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The restricted three-body problem concerns the case where two
bodies with masses M1 and M2 revolve around each other in
circular orbits with a third body with negligible mass in this force
field.

Recall that in a rotating frame we have a modified potential

Φeff = Φ +
L2

z

2R2
= Φ + 1

2ω2R2

Here ω is the angular velovcity of the rotating coordinate system.
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The geometry is as follows.

So we have the center of gravity at the origin and two bodies with
masses M1 = M(1− µ) and M2 = Mµ, where we assume µ < 0.5,
and x1 = −Xµ and x2 = X (1− µ).
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For clarity, the distances r1 and r2 are those in three-dimensions,
not projections onto the (x ,y)-plane.

Now the total energy of the third body is

E = 1
2v2 − GM(1− µ)

r1
− GMµ

r2
− 1

2ω2R2

So

v2 = ω2(x2 + y2) +
2GM(1− µ)

r1
+

2GMµ

r2
− E
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Now from the two-body problem we know that the objects move in
elliptical orbits with Kepler’s third law:

T 2

a3
=

4π2

G (M1 + M2)

We have circular orbits, so the angular velocity is

ω2 =

(
2π

T

)2

=
G (M1 + M2)

r3

Now let us take unit of distance r = X = −x1 + x2 = 1, unit of
mass M = M1 + M2 = 1 and unit of time such that G = 1. Then
ω = 1.
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Then we have

v2 = (x2 + y2) +
2(1− µ)

r1
+

µ

r2
− E

Now look at the surface with v = 0, where all energy is potential
energy:

(x2 + y2) +
2(1− µ)

r1
+

µ

r2
= E ≥ 0

For each E these are curves outside which v2 becomes negative, so
the third body cannot go there with this E .

Now look at these surface first in the (x ,y)-plane.
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Now first look for very large E ; then either x2 + y2 is very large or
r1 is very small or r2 is very small.
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Now we decrease the value of the total energy E . The ‘circle’
shrinks and the ovoids increase untill they touch.
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We decrease the value of E further. The ‘circle’ shrinks further
and the ovoids increase until one touches the ’circle’.
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If we decrease the value of E even more, the ‘circle’ opens on one
side while the ovoids touch it on the other.
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If we decrease the value of E still further we are left with two small
areas that eventually shrink to two points.
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Here the previous figures are collected together. Five ‘double
points’ occur in the (x , y)-plane.
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Here we see the surfaces in the (x , z)-plane. Double point only
occur on the x-axis.
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Here we see the surfaces in the (y , z)-plane. Double points do not
occur in this plane (on the y -axis).
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Put a test particle in this force field with zero velocity.

It will then start to move perpendicular to the surface it happens
to be on.

Unless it is in one of the double points, where there is no
unambigious direction to go.

If we use

F (x , y , z) = 1
2(x2 + y2) +

1− µ)

r1
+

µ

r2
+ constant

the condition that the double points are stationary points is

∂F

∂x
=

∂F

∂y
=

∂F

∂z
= 0
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Remember

r2
1 = (x − x1)

2 + y2 + z2 ; r2
2 = (x2 − x)2 + y2 + z2

r1 =
√

const. + z2 ⇒ dr1
dz

=
2z

2
√

const. + z2
=

z

r1

r2 =
√

const. + z2 ⇒ dr2
dz

=
2z

2
√

const. + z2
=

z

r2

Then
∂F

∂z
= −z

(
1− µ

r3
1

+
µ

r3
2

)
And this equals zero for z = 0 and the equilibrium points are thus
in the (x , y)-plane.
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Analogously we have the conditions

∂F

∂x
= x − (1− µ)

x − x1

r3
1

+ µ
x − x2

r3
2

= 0 (1)

∂F

∂y
= y − (1− µ)

y

r3
1

− µ
y

r3
2

= 0 (2)

First look at the case y = 0; this is allowed according to eqn. (2).

Eqn. (1) then becomes (with r1 = |x − x1| and r2 − |x − x2|)

x − (1− µ)
x − x1

|x − x1|3
− µ

x − x2

|x − x2|3
= 0
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A graph of this looks as follows:

and we see that there are three solutions (but there is no general
analytic form).
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Then the case y 6= 0. Eqn. (2) then becomes

1− 1− µ

r3
1

− µ

r3
2

= 0

Multiplying with (x − x2) and (x − x1) and subtracting from eqn.
(1) gives

x2 − (1− µ)
x2 − x1

r3
1

= o ; x1 − µ
x1 − x2

r3
2

= 0

and this implies (remember x2 = 1− µ and x1 = −µ)

r1 = r2 = 1

These two solutions are on equilateral triangles with the two
primary masses.
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So we find the five Lagrangian libration points L1 through L5.
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To test the stability we put the third mass to be at one of the
Lagrange points and then give it a small velocity.

The point is stable if that results in an oscillation with a small
amplitude.

The equations of motion are

ẍ − 2ẏ = −∂φ

∂x

ÿ + 2ẋ = −∂φ

∂y

z̈ = −∂φ

∂z
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Take coordinates (ξ, η, ζ) so that

x = x◦ + ξ ; y = y◦ + η ; z = z◦ + ζ

Do a Taylor expansion, neglect squares and products and use that
at (x ,y ,z) ∂Φ/∂x = ∂Φ/∂y = ∂Φ/∂z = 0, etc. Then

ξ̈ − 2η̇ = −ξΦxx − ηΦxy − ζΦxz

η̈ + 2ξ̇ = −ξΦyx − ηΦyy − ζΦyz

ζ̈ = −ξΦzx − ηΦzy − ζΦzz

with Φxy = ∂2Φ/∂x∂y , etc.
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We have

Φ = 1
2(x2 + y2) +

1− µ√
(x − x1)2 + y2 + z2

+
µ√

(x − x2)2 + y2 + z2

Now define

α =
1− µ

r3
1

+
µ

r3
2

β =
1− µ

r5
1

+
µ

r5
2

This gives

Φxx = −1 + α− 3(1− µ)
(x − x1)

2

r5
1

− 3µ
(x − x2)

2

r5
2

Φyy = −1 + α− 3y2β ; Φzz = α− 3z2β

Φxy = Φyx = −3xyβ ; Φxz = Φzx = −3zxβ ; Φyz = Φzy = −3yzβ
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First look at the Lagrangian points on the x-axis.

So y = z = 0. Write x = x◦ so that r2
1 = (x◦ − x1)

2 and
r2
2 = (x◦ − x2)

2, then

Φxx = −1− 2α ; Φyy = −1 + α ; Φzz = α

Φxy = Φyx = Φxz = Φzx = Φyz = Φzy = 0

Then the equations of motion are

ξ̈ − 2η̇ = ξ(1 + 2α) (3)

η̈ + 2ξ̇ = η(1− α) (4)

ζ̈ = −ζα (5)
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Eqn. (5) is easily solved; it gives

ζ ∝ e
√
−αt = e i

√
αt

Now α > 0, so
√

α is imaginary.

Remembering that

e(a+ib)t = eat(cos bt + i sin bt)

we see that if and only if the exponent is fully imaginary (or
a = 0) we will have an oscillating solution.

This is the case, so we have a harmonic oscillation and these
libration points are stable in the z-direction.
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Say the solutions in the (x ,y)-plane are ξ = Keλt and η = Leλt .

When λ has a real component, ξ and η can assume arbitrary values
and the point is unstable.

So the libration point is stable only if λ is fully imaginary.

Substitution, using ξ̇ = λKeλt , ξ̈ = λ2Keλt , etc. in eqn. (3) and
(4) gives

Kλ2 − 2Lλ = K (1 + 2α)

Lλ2 + 2Kλ = L(1− α)
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Eliminate K and L:

K

L
=

2λ

λ2 − (1 + 2α)
=

λ2 − (1− α)

−2λ

Or
λ4 + (2− α)λ2 + (1 + 2α)(1− α) = 0

Regard this as a quadratic polynomial equation in λ2.

We need for stability that λ is purely imaginary so the two roots
for λ2 should both be real and negative.

Then for their product1 we should have (1 + 2α)(1− α) > 0, or
(1− α) > 0.

1For ax2 + bx + c = 0 the product of the roots is c/a.
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We had according to eqn. (1)

x◦ − (1− µ)
x − x1

|x − x1|3
− µ

x − x2

|x − x2|3
= 0

With the definition of α we can write

x◦(1− α) + (1 + µ)
x1

r3
1

+ µ
x2

r3
2

= 0

With x1 = µ and x2 = 1− µ, this becomes

(1− α) =
µ(1− µ)

x◦

(
1

r3
1

− 1

r3
2

)
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Now we have in the cases of the three points on the x-axis

L1: x◦ > x2 > 0 and r1 > r2 ⇒ (1− α) < 0
L2: 0 < x◦ < x2 and r1 > r2 ⇒ (1− α) < 0
L3: x◦ < x1 < 0 and r1 < r2 ⇒ (1− α) < 0

Then we only have real solutions for λ.

So all three Lagrangian points on the x-axis are unstable.
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Now turn to the triangular points.

r1 = r2 = 1 and therefore

x = 1
2(1− 2µ) ; y = ±

√
3

2
; z = 0

We do here the solution for the positive value of y . Then

Φxx = −3

4
; Φyy = −9

4
; Φzz = 1

Φxy = Φyx = −3
√

3

4
(1− 2µ)

And the others are equal to zero.
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The equations of motions now are

ξ̈ − 2η̇ =
3

4
ξ +

3
√

3

4
(1− 2µ)η

η̈ + 2ξ̇ =
9

4
η +

3
√

3

4
(1− 2µ)ξ

ζ̈ = −ζ

From the last one we get ζ ∝ e it , so the motion is harmonic with a
period equal to that of the primary masses and the point is stable
in the z-direction.
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Try again the solutions ξ = Keλt and η = Leλt and find out
whether or not λ is fully imaginary or not.

The result is(
λ2 − 3

4

)
K −

{
3
√

3

4
(1− 2µ) + 2λ

}
L = 0

−

{
3
√

3

4
(1− 2µ)− 2λ

}
K +

(
λ2 − 9

4

)
L = 0
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Eliminate again K and L, then

λ4 + λ2 +
27

4
µ(1− µ) = 0

Again regard this as a quadratic equation in λ2.

For stability it must have only real, negative roots.

First their sum must be negative and their product positive. This
is true, since the sum of the roots2 is −1 and their product
27
4 µ(1− µ) > 0.

2For ax2 + bx + c = 0 the sum of the roots is −b/a and the product c/a.
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Then the roots λ2 should be real3, which is the case for

1− 27µ(1− µ) = 27µ2 − 27µ + 1 > 0

This is a quadratic inequality in µ.

Since µ ≤ 1/2 this corresponds to the root

µ <
1

2
−

√
23

108
= 0.0285.

So these Lagrangian points are stable only in the case of a large
difference in the two primary masses.

3The roots are real if (b2 − 4ac) > 0.
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For the Jupiter - Sun system µ = 0.0010 so the Lagrangian points
L4 and L5 are stable.

Indeed that is where we find the Trojans, a dynamical group of
asteroids.

In principle these can cross from L5 to L4 through L3 and vice
versa.

Another group are the Hildas, that are in a 2–3 orbital resonance
with Jupiter. They are also affected by L3, L4 and L5.
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For the Earth-Sun system µ = 0.0123, so the Langragian points L4

and L5 are stable.

Only L1 and L2 are useful and are exploited to “park” satellites.
The triangular points and L3 are too far away (and there are too
many distortions).

In L1 we find satellites for solar observations , such as SOHO
(SOlar and Heliospheric Observatory).

Point L2 was used for WMAP (Wilkinson Microwave Anisotropy
Probe) and will be used for Herschel with HIFI and JWST (James
Webb Space Telescope).

Satellites need to be actively kept at these unstable points.
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