STRUCTURE OF GALAXIES

Lecture 6. Vertical dynamics in disks, secu-
lar evolution, surface densities, stellar kine-
matics, stability and Toomre’s Q.

Vertical dynamics.
First I recall some parameters of disk kinematics.

The epicyclic frequency k describes the motion
of objects with velocitites small compared to ro-
tation and follows from the rotation curve:

k= 2{B(B — A)}1/?

A and B are the Oort constants, which follow
from

_ 1 <Vrot B dvrot>

2\ R dR

B = 4 (Vrot 4 dVrot)
2\ R dR



The continuity equation for the case of axial
symmetry is
8KR 0K~

At small z the first two terms on the right are
equal to 2(A — B)(A 4+ B) and this is zero for a
flat rotation curve. So for practical purposes we
may use the plane-parallel case:

dK~

dz

= —47Gp(z)

Poisson’s equation for the axi-symmetric case is

iz P()(V2)| = p(2) Kz

For an isothermal distribution this becomes

dp(z) _ p(2) Kz
dz <Vz )

The equations for the isothermal sheet are the
solutions of this set of equations.



p(z) = po sech 2 <i>

20

0 — 2Zopo

Kz = —47TG,00250 tanh <i>

20

<V22>1/2 — ZO\/TGPO

When a second isothermal component (II) with
negligible mass moves in this force field we have

p11(z) = pr(0) sech 2P (i)

<0




Disks are not entirely isothermal, since veloc-
ity dispersions of the stellar generations increase
with age. Therefore replace the solution by the
set*

p(z) = 2_2/npe sech 2/ <E>
QZe

Consider the extremes n = co (the exponential)
and n = 1 (the isothermal) and one intermediate
case n = 2.

_ __ pe 2( z )
=1 = -~ sech —
" P(2)= 73 D2e
n=2 p(z)= Pe sech (i>
2 ze

2
n=ooc p(z) = peexp — (—)
ze

We then calculate various properties. Eventu-
ally this can be used to evaluate the effects of
assuming isothermal distributions.

*van der Kruit, A.&A. 192, 117 (1988)



Am
(mag)

Z1Ze

T he surface densities are
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The vertical force is

n=1 Ky,= —2xGotanh (i>
QZe
n=2 K,= —4Goarctan {sinh <i>}
ze
n = oo K7 = —27?G0{1— exp —(i)}
<e

z (kpc)

In the graph parameters approximately those of
the solar neighborhood are chosen.



Velocity dispersion (squared) as a function of z

n=1 (V2= 2nGoze
2 2
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n=o0 (V2= nGoze {2 — exp (i>}

ze

and integrated over all z

n=1 (VAro = 2nGoze
n=2 (VAo = (1.705)7Goze
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For a second isothermal component with

_ <V22>z=0
P (VA

n=1 pn(z) = pu(0) sech (21)

Ze

pu(z) = pu(0) exp o (%) pl (5)]

2
n = 0o pII(Z) — PII(O) exp |— fz + 2p {1 — exp <Zi> }]

S
|
N

where the function [ for n = 2 is

Y
I(y) :/o arctan(sinh x) dz

Am
(mag)




The thickness of an HI-layer can then be ex-
pressed in terms of

d — <VZ2>HIZe 1/2
HI Go

and the full width at half maximum is
=1 WHI = 1.33 dHI

n—>2 WHI: 1.18 dHI
n — oo WHI — 0.94 dHI

From measurements of a sample of edge-on galax-
ies* the index n has been determined as

2/n = 0.54 + 0.20
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*de Grijs, Peletier & van der Kruit, A.&A. 327, 996
(1997)



Next we need to consider Toomre's* criterion
for local stability:

o VR
3.36Go

(VZ)1/? is the stellar velocity dispersion in the
R-direction, o is the local disk surface density
and k is the epicyclic frequency.

An approximate derivation of Toomre’s criterion
can be made for an infinitesimally thin disk.

1. At small scales the Jeans instability needs to
be considered.

Take an area with radius R and surface density
o. T he equation of motion is

d?°R
dt?
Solve this and apply for R = 0O; this gives the

free-fall time
2R 1/2

wGo

= —7w(Go

*Toome, Ap.J. 139, 1217 (1964)
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A star moves out to radius R in a time
R
<V2>1/2
and this must for marginal stability be equal to
the free-fall time.

This then gives the Jeans length

2(V?)
wGo

R jeans =

2. At large scale we need to consider stability
resulting from differential rotation.

Take an area with radius Ro; the angular velocity
from differential rotation is

Q=208
The centrifugal force is then

Fef = RoQ?
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Let it contract to radius R, then the angular
velocity becomes

R2B
R2
and the centrifugal force

Q =

R4B?
R3

If the contraction is dR then

dFss  3R&B?
dR RA

Now look at the gravitational force

G’erga

R2

This is correct to within a factor 2 for a flat
distribution. Then

ngraV . QWGRgO'

dR R3
At R = R, these two must compensate each

other, so

Fgrav — —

2nGo
3B2
and the disk is stable for all R > Rit.

Reyit =

12



3. Toomre’'s stability criterion.

The disk is stable at all scales if the minimum ra-
dius for stability by differential rotation is equal
to or smaller than the maximum radius for sta-
bility by random motions (the Jeans radius).

Thus
1/2 _ ® Go

<V2>crit — \/§§

In practice B ~ — A (for flat rotation curves), so
we can write

2\ 1/2
VAR~ 2m (2] 26 136

crit - -

Toomre in his precise treatment found a con-
stant of 3.36.
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Stellar velocity dispersions in disks.

Stars increase their velocity dispersion with age*;
this is referred to as the velocity dispersion — age
relation.
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Stars are formed with the motions of the in-

terstellar medium (velocity dispersion about 10
km/s).

*Wielen, A.&A. 60, 262 (1977)
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Then the velocity dispersion increases roughly
as o x t% with a ~ 0.5.

There are three general mechanisms proposed
for this:

e Stars are in their orbits scattered by concen-
trations in the ISM*, now identified as Large
Molecular Clouds.

e Spiral structure systematically increases the
random motions of the starsf.

e Infall of small companion galaxies has the same
effect on disks*.

The scattering becomes less as the stars move
outside the gas layer.

Th Spitzer-Schwarzschild mechanism appears to
be incapable of explaining the ratio of the R-
and z-velocity dispersions (the axis ratio of the
velocity ellipsoid), scattering too little in z.

It is most likely that both processes contributes.

*Spitzer & Schwarzschild, Ap.J. 114, 385 (1951)

fBarbanis & Woltjer, Ap.J. 150, 461 (1967); Carlberg &
Sellwood, Ap.J. 292, 79 (1985)

IVveazquez & White, Mon.Not.R.A.S. 304, 254 (1999)
8Jenkins & Binney, Mon.Not.R.A.S. 257, 305 (1990)
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Observations of stellar velocity dispersions.

1. Z-velocity dispersion

If disks have constant mass-to-light ratios M/L,
the density can be described by

p(R, z) = p(0,0) exp (—R/h) sech ?(z/zo)

The vertical velocity dispersion then is

(VA2 =\ /[2xGp(R, 0)z0
and it is expected that

(VA2 « exp (—R/2h)

This can be tested by observations in face-on
systems, e.g. NGC 5247*. The result is

(VA2 = (62+7) exp [—(0.42+0.10) R/h]km s~ 1

This is consistent with M /L about constant.

*van der Kruit & Freeman 1986, Ap.J. 303, 556 (1968)
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R- and 6 -velocity dispersions

From fundamental kinematics we have
(Vg-W)*) _ B
(Vi2) B— A

So, if we know the rotation curve we know the
ratio of the radial and tangential velocity disper-
sion.

The other property to consider is the asymmet-
ric drift.

The continuity equation can be written as
0
—Kr = V¥ — (VR)55In(w(Vg) +
. OR

{0V — (V- W)+

(VaVR) (I v(V2Vie)) |

Poisson equation is
O0Kr @ Kgr , 0Kz

OR R 0z

= —47Gp
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For small z it can be shown that

0Kr . Kgr
=2(A-B)(A+ B
om T =2(A-B)(A+B)
and for a flat rotation curve A = — B, so that
OK
Z = —47Gp
0z
Then
<V2VR> — O
Obviously we have
Kr = V3t/R
For an exponential disk with constant M /L
0 1
—|lNny = ——
OR h
The asymmetric drift equation then becomes
R o0 B
V2,—Vi2 = (V3) |= — R—In(V}2 —{1— H
rot=V¢ = (VR) |~ — Bo 2 In(VR) =

There are now two possibilities for observing.
The first is to measure (V;2)!/? directly from
spectra.
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T he difficulty is the line-of-sight integration. This
has to be treated by modeling as was done in
the edge-on galaxy NGC 5170%*.

T he profiles now have become asymmetric. We
see here the spectra and the cross-correlation
peaks between galaxy and template spectra.
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Using an estimate of the circular motion from
the HI-rotation curve one can calculate the pro-
files in a stellar “l,V-diagram’ .

To do this one needs an assumed radial varia-
tion of the velocity dispersion, the rotation curve
(and from that the Oort constants) and the den-
sity distribution of the stars.

T T T T T L] T T T ) 1 T T
Model 1 Madel 1
NGC 5170 /\\ﬂ},}ﬂoo kmis <vi45=80 kmis

500 -

200 +

o=
1

velocity (kmis )

=200

=400 -

1 1 L I
0 1 2 3

In the figure here we see a few such simula-
tions. The three lines in each panel are form
top to bottom: the circular motion from HI-
observations, the stellar rotation velocity and
peaks of Gaussians fitted to the resulting pro-
files.
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T he second option is to measure the asymmetric
drift. The relevant equation was

R 0 =
ViV = 0R) [~ Rag IV — {1 - 55}

So we see that we need to measure:

e Viot, A and B from HI-synthesis or emission
line spectroscopy.

e Vi from absorption line spectroscopy.

e h from surface photometry.

For a flat rotation curve:

B 2V 2
_—~ —10.5 and k2 = Z_rot

B— A R2

For small asymmetric drift:

Vr%t - V:cz ~ 2Viot(Viot — V1)

Consider two possibilities:
Model I with (Vi2)/(VZ?) constant. Then

(V212 x exp (—R/2h)

22



V2 /2R
vrot—vt:<R>( —o.5>
2Viot \ h

e Model II with Q constant. Then

(V2)1/? < R exp (—R/h)

V2) /3R
vrot—vt=<R>( —2.5)
2Viot \ h

How different are these models? For compari-
son calculate a @ (arbitrarily set to unity at one
scalelength) for the first model:

R/h = 1.0 Q = 1.17
1.5 1.00
2.0 0.96
3.0 1.06
4.0 1.31

5.0 1.73
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We see that the models are really not different
up to three or four scalelengths.

But at large R there is a contribution from the
gas, which lowers the total velocity dispersion
and increases the surface density and therefore
lowers Q).

Numerical experiments on dynamics of stellar
disks give Q ~ 1.5 — 2.0 at all radii.

Back to the data on NGC 5170.
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T he fits to the data of NGC 5170 are as follows.
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The resulting @ is as the lines in the figure below
for Model I and the dots plus error bars in Model
IT for various assumed values for the disk M/L.
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The velocity dispersions have the following ra-
dial distribution.

Dispersion {km/s)

120 - .

Velocity

Internal
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G 1 1 i i L i 1
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There is little difference between the two mod-
els.
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The Bottema relations.

Bottema™ observed stellar velocity dispersions in
a set of 12 galaxies.

He then defined as fiducial values the radial ve-
locity dispersion at one scalelength for inclined
systems and the vertical velocity dispersion in
the center for face-on systems.

For the velocity ellipsoid of the solar neighbor-
hood those should be comparable.

He then found the following relations

(VA2 = (VA2 = —17 x Mg — 279 km/s

1/2 1/2
VA2 = (VA2 =0.29V,0r km/s

*Ph.D. thesis (1995); Bottema, A.&A. 275, 16 (1993)
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Velocity dispersion (km/s)
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Can we understand these relations?

From the definition of () we have
Q o (V@)!/2ko ™
For a flat rotation curve
K X VrotR_l
An exponential disk has
o x uo(M/L) exp (—R/h)

Combining these equations gives

(VB)R/? o po(M/L)QRV, g}

Now L  uoh? and the Tully-Fisher relation gives

L r’})t with n ~ 4, so

(V22 o pio(M/L)QViot o po(M/L)QL/4

So we expect that wo, M/L and @ or at least
their product are constant between disks.
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With the actual observed central surface bright-
ness the following curves result for either con-
stant Toomre @ or constant M/L.

I L ¥ T f ¥ f I T i I

a. Q=17 V galaxies (MiL)g=4 _
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We had for hydrostatic equilibrium at the center

<V22>]F-2/:20 = (2.3 £0.1)vVGooze

oo IS the central surface density and the range
in the constant results from the choice of n.

The maximum rotation velocity of the exponen-
tial disk then is

h
disk = 0.88v/7Gooh = (0.69 + 0.03)(VA) 201 /—
ze

With the Bottema relation between this central
velocity dispersion and the maximum observed
rotation velocity we get

Analysis of a sample of edge-on galaxies gives
for the ratio of scaleparameters 7.3 + 2.2*, so
that

V .
disk — (0.57 4+ 0.22)
Viot

So disks in general are not maximum disk.

*Kregel, van der Kruit & de Grijs, Mon.Not.R.A.S. 334,
646 (2002)
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Bottema* first showed with this argument that
his relations implied that for maximum disk sit-
uations the stellar disks should be much flatter
than observed.

140

B /{/ﬁzs
60 -z - T B ] .
// /!’ -

20 F — — — — lin.disp. (MiL)g = 20 -

Velocity Dispersion (km/s)

1 1 L | 1 ]
120 160 200 240 280 320
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At that time observations indicated that the ra-
tio h/zo (where the latter is for the isothermal
sheet) was about 5 and this indicated a value of
0.63 for Vdisk/Vrot-

“A&A. 275, 16 (1993)
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For a flat rotation curve we have

k=2/B(B - A) = \/§V;§t

From the definition of () and applying at R = h
we get

2,1/2 3.36G _o(R=h)h
Vi = Q
(VR)R=h V2 Viot
Using hydrostatic equilibrium (also at R = h)
gives™

(V2)1/2 (7.2 +2.5) ze
(Vi2) V1/2 h
In the solar neighborhoud this axis ratio of the

velocity ellisoid is ~ 0.57 and for the Galaxy we
have ze ~ 0.35 kpc and h ~ 4 kpc, so that

Q ~ 2.5.

Taking all data and methods together it is found
that this applies in all galaxies; disks are locally
stable according to the Toomre criterion.

*van der Kruit & de Grijs, A.&A. 352, 129 (1999)
fDehnen & Binney, Mon.Not.R.A.S. 298, 387 (1998)

34



Swing amplification and global stability.

Swing amplification* of disturbances occurs as
a result of the shear in rotating disks and turns
these disturbances into growing trailing spiral
waves.

It can be formulated in a criterion for prevention
of this instability?
R 2
X = "
2rGmo(R)
Here m is the number of spiral arms.

23

For a flat rotation curve this can be rewritten
as

Q;/rot 2 3.97m
<VR>1/2

and with Bottema’s relation it translates into

Q1l1lm

To prevent strong asymmetric m = 1 or bar-like
m = 2 instabilities we require Q 2 2.

*Toomre, in @ Cambridge conference on Structure and
Evolution of Galaxies (1981)

fSellwood, IAU Symp. 100, 197 (1983)

35



Numerical studies have indicated that disks with
velocity dispersions as observed show global in-
stabilities when evolving by themselves.

Disks can be stabilised by massive halos and
therefore global stability requires that the disk
mass has to be less than a certain fraction of
the total mass, according to the criterion*®

h 1/2
Y =Viot | =—— 2 1.1
GMdisk

T his implies that within Emax the mass in the
halo Mp,10 > 75%. This is also not true for max-
imum disk.

The criterion can be rewritten as

QRViot ]1/2 exp ( R

Y = 0.615 ——
h(V2)1/2 2h

)2,1.1

Evaluating this at R = A and using the Bottema
relation gives

QR 2

*Efstathiou, Lake & Negroponte, Mon.Not.R.A.S. 199,
1069 (1982)
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