

Finding and analyzing dark matter halos structures in six dimensional phase space

Michał Maciejewski

Finding substructures in 6D

- 1. Sort particles by denisty order (from highest)
- 2. For each particle find two closest one with higher density
- 3. We have 3 cases:
 - Particle is the Maximum point ⇒ mark particle as core of new structure
 - 2. One or two particles and both belong to the same structure

 \Rightarrow connect particle to this structure

3. There are two particles, each belong to other structure

 \Rightarrow saddle point

- \Rightarrow put smaller structure on list, join both list of particles
- 4. Additional \Rightarrow bound structures **(using velocities)**

Results - 6D vs. 3D

Results - 3D vs. 6D

Results - SUBFIND 6D

$$v(f) = \int_0^{\mu M} \frac{dn}{dm} v_m(f) dm \propto f^{-(4-\gamma)}$$

Hernquist profile $\gamma = 1.9$ $v(f \rightarrow 0) \quad \alpha = -1.56$ $v(f \rightarrow \infty) \quad \alpha = -2.80$

Thank you