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Introduction

Topological persistence and simplification
by H. Edelsbrunner et. al. (2000)

Topological approach for separating signal from noise.

Data = real function over a topological space.



The idea of persistence
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The idea of persistence

PSfrag replacements

f

x

y

How many components in g−1(−∞, x]?

Count the components of f−1(−∞, y] induced by
those of f−1(−∞, x].



Three-dimensional example
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What is the “actual” number of loops in this surface?

More generally, how can we estimate the k-th Betti number

of a sub-level set if the function is noisy?



Persistent Betti numbers
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Persistent k-th Betti number of f : X → R:

βx,y
k (f) = rk(Hk(f

−1(−∞, x]) → Hk(f
−1(−∞, y]))

Filter out topological noise.



Persistence intervals
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Pair thresholds that create components with those
that destroy them.
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Track the evolution of the topology of sub-level sets
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Pair thresholds that create components with those
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Persistence intervals
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The number of intervals containing [x, y] is βx,y
k (f)

(“k-triangle lemma” [ELZ02][CaZo04])

In the case of components, persistence is equivalent to
Size theory, developped by [Frosini, Landi].



Persistence diagrams
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Persistence intervals become points in the plane.

The diagonal is included.



Persistence diagrams
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βx,y
k (f) is the number of points of Dk(f) within the upper

left quadrant with corner (x, y).

Persistence diagrams encode the topology of all sub-level

sets at all scales.



Algorithm for PL functions

Persistence algorithm
Sort the simplices by increasing function values.
Build the mod 2 incidence matrix: Aij = 1 iff sj Ã si.
while two columns have their last 1 on the same row
do

add the leftmost to the rightmost.
end while
return {(value(si), value(slast(i))}



Metric on diagrams
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db(A, B)

(R̄2, || . ||∞)

Definition. The bottleneck distance between sets A and B is:

db(A, B) = inf
γ

sup
a

‖a − γ(a)‖∞

over all a ∈ A and all bijections γ : A → B.



Stability theorem
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Theorem. [CEH04].For two continuous tame functions f and g on a

finitely triangulable space:

db(Dk(f), Dk(g)) ≤ ‖f − g‖∞



Betti numbers from samples
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Build a simplicial approximation of the unknown shape
and compute its Betti numbers.

Use offsets/alpha-shapes.



Reconstruction by offset
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Works for a large class of shapes in Rn [CCSL06].

But might requires many data points.



“Sharp” angle problem
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“Sharp” angle problem
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Persistence helps

Distance function to S:
distS(p) = inf{d(s, p)|s ∈ S} for p ∈ Rn.

We were looking at the sublevel-sets of the distance
function to the point cloud.

Spurious loops are short-lived if the sampling is good
enough.



Hausdorff distance
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The Hausdorff distance between two sets A and B is
the minimum number r such that each point in A is at
distance at most r from B and vice versa.

dH(A, B) = ||distA − distB||∞



Weak feature size
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wfs (C) = inf { positive critical value of distC}

wfs (C) > 0 if C ⊂ Rn is semi-algebraic [Fu95].



Betti numbers from samples
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Theorem. [CEH/CL04]. Let S and P be closed subsets of Rn.
If l is such that dH(S, P ) < l < wfs (S)/4:

βk(S) = βl,3l
k

(distP )



Comments

Persistent Betti numbers/diagrams of distance
function easily computable from the Delaunay
triangulation of the sample points.

You do not get any simplicial complex with the
correct Betti numbers.

Case of high dimensional ambiant space:
witness complexes [CdS03]



Robust signatures of shapes

Given two shapes, are they approximately congruent?

Pick some rotation invariant function defined on shapes,

e.g. distance function, curvature.

Compare the persistence diagrams for the two shapes.



Problem for curves
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If two curves are close, does it imply that their lengths are close?

Fréchet distance between C1 and C2:

db(C1, C2) = inf
φ1,φ2

sup
s

d(φ1(s), φ2(s))

where φi ranges over all parameterizations of Ci.



Result
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Theorem. Let C1 and C2 be two closed curves in Rn.

Let Li be the length of Ci, and Ki be the integral of its curvature.

One has:

|L1 − L2| ≤
2vol(Sn−1)

vol(Sn)
[K1 + K2 − 2π] db(C1, C2)



Proof

fu
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Crofton formula:

L(C) =
π

vol(Sn)

∫
hyperplane l⊂Rn

](l ∩ C)



Proof
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Let fu : C → R be the height function in the direction u.

If l has normal vector u, then ](l∩C) is twice the number
of “persistence intervals” of fu stabbed by l.



Proof
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Hence : ∫
l hyperplane with normal u

](l ∩ C)

is twice the total length of the persistence intervals of fu.



Proof
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Stability theorem : the bounds of the persistence intervals of fu

move by at most db(C1, C2) = d.

Hence the total length of these intervals changes by at most

d(nu
1 + nu

2 − 2), where nu is the number of critical points of fu.



Proof

By integrating over all directions :

|L1 − L2| ≤ 2d
π

vol(Sn)

∫
u∈Sn

nu
1 + nu

2 − 2 du

Exchange theorem:

The integral of the number of critical points nu
i over u ∈ Sn

is the integral of the curvature of Ci divided par π/vol(Sn−1)

→ qed.



Result for surfaces

Theorem. Let S1 = ∂V1 and S2 = ∂V2 be two closed surfaces

in R3 with the same genus g. Let Hi be the integral of the mean

curvature of Si, and Ki be the integral of its absolute Gauss

curvature. One has:

|H1 − H2| ≤ [K1 + K2 − 4π(1 + g)] db(V1, V2)

Holds for piecewise-linear surfaces, for which simple formula

exist: accurate total mean curvature estimation from a mesh.

Closeness between normals to the surfaces is not explicitly

required, unlike in [CSM03].



Conclusion

Thank you!
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