Topological Persistence

David Cohen-Steiner

Introduction

- Topological persistence and simplification by H. Edelsbrunner et. al. (2000)
- Topological approach for separating signal from noise.
- Data = real function over a topological space.

The idea of persistence

• How many components in $g^{-1}(-\infty, x]$?

The idea of persistence

• How many components in $g^{-1}(-\infty, x]$?

The idea of persistence

• How many components in $g^{-1}(-\infty, x]$?

• Count the components of $f^{-1}(-\infty, y]$ induced by those of $f^{-1}(-\infty, x]$.

Three-dimensional example

- What is the "actual" number of loops in this surface?
- More generally, how can we estimate the k-th Betti number of a sub-level set if the function is noisy?

Persistent Betti numbers

• Persistent k-th Betti number of $f : \mathbb{X} \to \mathbb{R}$:

 $\beta_k^{x,y}(f) = \mathsf{rk}(H_k(f^{-1}(-\infty, x]) \to H_k(f^{-1}(-\infty, y]))$

Filter out topological noise.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

- The number of intervals containing [x, y] is $\beta_k^{x,y}(f)$ ("*k-triangle lemma*" [ELZ02][CaZ004])
- In the case of components, persistence is equivalent to Size theory, developped by [Frosini, Landi].

Persistence diagrams

- Persistence intervals become points in the plane.
- The diagonal is included.

Persistence diagrams

- $\beta_k^{x,y}(f)$ is the number of points of $D_k(f)$ within the upper left quadrant with corner (x, y).
- Persistence diagrams encode the topology of all sub-level sets at all scales.

Algorithm for PL functions

Persistence algorithm

Sort the simplices by increasing function values. Build the mod 2 incidence matrix: $A_{ij} = 1$ iff $s_j \subsetneq s_i$. while two columns have their last 1 on the same row do

add the leftmost to the rightmost.

end while

return { $(value(s_i), value(s_{last(i)}))$ }

Metric on diagrams

Definition. The *bottleneck distance* between sets A and B is:

$$d_b(A, B) = \inf_{\gamma} \sup_{a} \|a - \gamma(a)\|_{\infty}$$

over all $a \in A$ and all bijections $\gamma : A \to B$.

Stability theorem

Theorem. [CEH04]. For two continuous tame functions f and g on a finitely triangulable space:

 $d_b(\mathcal{D}_k(f), \mathcal{D}_k(g)) \le \|f - g\|_{\infty}$

Betti numbers from samples

- Build a simplicial approximation of the unknown shape and compute its Betti numbers.
- Use offsets/alpha-shapes.

Reconstruction by offset

Works for a large class of shapes in Rⁿ [CCSL06].
But might requires many data points.

Persistence helps

- Distance function to S: $dist_S(p) = \inf\{d(s, p) | s \in S\}$ for $p \in \mathbb{R}^n$.
- We were looking at the sublevel-sets of the distance function to the point cloud.
- Spurious loops are short-lived if the sampling is good enough.

Hausdorff distance

The Hausdorff distance between two sets A and B is the minimum number r such that each point in A is at distance at most r from B and vice versa.

$$\bullet d_H(A,B) = ||\mathsf{dist}_A - \mathsf{dist}_B||_{\infty}$$

Weak feature size

wfs (C) = inf { positive critical value of dist_C}
wfs (C) > 0 if C ⊂ ℝⁿ is semi-algebraic [Fu95].

Betti numbers from samples

Theorem. [CEH/CL04]. Let S and P be closed subsets of \mathbb{R}^n . If l is such that $d_H(S, P) < l < wfs(S)/4$:

$$eta_k(S) = eta_k^{l,3l}(\mathsf{dist}_P)$$

Comments

- Persistent Betti numbers/diagrams of distance function easily computable from the Delaunay triangulation of the sample points.
- You do not get any simplicial complex with the correct Betti numbers.
- Case of high dimensional ambiant space: witness complexes [CdS03]

Robust signatures of shapes

- Given two shapes, are they **approximately congruent**?
- Pick some rotation invariant function defined on shapes, e.g. distance function, curvature.
- Compare the persistence diagrams for the two shapes.

Problem for curves

- If two curves are close, does it imply that their lengths are close?
- Fréchet distance between C_1 and C_2 :

$$d_b(C_1, C_2) = \inf_{\phi_1, \phi_2} \sup_{s} d(\phi_1(s), \phi_2(s))$$

where ϕ_i ranges over all parameterizations of C_i .

Result

Theorem. Let C_1 and C_2 be two closed curves in \mathbb{R}^n . Let L_i be the length of C_i , and K_i be the integral of its curvature. One has:

$$|L_1 - L_2| \le \frac{2\mathrm{vol}(\mathbb{S}^{n-1})}{\mathrm{vol}(\mathbb{S}^n)} [K_1 + K_2 - 2\pi] \ d_b(C_1, C_2)$$

Crofton formula:

$$L(C) = \frac{\pi}{\operatorname{vol}(\mathbb{S}^n)} \int_{\text{hyperplane } l \subset \mathbb{R}^n} \sharp(l \cap C)$$

- Let $f^u: C \to \mathbb{R}$ be the height function in the direction u.
- If *l* has normal vector *u*, then $\sharp(l \cap C)$ is twice the number of "persistence intervals" of f_u stabled by *l*.

is twice the total length of the persistence intervals of f^u .

- Stability theorem : the bounds of the persistence intervals of f^u move by at most d_b(C₁, C₂) = d.
- Hence the total length of these intervals changes by at most $d(n_1^u + n_2^u 2)$, where n^u is the number of critical points of f^u .

By integrating over all directions :

$$|L_1 - L_2| \le 2d \frac{\pi}{\operatorname{vol}(\mathbb{S}^n)} \int_{u \in \mathbb{S}^n} n_1^u + n_2^u - 2 \, du$$

• Exchange theorem:

The integral of the number of critical points n_i^u over $u \in \mathbb{S}^n$ is the integral of the curvature of C_i divided par $\pi/\text{vol}(\mathbb{S}^{n-1})$ \rightarrow qed.

Result for surfaces

Theorem. Let $S_1 = \partial V_1$ and $S_2 = \partial V_2$ be two closed surfaces in \mathbb{R}^3 with the same genus g. Let H_i be the integral of the **mean** curvature of S_i , and K_i be the integral of its **absolute Gauss** curvature. One has:

$$|H_1 - H_2| \le [K_1 + K_2 - 4\pi(1+g)] d_b(V_1, V_2)$$

- Holds for piecewise-linear surfaces, for which simple formula exist: accurate total mean curvature estimation from a mesh.
- Closeness between normals to the surfaces is not explicitly required, unlike in [CSM03].

Conclusion

Thank you!