Topological Persistence

David Cohen-Steiner
RINRIA

Introduction

- Topological persistence and simplification by H. Edelsbrunner et. al. (2000)
- Topological approach for separating signal from noise.
- Data = real function over a topological space.

The idea of persistence

■ How many components in $g^{-1}(-\infty, x]$?

The idea of persistence

■ How many components in $g^{-1}(-\infty, x]$?

The idea of persistence

■ How many components in $g^{-1}(-\infty, x]$?

- Count the components of $f^{-1}(-\infty, y]$ induced by those of $f^{-1}(-\infty, x]$.

Three-dimensional example

- What is the "actual" number of loops in this surface?

■ More generally, how can we estimate the k-th Betti number of a sub-level set if the function is noisy?

Persistent Betti numbers

- Persistent k-th Betti number of $f: \mathbb{X} \rightarrow \mathbb{R}$:

$$
\beta_{k}^{x, y}(f)=\operatorname{rk}\left(H_{k}\left(f^{-1}(-\infty, x]\right) \rightarrow H_{k}\left(f^{-1}(-\infty, y]\right)\right)
$$

- Filter out topological noise.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- Track the evolution of the topology of sub-level sets as the threshold increases.
- Pair thresholds that create components with those that destroy them.

Persistence intervals

- The number of intervals containing $[x, y]$ is $\beta_{k}^{x, y}(f)$ (" k-triangle lemma" [ELZ02][CaZo04])
- In the case of components, persistence is equivalent to Size theory, developped by [Frosini, Landi].

Persistence diagrams

- Persistence intervals become points in the plane.
- The diagonal is included.

Persistence diagrams

- $\beta_{k}^{x, y}(f)$ is the number of points of $\mathrm{D}_{k}(f)$ within the upper left quadrant with corner (x, y).
- Persistence diagrams encode the topology of all sub-level sets at all scales.

Algorithm for PL functions

Persistence algorithm

Sort the simplices by increasing function values. Build the mod 2 incidence matrix: $A_{i j}=1$ iff $s_{j} \varsubsetneqq s_{i}$. while two columns have their last 1 on the same row do
add the leftmost to the rightmost.
end while
return $\left\{\left(\right.\right.$ value $\left(s_{i}\right)$, value $\left.\left(s_{\text {last }(i)}\right)\right\}$

Metric on diagrams

(

Definition. The bottleneck distance between sets A and B is:

$$
d_{b}(A, B)=\inf _{\gamma} \sup _{a}\|a-\gamma(a)\|_{\infty}
$$

over all $a \in A$ and all bijections $\gamma: A \rightarrow B$.

Stability theorem

Theorem. [CEH04].For two continuous tame functions f and g on a finitely triangulable space:

$$
d_{b}\left(\mathrm{D}_{k}(f), \mathrm{D}_{k}(g)\right) \leq\|f-g\|_{\infty}
$$

Betti numbers from samples

- Build a simplicial approximation of the unknown shape and compute its Betti numbers.
- Use offsets/alpha-shapes.

Reconstruction by offset

- Works for a large class of shapes in \mathbb{R}^{n} [CCSLO6].
- But might requires many data points.

"Sharp" angle problem

"Sharp" angle problem

"Sharp" angle problem

"Sharp" angle problem

"Sharp" angle problem

Persistence helps

- Distance function to S : $\operatorname{dist}_{S}(p)=\inf \{d(s, p) \mid s \in S\}$ for $p \in \mathbb{R}^{n}$.
- We were looking at the sublevel-sets of the distance function to the point cloud.
- Spurious loops are short-lived if the sampling is good enough.

Hausdorff distance

- The Hausdorff distance between two sets A and B is the minimum number r such that each point in A is at distance at most r from B and vice versa.
- $d_{H}(A, B)=\left\|\operatorname{dist}_{A}-\operatorname{dist}_{B}\right\|_{\infty}$

Weak feature size

- wfs $(C)=\inf \left\{\right.$ positive critical value of dist $\left._{C}\right\}$
- $\mathrm{wfs}(C)>0$ if $C \subset \mathbb{R}^{n}$ is semi-algebraic [Fu95].

Betti numbers from samples

Theorem. [CEH/CLO4]. Let S and P be closed subsets of \mathbb{R}^{n}. If l is such that $d_{H}(S, P)<l<\mathrm{wfs}(S) / 4$:

$$
\beta_{k}(S)=\beta_{k}^{l, 3 l}\left(\operatorname{dist}_{P}\right)
$$

Comments

- Persistent Betti numbers/diagrams of distance function easily computable from the Delaunay triangulation of the sample points.
- You do not get any simplicial complex with the correct Betti numbers.
- Case of high dimensional ambiant space: witness complexes [CdS03]

Robust signatures of shapes

■ Given two shapes, are they approximately congruent?

- Pick some rotation invariant function defined on shapes, e.g. distance function, curvature.
- Compare the persistence diagrams for the two shapes.

Problem for curves

- If two curves are close, does it imply that their lengths are close?
- Fréchet distance between C_{1} and C_{2} :

$$
d_{b}\left(C_{1}, C_{2}\right)=\inf _{\phi_{1}, \phi_{2}} \sup _{s} d\left(\phi_{1}(s), \phi_{2}(s)\right)
$$

where ϕ_{i} ranges over all parameterizations of C_{i}.

Result

Theorem. Let C_{1} and C_{2} be two closed curves in \mathbb{R}^{n}.
Let L_{i} be the length of C_{i}, and K_{i} be the integral of its curvature.
One has:

$$
\left|L_{1}-L_{2}\right| \leq \frac{2 \operatorname{vol}\left(\mathbb{S}^{n-1}\right)}{\operatorname{vol}\left(\mathbb{S}^{n}\right)}\left[K_{1}+K_{2}-2 \pi\right] d_{b}\left(C_{1}, C_{2}\right)
$$

Proof

- Crofton formula:

$$
L(C)=\frac{\pi}{\operatorname{vol}\left(\mathbb{S}^{n}\right)} \int_{\text {hyperplane } l \subset \mathbb{R}^{n}} \sharp(l \cap C)
$$

Proof

- Let $f^{u}: C \rightarrow \mathbb{R}$ be the height function in the direction u.
- If l has normal vector u, then $\sharp(l \cap C)$ is twice the number of "persistence intervals" of f_{u} stabbed by l.

Proof

- Hence :

$$
\int_{l \text { hyperplane with normal } u} \sharp(l \cap C)
$$

is twice the total length of the persistence intervals of f^{u}.

Proof

- Stability theorem : the bounds of the persistence intervals of f^{u} move by at most $d_{b}\left(C_{1}, C_{2}\right)=d$.
- Hence the total length of these intervals changes by at most $d\left(n_{1}^{u}+n_{2}^{u}-2\right)$, where n^{u} is the number of critical points of f^{u}.

Proof

- By integrating over all directions :

$$
\left|L_{1}-L_{2}\right| \leq 2 d \frac{\pi}{\operatorname{vol}\left(\mathbb{S}^{n}\right)} \int_{u \in \mathbb{S}^{n}} n_{1}^{u}+n_{2}^{u}-2 d u
$$

- Exchange theorem:

The integral of the number of critical points n_{i}^{u} over $u \in \mathbb{S}^{n}$ is the integral of the curvature of C_{i} divided $\operatorname{par} \pi / \operatorname{vol}\left(\mathbb{S}^{n-1}\right)$
\rightarrow qed.

Result for surfaces

Theorem. Let $S_{1}=\partial V_{1}$ and $S_{2}=\partial V_{2}$ be two closed surfaces in \mathbb{R}^{3} with the same genus g. Let H_{i} be the integral of the mean curvature of S_{i}, and K_{i} be the integral of its absolute Gauss curvature. One has:

$$
\left|H_{1}-H_{2}\right| \leq\left[K_{1}+K_{2}-4 \pi(1+g)\right] d_{b}\left(V_{1}, V_{2}\right)
$$

- Holds for piecewise-linear surfaces, for which simple formula exist: accurate total mean curvature estimation from a mesh.
- Closeness between normals to the surfaces is not explicitly required, unlike in [CSM03].

Conclusion

- Thank you!

