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Cosmological N -body simulations

Provide many insights to
the dynamics of Dark
Matter (DM).

Yet also pose many open
questions...
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Open Questions

Universality: all DM halos seem to have (up to scaling) the same
density profile (NFW)

ρ(r) ∝ 1

r(1 + r)2

What is the exact inner slope (is there a cusp?)

Physical mechanism? - Accretion? Violent Relaxation?

What is the dependence on the cosmological model?

Aditionally, Taylor & Navarro (2001) demonstrated

fpoor man(r)
def
=

ρ(r)

σ3(r)
∝ r−1.875

So phase-space density is intersting! - but how does it come
about?
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The Vlasov-Poisson Equation (Collisionless
Boltzmann equation)

Gravity is an attractive long-range force. Therefore every DM particles
only feel the mean-field gravitational potential and binary collisions are
negligible.

ẋ(t) = v(t) , v̇(t) = −∇ · Φ(x) .

So if we define the phase-space density function f(x,v)

f(x,v)dxdv = how much mass in dxdv

then it changes smoothly over time and we get a continuity equation - the
Vlasov-Poisson equation:

d

dt
f = ∂tf +∇xf −∇xΦ · ∇vf = 0 , ∇2Φ(x) = 4π2G

Z
dv f(x,v)

Phase-Space density is therefore the fundamental field in the problem!
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Estimating f(x,v) numerically

In a hi-res simulation there are usually 104 → 106 particles in a
halo. Phase-space density varies over 9 orders of magnitude!

Simple Box counting and other naive approaches do not work!

Our solution: use DTFE (Schaap & van de Weygaert, 2000)
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DTFE - Delaunay Tessellation Field Estimator

1 Estimate f at the location of
every atom i:

fi =
7mi∑
α |Dα|

2 Estimate the average f for
each Delaunay cell:

fα =
1

7

∑
i

fi

Global quantities

Z
Ψ(x,v)dxdv →

X
α

Ψ(xα,vα)|Dα|
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Technical Difficulties

Consider a typical sample with 106 particles in 6D...

Each particles has about 7, 000 Delaunay cells around it

With 200 neighboring particles

Totally, there are about 109 Delaunay cells in the system.

If each cell is represented by the indices of its 7 particles then
we need a total of

7× 4× 109 bytes = 28GB

just to store the tessellation.

conclusion

We need a program the caches some of the information to the
disk, and possibly makes some of the analysis while finding the
Delaunay cells.
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The implementation - SHESHDEL

Is a free software (GNU GPL).

Written in C. Sequential algorithm. Based on a sequntial
algorithm of Tanemura, Ogawa & Ogita (1983) +
improvements due to van de Weygaert (1994) (mainly use of
k − d trees).

The program goes particle by particle, finding all its Delaunay
cells. After every K paritcles, data is cached to/from the disk.

Once all calculations of a given cell have been done - it is no
longer kept.

Suitable for running on an ordinary PC. For example, 106

particles will take about 3 days on a recent laptop (Intel
Pentium M 1.7 GHz with 1GB RAM), and will take 7GB
disk-space.

Fairly modular and extendiable.
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Results - the v(f) function

We first looked at the v(f) function:

v(f0)
def
=

∫
dxdv δ[f(x,v)− f0]

v(f0)df0 - The volume occupied by
f0 < f(x,v) < f0 + df0

Very well described by a power-law
f−2.5

However, a smooth halo with
v(f) ∝ f−2.5 implies ρ(r) ∝ r−2 !
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Results - substructure

Looking at a typical halo

45 kpc

Substructure is much more pronounced in phasespace - due to its
small velocity dispersion
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Results - substructure

Looking at a typical halo

45 kpc 45 kpc

Substructure is much more pronounced in phasespace - due to its
small velocity dispersion
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Results - substructure

Looking at a typical halo
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So the v(f) ∝ f−2.5 power-law does not reflect the smooth
background structure - but instead the distribution of substurcture.
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Problems and Prospects

Velocity vs. Position scaling

Fluctuations and smoothing

6D structure finding
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Velocity Vs. Position

The problem

There does not seem to be any
natural dimensional scaling
between velocity and position.
Using different units leads to
different tessellations

Possible Solutions

Scale v, x by the mean dispersion in the halo (not optimal).

Use local metric, by either local dispersion, or some local timescale
T = v/∇Φ(x) - computationally very hard. Is really needed?

Use a global canonical transformation (x,v are actually conjugate)

X =
∂F (V, x)

∂V
, v = −∂F (V, x)

∂x
.
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Fluctuations and Smoothing
Comparison with FiEstAS (Ascasibar Y., Binney J., 2005)
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Fluctuations and Smoothing
Comparison with FiEstAS (Ascasibar Y., Binney J., 2005)
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Fluctuations and Smoothing
Comparison with FiEstAS (Ascasibar Y., Binney J., 2005)

DTFE is much slower than FiEstAS, but gives better results
at high densities.

To be more attractive it needs a smoothing scheme.

One possibility - hierarchy of smoothing:
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Conserves mass, but produces large biases - Perhaps
because of boundary effects.
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Structure finder in phase-space

We can use the Delaunay mesh to find substructure in haloes (work in
progress by Michael Maciejewski, IAP)

Find a local maxima of f(x,v) (all neighboring particles have lower
density)

Look recursively at all its neighbors.

Process stops below a given density threshold, or some more
sophisticated condition.

Advantages

Fewer free parameters.

Greater contrast of substructure density in phase-space.

Ability to detect streams - remnants of merger events.
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Conclusions

Understanding the phase-space structure of dark-matter
halos in crucial to understanding the physics behind their
structure. Much work remains in this area.

The DTFE can be used to estimate the phase-space density.
However, it is a very expansive process which also involves
conceptual difficulties (e.g. position vs. velocity) as well as
technical difficulties (e.g. smoothing the fluctuations).
It is still not clear that this is the preferred method.

Substructure in DM halos is much more pronounced in
phase-space than in real-space. This gives rise to interesting
applications in structure finding.

The scale invariance in v(f) is due to the distribution of
substructure - and not due to the smooth background. The
relation f(r) = ρ(r)

σ3(r) ∝ r−1.875 is still not understood.
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