Nico Kruithof and Gert Vegter

Rijksuniversiteit Groningen

March 6st, 2006

Outline

- ♦ Medial axis
- ♦ Skin surfaces
- ♦ Approximation by skin surfaces
- ♦ Envelope surfaces

Balls in surface design

- ◆ Weight function: radius-squared
- ◆ Set of balls: discrete sample of a weight function
- ◆ Goal: construct an interpolating weight function

Weight function $W: D \rightarrow \mathbb{R}$ (radius-squared), with

- \bullet W continuous
- \blacklozenge *D* convex and compact

• Envelope of spheres: Boundary of the union of the spheres

Medial axis transform

A surface representation using balls

Medial axis

• Envelope of medial axis transform is the curve or surface

Medial axis

- The power crust, unions of balls, and the medial axis transform, N. Amenta and S. Choi and R.K. Kolluri
- ◆ Approximate medial axis as a voronoi subcomplex, T.K. Dey and W. Zhao

◆ Initial weight function: all balls are contained inside the union of the input balls

◆ Envelope is not tangent continuous

◆ *Deformable smooth surface design*, H. Edelsbrunner

• Multiply the initial weight function with the shrink factor $s \in (0, 1)$.

◆ Decomposition into pieces of quadrics.

By carefully chosing the shrink factor we can guarantee that the skin surface and the approximated surface:

- have Hausdorff distance at most $\epsilon > 0$;
- \blacklozenge have the same topology;
- \blacklozenge have the same input balls as maximal balls.

Envelope surfaces Making the interpolation adaptive

◆ Envelope surfaces allow for local control over the surface

◆ The envelope surface is tangent discontinuous if the weight changes too much.

• Associated weight: $W_1(p) = \|p\|^2 - W(p)$

- Theorem: Envelope surface is C¹ if associated weight function is continuous and strictly convex
- ◆ Proof uses the Legendre-transform from convexity theory.

Conclusions

- ◆ Envelopes of spheres are well suited for modeling
- ◆ Envelope surfaces form a useful extension of skin surfaces
- ◆ Piecewise quadratic weight functions yield piecewise quadratic envelope surfaces

Open problems:

♦ How to control the topology of envelope surfaces

