathcal{E}(M_{i}, S_{i}, \mathcal{V}_{i}) \right].$$
$$0 = \dot{E} = \sum_{i} M_{i} \dot{\mathbf{V}}_{i} \cdot \mathbf{V}_{i} + \frac{\partial \mathcal{E}}{\partial \mathbf{R}_{i}} \cdot \dot{\mathbf{R}}_{i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Fluid particle dynamics

Postulate the following dynamics

$$\dot{\mathbf{R}}_i = \mathbf{V}_i, \qquad \dot{M}_i = 0, \qquad \dot{S}_i = 0.$$

Impose conservation of total energy

$$E = \sum_{i} \left[\frac{M_i}{2} \mathbf{V}_i^2 + \mathcal{E}(M_i, S_i, \mathcal{V}_i) \right].$$
$$0 = \dot{E} = \sum_{i} M_i \dot{\mathbf{V}}_i \cdot \mathbf{V}_i + \frac{\partial \mathcal{E}}{\partial \mathbf{R}_i} \cdot \dot{\mathbf{R}}_i$$

this is

$$M_i \dot{\mathbf{V}}_i = -\sum_j \frac{\partial \mathcal{E}}{\partial \mathbf{R}_i}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

Fluid particle dynamics

Postulate the following dynamics

$$\dot{\mathbf{R}}_i = \mathbf{V}_i, \qquad \dot{M}_i = 0, \qquad \dot{S}_i = 0.$$

Impose conservation of total energy

$$E = \sum_{i} \left[\frac{M_i}{2} \mathbf{V}_i^2 + \mathcal{E}(M_i, S_i, \mathcal{V}_i) \right].$$
$$0 = \dot{E} = \sum_{i} M_i \dot{\mathbf{V}}_i \cdot \mathbf{V}_i + \frac{\partial \mathcal{E}}{\partial \mathbf{R}_i} \cdot \dot{\mathbf{R}}_i$$

this is

$$M_{i}\dot{\mathbf{V}}_{i} = -\sum_{j} \frac{\partial \mathcal{E}}{\partial \mathbf{R}_{i}} = \sum_{j} \frac{\partial \mathcal{V}_{j}}{\partial \mathbf{R}_{i}} P_{j}$$
$$P_{i} \equiv -\frac{\partial \mathcal{E}_{i}}{\partial \mathcal{V}_{i}} \qquad \text{Pressure}$$

The discrete model

$$\frac{d}{dt}\mathbf{R} = \mathbf{v}$$
$$\frac{d}{dt}M = 0$$
$$\frac{d}{dt}\mathbf{P} = -\mathcal{V}\nabla P$$
$$\frac{d}{dt}S = 0$$

$$\begin{aligned} \dot{\mathbf{R}}_i &= \mathbf{V}_i \\ \dot{M}_i &= \mathbf{0} \\ \dot{\mathbf{P}}_i &= \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} P_j \\ \dot{S}_i &= \mathbf{0} \end{aligned}$$

The discrete model

$$\frac{d}{dt}\mathbf{R} = \mathbf{v}$$
$$\frac{d}{dt}M = 0$$
$$\frac{d}{dt}\mathbf{P} = -\mathcal{V}\nabla P$$
$$\frac{d}{dt}S = 0$$

$$\begin{aligned} \dot{\mathbf{R}}_i &= \mathbf{V}_i \\ \dot{M}_i &= \mathbf{0} \\ \dot{\mathbf{P}}_i &= \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} P_j \\ \dot{S}_i &= \mathbf{0} \end{aligned}$$

How to define de volume \mathcal{V}_i ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

Symmetries

Any reasonable definition of the volume should be invariant under translations and rotations

$$egin{array}{lll} \mathcal{V}_i(\mathbf{R}_1,\cdots,\mathbf{R}_N) &=& \mathcal{V}_i(\mathbf{R}_1+\mathbf{a},\cdots,\mathbf{R}_N+\mathbf{a}), \ \mathcal{V}_i(\mathbf{R}_1,\cdots,\mathbf{R}_N) &=& \mathcal{V}_i(\mathbf{A}\mathbf{R}_1,\cdots,\mathbf{A}\mathbf{R}_N), \end{array}$$

Take derivatives with respect to ${\bf a}$ and ${\bf \Lambda}$ to obtain

$$\sum_{i} \frac{\partial \mathcal{V}_{j}}{\partial \mathbf{R}_{i}} = 0, \qquad \sum_{i} \mathbf{R}_{i} \times \frac{\partial \mathcal{V}_{j}}{\partial \mathbf{R}_{i}} = 0.$$

Symmetries

Any reasonable definition of the volume should be invariant under translations and rotations

$$egin{array}{lll} \mathcal{V}_i(\mathbf{R}_1,\cdots,\mathbf{R}_N) &=& \mathcal{V}_i(\mathbf{R}_1+\mathbf{a},\cdots,\mathbf{R}_N+\mathbf{a}), \ \mathcal{V}_i(\mathbf{R}_1,\cdots,\mathbf{R}_N) &=& \mathcal{V}_i(\mathbf{A}\mathbf{R}_1,\cdots,\mathbf{A}\mathbf{R}_N), \end{array}$$

Take derivatives with respect to ${\bf a}$ and ${\bf \Lambda}$ to obtain

$$\sum_{i} \frac{\partial \mathcal{V}_{j}}{\partial \mathbf{R}_{i}} = 0, \qquad \sum_{i} \mathbf{R}_{i} \times \frac{\partial \mathcal{V}_{j}}{\partial \mathbf{R}_{i}} = 0.$$

These identities ensure that the discrete equations conserve

$$\mathbf{P} = \sum_{i} \mathbf{P}_{i}$$
$$\mathbf{L} = \sum_{i} \mathbf{R}_{i} \times \mathbf{P}_{i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conclusion

How to define the volume?

We have two possibilities:

SPH

CONCLUSION

How to define the volume?

We have two possibilities:

SPH

Voronoi tessellation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

$$\chi_i(\mathbf{r}) = \frac{\Delta(\mathbf{r} - \mathbf{R}_i)}{\sum_j \Delta(\mathbf{r} - \mathbf{R}_j)} \qquad \Delta(\mathbf{r}) = \exp\{-\mathbf{r}^2/\sigma^2\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

$$\chi_i(\mathbf{r}) = \frac{\Delta(\mathbf{r} - \mathbf{R}_i)}{\sum_j \Delta(\mathbf{r} - \mathbf{R}_j)} \qquad \Delta(\mathbf{r}) = \exp\{-\mathbf{r}^2/\sigma^2\}$$

<ロ> (四) (四) (三) (三) (三) (三)

The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

$$\chi_i(\mathbf{r}) = \frac{\Delta(\mathbf{r} - \mathbf{R}_i)}{\sum_j \Delta(\mathbf{r} - \mathbf{R}_j)} \qquad \Delta(\mathbf{r}) = \exp\{-\mathbf{r}^2/\sigma^2\}$$

The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

$$\chi_i(\mathbf{r}) = \frac{\Delta(\mathbf{r} - \mathbf{R}_i)}{\sum_j \Delta(\mathbf{r} - \mathbf{R}_j)} \qquad \Delta(\mathbf{r}) = \exp\{-\mathbf{r}^2/\sigma^2\}$$

The Voronoi volume is

$$\mathcal{V}_i = \lim_{\sigma \to 0} \int d\mathbf{r} \chi_i(\mathbf{r}) = \lim_{\sigma \to 0} \int d\mathbf{r} \frac{\Delta(\mathbf{r} - \mathbf{R}_i)}{\sum_j \Delta(\mathbf{r} - \mathbf{R}_j)}$$

It satisfies $\sum_i \mathcal{V}_i = \mathcal{V}_T$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Voronoi volume

The analytical form of the volume allows to easily compute the derivative of this volume wrt \mathbf{R}_i

$$M_i \dot{\mathbf{V}}_i = \sum_j A_{ij} \left[\mathbf{e}_{ij} - \frac{\mathbf{c}_{ij}}{R_{ij}} \right] (P_i - P_j)$$

Linear consistency

We can prove the following interesting properties for an arbitrary Voronoi tessellation

$$-\frac{1}{\mathcal{V}_i}\sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} = 0$$

Linear consistency

We can prove the following interesting properties for an arbitrary Voronoi tessellation

$$-\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} \mathbf{R}_j = \mathbf{1}$$

Linear consistency

We can prove the following interesting properties for an arbitrary Voronoi tessellation

$$-\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} \mathbf{R}_j = \mathbf{1}$$
$$\sum_i A_{ij} \mathbf{e}_{ij} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_i A_{ij} \mathbf{e}_{ij} \mathbf{C}_{ij} = \mathbf{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Linear consistency

We can prove the following interesting properties for an arbitrary Voronoi tessellation

$$-\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} \mathbf{R}_j = \mathbf{1}$$
$$\sum_i A_{ij} \mathbf{e}_{ij} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_i A_{ij} \mathbf{e}_{ij} \mathbf{C}_{ij} = \mathbf{1}$$

Assume a linear pressure field $P_i = P_0 + \mathbf{b} \cdot \mathbf{R}_i$. In this case

$$M_i \dot{\mathbf{V}}_i = \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} P_j = -\mathcal{V}_i \mathbf{b} = -\mathcal{V}_i (\text{grad } P)_i$$

Linear consistency

We can prove the following interesting properties for an arbitrary Voronoi tessellation

$$-\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} \mathbf{R}_j = \mathbf{1}$$
$$\sum_i A_{ij} \mathbf{e}_{ij} = 0 \qquad -\frac{1}{\mathcal{V}_i} \sum_i A_{ij} \mathbf{e}_{ij} \mathbf{C}_{ij} = \mathbf{1}$$

Assume a linear pressure field $P_i = P_0 + \mathbf{b} \cdot \mathbf{R}_i$. In this case

$$M_i \dot{\mathbf{V}}_i = \sum_j \frac{\partial \mathcal{V}_j}{\partial \mathbf{R}_i} P_j = -\mathcal{V}_i \mathbf{b} = -\mathcal{V}_i (\text{grad } P)_i$$

Therefore, we have a discrete version of the gradient operator on arbitrary Voronoi meshes!!

Linear consistency

The error for the gradient of $f(\mathbf{r})$ as a function of the resolution

$$\frac{1}{N}\sum_{i}\left|-\frac{1}{\mathcal{V}_{i}}\sum_{j}\frac{\partial\mathcal{V}_{j}}{\partial\mathbf{r}_{i}}f(\mathbf{r}_{j})-\nabla f(\mathbf{r}_{i})\right|$$

▲日 → ▲圖 → ▲ 国 → ▲ 国 → 二 国 →

Linear consistency

The error for the gradient of $f(\mathbf{r})$ as a function of the resolution

$$\frac{1}{N}\sum_{i}\left|-\frac{1}{\mathcal{V}_{i}}\sum_{j}\frac{\partial\mathcal{V}_{j}}{\partial\mathbf{r}_{i}}f(\mathbf{r}_{j})-\nabla f(\mathbf{r}_{i})\right|$$

(日) (월) (문) (문) (문)

Linear consistency

The error for the gradient of $f(\mathbf{r})$ as a function of the resolution

$$\frac{1}{N}\sum_{i}\left|-\frac{1}{\mathcal{V}_{i}}\sum_{j}\frac{\partial\mathcal{V}_{j}}{\partial\mathbf{r}_{i}}f(\mathbf{r}_{j})-\nabla f(\mathbf{r}_{i})\right|$$

The error scales as λ^{-1} in a random mesh and as λ^{-2} in a regular mesh.

Summary of the inviscid discrete model

Conserve mass, linear and angular momentum, and energy.

If the flow field is smooth, they converge to Euler equations.

Can be understood as a MD with a many-body potential of interaction.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Computational issues

Moving mesh \rightarrow recombination

Yuan X.-F. et al 1993, Albers et al 1998

Shear wave

2D Periodic boundary conditions

Shear wave

The flow field is unstable and eventually the system of fluid particles reach a state of dynamical equilibrium.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Shear wave

The flow field is unstable and eventually the system of fluid particles reach a state of dynamical equilibrium.

"All inviscid laminar flows are unstable with respect to localized perturbations" (Friedlander)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Shear wave

The flow field is unstable and eventually the system of fluid particles reach a state of dynamical equilibrium.

"All inviscid laminar flows are unstable with respect to localized perturbations" (Friedlander)

Does the equilibrium state resembles stationary homogeneous turbulence?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Velocity autocorrelation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Velocity autocorrelation

Two time scales:

- Sonic: $\tau_c = \lambda/c$
- Kinetic: $\tau_k = \lambda / v_{\text{thermal}}$

CONCLUSION

Distribution of accelerations

Mordant et al PRL 87, 214501 (2001) Highly non-Gaussian!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Distribution of accelerations

Voronoi Euler model (non-Gaussian) Mordant et al PRL 87, 214501 (2001) Highly non-Gaussian!!

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Distribution of accelerations

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Conclusion

• We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.

CONCLUSION

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.
- Striking similarities with turbulence (to be further explored).

CONCLUSION

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.
- Striking similarities with turbulence (to be further explored).

CONCLUSION

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.
- Striking similarities with turbulence (to be further explored).

CONCLUSION

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.
- Striking similarities with turbulence (to be further explored).

CONCLUSION

- We have constructed a very simple fluid particle model based on the Voronoi tessellation. The model captures the basic physics (symmetries and conservation).
- For smooth fields (whenever they exist) the discrete reproduces the continumm. Emergence of discrete differential operators.
- Striking similarities with turbulence (to be further explored).