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Introduction

Physicist view of fluid modelling.

The Voronoi tessellation is a natural framework for the
construction of fluid particle models.

Discrete differential operators naturally emerge.
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Continuum hydrodynamic equations

Inviscid Euler equations (reversible)

∂tρ = −∇ρv

∂tρv = −∇ρvv −∇P

∂ts = −∇sv

Eulerian point of view.
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Continuum hydrodynamic equations

Lagrangian coordinates are the solution of

∂tR(r, t) = v(R(r, t), t)

with initial condition
R(r, 0) = r

The Jacobian V of R ↔ r satisfies

d

dt
V(R(r, t), t) = V(R(r, t), t)∇·v(R(r, t), t)

d

dt
= ∂t + v·∇ substantial derivative

This is the equation for the rate of change of an infinitesimal
volume that is transported by a flow field v(r, t).
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Continuum hydrodynamic equations

Introduce extensive mass M(r, t) = ρ(r, t)V(r, t), momentum
P(r, t) = ρv(r, t)V(r, t), and entropy S(r, t) = s(r, t)V(r, t) fields.

In terms of these extensive fields Euler’s equations become

∂tρ = −∇ρv

∂tρv = −∇ρvv −∇P =⇒

∂ts = −∇sv

d

dt
R = v

d

dt
M = 0

d

dt
P = −V∇P

d

dt
S = 0

Remarkably simple!! Suggests the concept of fluid particle.
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Fluid particle dynamics

We divide the fluid in N portions. A fluid particle is a small moving
thermodynamic subsystem of the whole system characterised by

Ri,Vi,Vi,mi, Si, Ei i = 1, . . . , N

The independent variables are x = {Ri,Vi, Si} because

Mi = ctn.

Vi = Vi(R1, · · · ,RN ) geometry

Ei = E(Vi, Si,mi) thermodynamics (ideal gas)

How to formulate the dynamics for x = {Ri,Vi, Si} ?
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Fluid particle dynamics

Postulate the following dynamics

Ṙi = Vi, Ṁi = 0, Ṡi = 0.

Impose conservation of total energy

E =
∑

i

[

Mi

2
V

2

i + E(Mi, Si,Vi)

]

.

0 = Ė =
∑

i

MiV̇i ·Vi +
∂E

∂Ri

·Ṙi

this is

MiV̇i = −
∑

j

∂E

∂Ri

=
∑

j

∂Vj

∂Ri

Pj

Pi ≡ −
∂Ei

∂Vi

Pressure
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The discrete model
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The discrete model

d

dt
R = v

d

dt
M = 0

d

dt
P = −V∇P

d

dt
S = 0

Ṙi = Vi

Ṁi = 0

Ṗi =
∑

j

∂Vj

∂Ri

Pj

Ṡi = 0

How to define de volume Vi?
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Symmetries

Any reasonable definition of the volume should be invariant under
translations and rotations

Vi(R1, · · · ,RN ) = Vi(R1 + a, · · · ,RN + a),

Vi(R1, · · · ,RN ) = Vi(ΛR1, · · · ,ΛRN ),

Take derivatives with respect to a and Λ to obtain

∑

i

∂Vj

∂Ri

= 0,
∑

i

Ri ×
∂Vj

∂Ri

= 0.
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Symmetries

Any reasonable definition of the volume should be invariant under
translations and rotations

Vi(R1, · · · ,RN ) = Vi(R1 + a, · · · ,RN + a),

Vi(R1, · · · ,RN ) = Vi(ΛR1, · · · ,ΛRN ),

Take derivatives with respect to a and Λ to obtain

∑

i

∂Vj

∂Ri

= 0,
∑

i

Ri ×
∂Vj

∂Ri

= 0.

These identities ensure that the discrete equations conserve

P =
∑

i

Pi

L =
∑

i

Ri ×Pi
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How to define the volume?

We have two possibilities:

SPH Voronoi tessellation
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The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

χi(r) =
∆(r−Ri)

∑

j ∆(r −Rj)
∆(r) = exp{−r

2/σ2}
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The Voronoi volume

Consider the Shepard function (Flekkoy-Coveney)

χi(r) =
∆(r−Ri)

∑

j ∆(r −Rj)
∆(r) = exp{−r

2/σ2}
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The Voronoi volume is

Vi = lim
σ→0

∫

drχi(r) = lim
σ→0

∫

dr
∆(r−Ri)

∑

j ∆(r−Rj)

It satisfies
∑

i Vi = VT .
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The Voronoi volume

The analytical form of the volume allows to easily compute the
derivative of this volume wrt Ri

∂Vi

∂Rj

= −Aij

[

eij

2
−

cij

Rij

]

for i 6= j

∂Vi

∂Ri

= −
∑

j 6=i

Aij

[

eij

2
−

cij

Rij

] ijc
ij

e

ij

MiV̇i =
∑

j

Aij

[

eij −
cij

Rij

]

(Pi − Pj)
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Linear consistency

We can prove the following interesting properties for an arbitrary
Voronoi tessellation
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Assume a linear pressure field Pi = P0 + b·Ri. In this case

MiV̇i =
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Pj = −Vib = −Vi(grad P )i
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Linear consistency

We can prove the following interesting properties for an arbitrary
Voronoi tessellation

−
1

Vi

∑

j

∂Vj

∂Ri

= 0 −
1

Vi

∑

j

∂Vj

∂Ri

Rj = 1

∑

i

Aijeij = 0 −
1

Vi

∑

i

AijeijCij = 1

Assume a linear pressure field Pi = P0 + b·Ri. In this case

MiV̇i =
∑

j

∂Vj

∂Ri

Pj = −Vib = −Vi(grad P )i

Therefore, we have a discrete version of the gradient operator on
arbitrary Voronoi meshes!!
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Linear consistency

The error for the gradient of f(r) as a function of the resolution
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Linear consistency

The error for the gradient of f(r) as a function of the resolution

1

N

∑

i

∣

∣

∣

∣

∣

∣

−
1

V i

∑

j

∂Vj

∂ri

f(rj) −∇f(ri)

∣

∣

∣

∣

∣

∣

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0.01 0.1

E
rr

or

Resolution

f(x,y)=sin(x y)

The error scales as λ−1 in a random mesh and as λ−2 in a regular
mesh.
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Summary of the inviscid discrete model

Ṙi = vi

Ṁi = 0

Ṗi =
∑

j

∂Vj

∂Ri

Pj

Ṡi = 0

Conserve mass, linear and angular
momentum, and energy.

If the flow field is smooth, they con-
verge to Euler equations.

Can be understood as a MD with a
many-body potential of interaction.
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Computational issues

Moving mesh → recombination

Yuan X.-F. et al 1993, Albers et al 1998
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Shear wave

2D Periodic boundary conditions

movie1.gif

movie2.gif



Intro Continuum fluid particles Discrete fluid particles Results Conclusion

Shear wave

The flow field is unstable and eventually the system of fluid
particles reach a state of dynamical equilibrium.



Intro Continuum fluid particles Discrete fluid particles Results Conclusion

Shear wave

The flow field is unstable and eventually the system of fluid
particles reach a state of dynamical equilibrium.

“All inviscid laminar flows are unstable with respect to localized
perturbations” (Friedlander)



Intro Continuum fluid particles Discrete fluid particles Results Conclusion

Shear wave

The flow field is unstable and eventually the system of fluid
particles reach a state of dynamical equilibrium.

“All inviscid laminar flows are unstable with respect to localized
perturbations” (Friedlander)

Does the equilibrium state resembles stationary homogeneous
turbulence?
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Velocity autocorrelation
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Velocity autocorrelation
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Two time scales:
- Sonic: τc = λ/c
- Kinetic: τk = λ/vthermal
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Distribution of accelerations

Mordant et al PRL 87, 214501 (2001)

Highly non-Gaussian!!
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