
Chapter 10

KINEMATICS AND MASS

DISTRIBUTIONS IN SPIRAL

GALAXIES

10.1 Introduction

In this set of lectures I will address the questions of the kinematics in spiral galaxies.
I will spend some time describing the observational techniques to obtain velocity fields
and velocity dispersions and then review the results. This will lead to a discussion of the
local and global stability and the mass distributions in spiral galaxies and a comparison
to our Galaxy. However, before doing all this I will first give a historical introduction to
kinematic observations. Again I will use below distances based on a Hubble constant of
75 km s−1 Mpc−1.

The rotation of spiral nebulae was recognized first by Wolf (1914) in M81 and Slipher
(1914) in M104 from the inclination of the stellar absorption lines on spectra of the
central regions, although the identification of these nebulae as disk galaxies was at that
time controversial. That the discovery was made first with absorption lines instead of the
more readily observable emission lines can be attributed to observational selection: the
central regions of the nebulae were brightest, and the presence there of absorption lines,
resembling that of an F- or solar-type star, had been known for a long time. The first
observations to result in a plot of the radial velocity versus radius were made by Pease
(1916, 1918) for M31 and M104. It was a tedious business, requiring exposure times of
about 80 hours for each absorption line spectrum, but the results on M104 showed that
the radial velocities relative to the center increased linearly with radius, reaching more
than 300 km s−1 at a distance of 2.5 arcmin. Pease’s measurements along the minor axis
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Figure 10.1: Observed velocities in the central part of M31 from absorption line spectra
obtained along the major (79 hours) and minor (84 hours) axes with the Mount Wilson
60–inch telescope. These observations provided the first evidence for the rotation of spiral
galaxies. From Pease (1918).

of M31 indicated that the radial velocity was nearly constant at all positions, showing
that the variation observed along the major axis “is without doubt to be attributed to
the rotation of the nebula”. The results on M31 are reproduced here in fig. 10.1.

Emission lines from HII regions in the spiral nebulae were discovered about the same
time as nebular rotation. Pease (1915) recorded [OIII], Hβ and Hγ in a 34.5 hour exposure
of NGC 604 in M33. For galaxies of large angular size, the use of emission lines to study
the rotation is hampered by the fact that a single exposure gives only a single point on
the rotation curve as a result of the discrete nature of the HII regions. In his classical
study of the rotation of M31, Babcock (1939) determined 44 velocity measurements in
the inner regions from 236 hours of exposure on the absorption lines, while an additional
56 hours of exposure on emission lines was required to provide 4 more points. These 4
points were, however, very important, for they permitted extension of the rotation curve
by a factor of 3 further out into the main part of the disk.

The first detailed observations of the HI at 21 cm wavelength in M31 were made by van
de Hulst et al. (1957) using the 25–m Dwingeloo radio telescope with an angular resolution



10.1. INTRODUCTION 31

Figure 10.2: The first “spider diagram” to illustrate the observed radial velocity field over
the image of a galaxy (here for HI in M31). Velocities are with respect to the systemic
velocity and have been multiplied by 1.03 to correct for the inclination. The last is not
the usual practice anymore. From Argyle (1965).
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of 0.6 degrees. The measurements resulted in a rotation curve from 0.6 to 2.5 degrees from
the center, a significant extension of the 1.5 degree last point on Babcock’s curve. With a
similar angular resolution but improved receiving equipment, Argyle (1965) measured HI
profiles over the whole image of M31 and was the first to plot a complete radial velocity
field for any galaxy (see fig. 10.2. The resulting “spider diagram” is now in common use.
It connects positions of equal radial velocity and gives a good overview of the rotation
pattern and possible deviations from circular motion. From it various parameters, such
as systemic velocity, position angle of the (kinematical) major axis, inclination and the
position of the rotation center can be derived from it in addition to the rotation curve.
This will be discussed in more detail below.

10.2 Observational methods for stellar kinematics

The determination of the stellar kinematics in an external galaxy is done from absorption
line spectra, where the position and width of a line or a set of lines is compared to
that of a Galactic star of the approximate type and luminosity class that dominates the
integrated galactic light and therefore the spectrum. Such stars are late G- or early K-
giants. The technique used to find the radial velocity and velocity dispersion is nowadays
exclusively by Fourier methods (following the fundamental discussion of Simkin, 1971).
The basic point is that the galaxy spectrum is the convolution of that of the Galactic giant
(“template”) and a (often assumed Gaussian) velocity distribution function (also called
broadening function). The procedure then is to express the observed galaxy and template
spectra as a function of log λ, so that velocities and Doppler shifts correspond to linear
displacements, and to divide out low-order polynomial fits in order to suppress power at
low Fourier frequencies. From there on there are in general three different methods, which
will be discussed in turn.

The first (Illingworth and Freeman, 1974) makes use of the peak in the cross-correlation
function of the galaxy and template spectra to determine the radial velocity and the slope
of the power spectrum to determine the velocity dispersion (larger dispersions result in
steeper slopes). With discrete Fourier techniques one calculates the Fourier transforms
of the galaxy and template spectra and from this the cross-correlation function between
the two and the individual power spectra. The power spectrum of the template is also
calculated after its observed spectrum has been broadened by a set of velocity dispersions
and the best fitting one is then selected. The template data are in practice noise-free
(taken from bright stars), but the galaxy data are not and at high frequencies the galaxy’s
power spectrum is dominated by the noise in the observations. In most practical cases
this noise power spectrum is flat and it can therefore be found over which frequency range
in the power spectra the comparison galaxy to template needs to be done. A useful way
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of estimating the noise power spectrum is to subtract two observations of the same object
(or sky) from one another and use this as the typical noise distribution. A disadvantage
of this power spectrum scheme is that the comparison of two power spectra is not easily
made objective or automatic and errors have to be estimated also by eye.

The second method is related and makes an exclusive use of the cross-correlation
function (Tonry and Davis, 1979), where position and width of its peak are used for radial
velocity and dispersion. In that case the width is compared to that of the cross-correlation
function of preferably two different templates or otherwise two different observations of the
same template star. This method works very efficiently in an automatic way and a routine
to estimate formal errors can be incorporated easily. Bottema (1988) has discussed this
in detail and has concluded that it is to be preferred in galactic disks where the surface
brightness is faint and the dispersions are low. For the practicle case of a disk one has
to model the effects of integration along the line of sight on the shape of the broadening
function, which in general may result in non-Gaussian functions. The template spectrum
can then be convolved with the model function and the resulting cross-correlation peaks
can be fitted by a least-squares minimization technique to obtain a best value for the
dispersion. The procedure has been illustrated in fig. 10.3.

The third method, which is in widespread use in particular for bright centers of el-
liptical galaxies and spiral bulges, is the Fourier Quotient method, first introduced by
Schechter (see Sargent et al., 1977). This assumes a Gaussian broadening function and
makes use of the fact that the Fourier transform of the broadening function is equal to the
quotient of the Fourier transforms of the galaxy and template spectra. This quotient is
then calculated from the observations and fitted to the Fourier transform of a Gaussian,
which is also a Gaussian (but now complex). The problem is, of course that division of
noisy data is risky (but there are ways of finding in an objective way which wavenumbers
to restrict oneself to) and this method therefore does not work very well for disks.

I will first say a few words about stellar velocity dispersions in spiral bulges before I
turn to stellar disks in the next section. There are two aspects. The first is the Vm/σ
versus ε diagram, which measures the importance of rotation relative to the flattening.
This diagram has been used extensively to study general aspects of the dynamics of
elliptical galaxies and shows that in these systems rotation is not dynamically important
enough to provide oblate flattening and that ellipticals are probably triaxial. The most
extensive diagram with observed values is the one by Kormendy and Illingworth (1982),
which shows that, contrary to ellipticals, bulges generally do follow the oblate, isotropic
line. This means that a typical spiral bulge is probably flattened by its rotation (as well as
possibly by the disk potential) and that the velocity distribution is more or less isotropic
(at least in the central parts). This general relation can be used with values for the bulge
of the Galaxy to estimate its flattening and in my first set of lectures above I derived an
axis ratio of 0.7±0.15.
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Figure 10.3: Cross-correlation peaks between the spectrum of a K0III star with the same
spectrum after convolution with Gaussian broadening functions with dispersions from
18.2 to 182 km s−1 and addition of artificial noise. At the top there is no noise, in the
middle panel the noise is that expected for a count level of on average 400 in each of the
600 spectral elements, while in the lower it is 100. Note that the peaks have the same
maximum at each dispersion independent of the count level, but that they become more
irregular for noisier data. From Bottema (1988).

The second relation is that between the velocity dispersion and the bulge luminosity
(Kormendy and Illingworth, 1983). This relation is interesting, because it can be used
to derive information on how prominent the bulge of our Galaxy would appear from an
external viewpoint. As before I use a velocity dispersion of 110±10 km s−1. Then it
follows that M31 (150–160 km s−1) and M81 (160–170 km s−1) have bulges that are at
least 5 and at most 10 times more luminous than the bulge of the Galaxy. On the other
hand at least the disk of M31 has a radial scalelength that is very similar to that of the disk
of the Galaxy, so that these bulges are also brighter relative to the disk than is the case
in the Galaxy. This is important to realize, because in the semi-popular literature and in
elementary textbooks one often sees one of these two galaxies illustrated as examples of
what the Galaxy would look like as seen from outside. I will return to this point later in
this course, when I discuss the possible Hubble type of the Galaxy.

The data given above using the Vm/σ − ε relation seem to suggest that the velocity
distribution in the central parts of bulges is not too far from isotropic. This can be
checked for the case of the early type spiral NGC 7814, where a formal estimate of the
velocity anisotropy can be made (van der Kruit and Searle, 1982b). This galaxy has a
luminosity distribution that is dominated by the bulge (it contains 93% of the light),
but it still contains HI in the disk, so that the circular velocity can be measured and
combined with stellar rotation and velocity dispersion in the bulge. This is a unique
situation that usually does not occur in ellipticals (when HI is seen, it is unclear whether
it is in circular rotation), S0 galaxies (where HI is observed at larger radii than where the
stellar kinematics can be measured) or later type spirals (where the disk potential is a
major contributor).

If we assume that one of the principal axes of the velocity ellipsoid is perpendicular to
the plane and the stellar space density goes as R−β, it follows that in the plane we have

V 2
rot = V 2

t − R
∂〈V 2

R〉

∂R
+ (β − 1)〈V 2

R〉 + 〈(Vθ − Vt)
2〉. (10.1)

Vrot is the circular velocity related to the radial force −KR = V 2
rot/R, Vt the rotation

velocity of the bulge stars and 〈V 2
R〉 and 〈(Vθ − Vt)

2〉 the squares of the radial and tan-
gential velocity dispersions. From HI kinematics, optical surface photometry and stellar
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kinematics along a line just above the dust lane we know all parameters, except the ra-
dial velocity dispersion (the tangential one is in the line of sight). It is observed that in
the bulge between 40 and 90 arcsec (2.9 to 6.5 kpc) Vrot, Vt and the tangential velocity
dispersion are all constant with R, and it then follows that we must have

〈V 2
R〉 =

V 2
rot − V 2

t − 〈(Vθ − Vt)
2〉

β − 1
+ αR(β−1). (10.2)

Here, α is an integration constant. From the observed velocity dispersion on the minor
axis and the numerical values of the other parameters it follows for NGC 7814 that α
must be positive and that therefore the radial velocity dispersion increases with radius.
In the inner regions the velocities are indeed roughly isotropic, but become increasingly
anisotropic with the radial dispersion exceeding the tangential one. In the Galaxy Woolley
(1978) finds that the velocity ellipsoid of field RR Lyrae stars in the solar neighborhood
belonging to the halo population is also highly anisotropic with the radial dispersion
exceeding the tangential one.

10.3 Observations of stellar kinematics in disks

The measurement of the stellar velocity dispersions of the old disk populations serves a
number of purposes. The first is the possibility to estimate the disk mass distribution
independently from the rotation curve (see below), which provides useful constraints on
the mass distribution in the dark halo. In the second place, the velocity dispersion plays a
role in both the global and the local stability of galaxy disks. Gravitational instability has
been a major subject of theoretical study ever since it was described originally by Newton
in his famous laws. It actually was Newton himself, who worried in his correspondence
with Dr. Bentley about what kept the sun and the fixed stars from collapsing together in a
static universe. He proposed that stars were distributed evenly in space and that therefore
all gravitational pulls would compensate each other. From the distribution of stars on the
sky as a function of apparent magnitude (taken to indicate distance) he inferred that at
least for the brightest stars (to fourth magnitude) their numbers occurred in the required
ratio’s to conform to spacial uniformity and homogeneity. But such a distribution is of
course very difficult to bring about and even if this were possible at all, the supposed
equilibrium was necessarily very unstable. The solution is of course that the equilibrium
is maintained by the relative random motions of the stars. The problem was early this
century reformulated by Jeans in the form of the now-called “Jeans instability criterion”
in an infinite, homogeneous medium. His criterion states that for a given mass density
and temperature (or velocity dispersion) masses above a certain critical mass are unstable
to their own gravity and will collapse. The larger the velocity dispersion and the smaller
the density is, the larger this critical mass becomes (MJeans ∝ 〈V 2〉3/2ρ−1/2).
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It is therefore also not at all obvious why stellar disks are smooth and stable. Of
course, in particular the younger populations display spiral structure, which will be some
kind of instability, but not of a violent type that completely redistributes the matter
in the disk. On the other hand, the old disk population is generally speaking smooth,
as is clearly seen in the disks of S0 galaxies, where young populations are absent. It
is known that rotation in galactic disks can only stabilize low-wavenumber modes and
that the finite thickness of disks may be relevant at small wavelengths (Goldreich and
Lynden-Bell, 1965). The local stability of thin stellar disks was addressed by Toomre
(1964), who showed that the stellar velocity dispersion needs to exceed a certain critical
value to ensure stability against local axisymmetric modes. It is usually translated in the
parameter Q, which has to exceed unity for local stability. This parameter is given by

Q =
〈V 2

R〉
1/2κ

3.36Gσ
, (10.3)

where κ is the epicyclic frequency κ = 2{B(B − A)}1/2 with A and B the local Oort
constants and σ the disk surface density. This criterion is the equivalent of the Jeans
instability in an infinite, homogeneous medium, reformulated for a flat stellar disk. Global
(bar-like) modes can be suppressed by a hot component (of high velocity dispersion),
which may either be a dark halo such as the ones that may produce the observed flat
rotation curves (Ostriker and Peebles, 1973) or the old disk population itself, if it has a
high velocity dispersion in its inner regions (Sellwood, 1983; Athanassoula and Sellwood,
1986). The dispersion of the old disk population required corresponds to values of Q of
the order of 2.

It has been known for a long time that the stellar velocity dispersion in disks is a result
of secular evolution of the kinematics of the stars. This is evident for example from the
observed relation between the age of the stars and their velocity dispersion in the solar
neighborhood in the Galaxy (e.g. Wielen, 1977). Spitzer and Schwarzschild (1951) were
the first to propose a mechanism for this effect, namely scattering of the stellar orbits
by massive gas concentrations in the interstellar medium. Such concentrations are now
known to exist in the form of giant molecular clouds, but it is at present unclear whether
these occur in sufficient numbers to provide the observed change of kinematics for the
solar neighborhood or whether this process may give the actual axis ratio’s of the local
velocity ellipsoid (e.g. Lacey, 1984). It may very well be that spiral structure (either in
the form of density waves or transient mass density disturbances) also is important in this
respect, but I will not discuss this here in detail.

We have seen that edge-on disks show that the vertical scale parameter of the old disk
population is independent of galactocentric distance. For the isothermal sheet approxi-
mation the relation between the scaleheight zo in the density distribution sech2(z/zo), the
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surface density σ(R) and the velocity dispersion is

〈V 2
z 〉∗ = πGσ(R)zo. (10.4)

If zo is not a function of R and if σ(R) is an exponential with scalelength h, then it follows
that

〈V 2
z 〉

1/2
∗

= {πGσ(0)zo}
1/2 exp (−R/2h). (10.5)

So, if the old disk populations have an M/L ratio independent of galactocentric dis-
tance, we expect that the vertical velocity dispersion drops with R as an exponential with
an e-folding of twice the scalelength of the surface brightness distribution. This is open to
observational confirmation. The first detailed check of this prediction was made by van
der Kruit and Freeman (1986) on the face-on spiral NGC 5247. The data are illustrated
in fig. 10.4 and reach out to about 2 optical scalelengths. This is not very far out into
the disk, but this work already required a total exposure of 8.8 hours with the 3.9 m
Anglo-Australian Telescope, which indicates the difficulty of obtaining such observations
as a result of the low surface brightness and small dispersions. The least-squares fit, in-
dicated by the dashed line, has an e-folding of 2.4±0.6 optical scalelengths and is in good
agreement with the predictions and therefore with no change in M/L with radius. Note
that the central z-velocity dispersion is about 60 km s−1 and certainly not dynamically
insignificant. Bottema (1988 and work in progress) has confirmed this conclusion for a
few more spirals. More evidence that M/L for the old disk population is constant with
radius will be discussed below, but in what follows I will always make this assumption.
From edge-on galaxies we know mean values for the vertical scale parameter zo and from
this we can estimate values for the surface density and M/L from the vertical velocity
dispersion (and the surface brightness). The latter comes out around 6 in solar B-units
for the old disk population exclusively.

The constant vertical scaleheight of the old disk population as a function of radius
provides us with a prediction for the radial dependence of the vertical velocity dispersion.
No such a priori prediction exists for the dispersions parallel to the plane, although we
know from fundamental galactic dynamics that the ratio of the radial and tangential
dispersions is related to the local Oort constants as

〈(Vθ − Vt)
2〉

〈V 2
R〉

=
B

B − A
. (10.6)

There is however already evidence that these velocity dispersions must decrease with
galactocentric distance from the observation of the sharp edges to the radial light dis-
tribution. At these radii the exponential decline is 1 kpc or less. At a typical radius of
20–25 kpc and a rotation curve of 200–250 km s−1 the stars will go through epicycles with
half-axes in the R-direction of about 1 kpc, if their random motions are 10–15 km s−1.
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Figure 10.4: The observed velocity dispersion of the old disk population in the face-on
spiral NGC 5247. The galactocentric distance R has been expressed at the top in units of
the optical scalelength h of the disk. The dashed line is a least-squares fit to the points
and is consistent with a decline with an e-folding of 2h. From van der Kruit and Freeman
(1986).

This is much lower than e.g. in the solar neighborhood, so that we may indeed expect
these velocity dispersions to drop as well with increasing radius. It can also be shown for
the Galactic disk, that unless 〈V 2

R〉
1/2 decreases with radius, Toomre’s stability parameter

Q will become less than unity a frew kpc inward from the solar position.

There are two independent ways in which observations can reveal values for parallel
velocity dispersions. The first is by direct measurement in highly inclined galaxies, but
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then one has to make corrections for the integration along the line of sight. Such cor-
rections are in practice straightforward to make. The second method is by measuring
the asymmetric drift. This is the effect that in a disk in equilibrium the mean tangen-
tial velocity Vt of a mass component is less than the circular velocity (corresponding to
a centrifugal force necessary to compensate the gravitational force) by an amount that
depends on the velocity dispersion. The random motions provide a pressure support, so
that a mean tangential velocity less than the circular velocity is required. The relevant
equation is

−KR =
V 2

t

R
− 〈V 2

R〉

[

∂

∂R
(ln ν〈V 2

R〉) +
(

1

R

)

{

1 −
〈(Vθ − Vt)

2〉

〈V 2
R〉

}]

+ 〈VRVz〉
∂

∂z
(ln ν〈VRVz〉).

(10.7)
Here ν is the stellar density distribution, KR the radial force and Vt the mean stellar
tangential velocity. The last term, which contains the cross-term 〈VRVz〉, is small. In the
case that the velocity ellipsoid points toward the galactic center, the term can be shown
to reduce to (1/R)(1 − 〈V 2

z 〉/〈V
2
R〉) and this is probably the largest value this term may

take. There is even a compelling reason to ignore the term altogether, if the galaxy has
a flat rotation curve, as was first pointed out by van der Kruit and Freeman (1986). For
an axially symmetric system Poisson’s equation is

∂KR

∂R
+

KR

R
+

∂Kz

∂z
= −4πGρ. (10.8)

Now near the plane the first two terms on the left are equal to 2(A − B)(A + B). In
area’s away from the central regions, where we have flat rotation curves, A = −B and
the terms vanish. So, for a flat rotation curve the plane-parallel case (with no cross-terms
involving U and W ) happens to be an excellent approximation. The stellar dynamics is
then independent of the radial gradients, there is no reason for the velocity ellipsoid to
point towards the galactic center and we expect it to be parallel to the plane over the
range of z occupied by the old disk, at least over the relevant extent in z (most old disk
stars are at z < zo).

We then may represent the ratio of the two velocity dispersions in terms of the Oort
constants as given above and write −KR = V 2

rot/R. For the exponential disk with constant
thickness (and M/L) the density distribution of the old disk population ν gives rise to
∂(ln ν)/∂R = −1/h. Then we have

V 2
rot − V 2

t = 〈V 2
R〉

{

R

h
− R

∂(ln〈V 2
R〉)

∂R
−
[

1 −
B

B − A

]

}

. (10.9)

Now we can measure h from surface photometry and Vrot, A and B for the gas from
optical emission lines or 21–cm HI mapping. The latter is so, because the gas has a very
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Table 10.1: Q as a function of radius
R/h = 1.0 “Q” = 1.17

1.5 1.00
2.0 0.96
3.0 1.06
4.0 1.31
5.0 1.73

low velocity dispersion and therefore for the gaseous component Vt is very close to Vrot.
The only unknown in the equation above then is the radial velocity dispersion and its
radial derivative.

For illustrative purposes we can calculate the radial dependence of the stellar velocity
dispersion for a disk with a flat rotation curve. Then B/(B − A) = 0.5. First we may
assume that the ratio of vertical to radial velocity dispersion is always the same (although
there is no theoretical reason for this); then we have

〈V 2
R〉

1/2 ∝ exp (−R/2h) (10.10)

and

V 2
rot − V 2

t = 〈V 2
R〉(2R/h − 0.5). (10.11)

The other possibility would be that the disk will during its evolution heat up to an equi-
librium value for Q that is roughly constant with galactocentric distance. E.g. Sellwood
and Carlberg (1984) find such a behavior in their numerical experiments at a value of Q
around 1.7 or so. This implies for a flat rotation curve (when κ = (2V 2

rot/R
2)1/2) that

〈V 2
R〉

1/2 ∝ R exp (−R/h) (10.12)

and

V 2
rot − V 2

t = 〈V 2
R〉(3R/h − 2.5). (10.13)

Over the ranges where the stellar velocity dispersion can be measured the difference is
actually small (see also Martinet, 1988). To illustrate this the following table gives Q as
a function of radius (arbitrarily normalized to unity at R = 1.5h) for the first case.

For R < h the rotation curve is generally not flat and the approximation used must
fail. We see that Q only starts to increase significantly beyond R = 3h and there it
is impossible to measure stellar kinematics. The conclusion then is that at present we
cannot distinguish between the two possibilities from stellar spectroscopy alone. On the
other hand at larger R there is a significant contribution from the gas to the disk surface
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Figure 10.5: The asymmetric drift between the stars and the gas in the disk of NGC 7184
is evident from the displacement of the observed rotation curves for these two components.
The data have not been corrected for inclination and derive from the same spectra. The
dashed line shows a symmetric stellar rotation curve for the central area’s. The top scale
gives the radial distance in units of the photometric scalelength h. From van der Kruit
and Freeman (1986).

density. The calculation of Q then has to involve a “mean” velocity dispersion between
stars and gas and a higher surface density than the exponential stellar disk. This may
easily lower the value of “Q” by a factor up to two, so that the increase predicted above
can in actual galaxies very well be compensated by the gas. With this in mind we may
say that the two assumptions are likely to be very similar in actual galaxies.

The method then is to measure Vrot from the gas, Vt from the stars and h from
surface photometry and then to fit these data to a radial dependence of the radial velocity
dispersion. This was first done by van der Kruit and Freeman (1986) for NGC 7184 and
over the radial extent R/h between 1 and 2. The observed asymmetric drift between the
stars and the gas is illustrated in fig. 10.5. The data are consistent with the models just
given and imply a radial velocity dispersion of about 100–120 km s−1 at R/h = 1.0 (NGC
7184 has a Vrot of 266 km s−1) and a value of Q of about 1.5 to 2, if the M/L of the old
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disk is 6 in solar B-units. Again Bottema (1988 and in preparation) has confirmed the
conclusion of a roughly constant Q (of order 2) out to 2 or 3 scalelengths in other spirals,
while Martinet (1988) has argued for this conclusion on general, theoretical grounds.

Before leaving the subject of stellar kinematics, a few words need to be said on the
origin of the observed radial variation of the velocity dispersions with galactocentric dis-
tance and on variations between galaxies. The equilibrium situation in disks is apparently
such that the radial velocity dispersion of the stars is close to that necessary to keep Q
constant and ensure marginal local stability, while the vertical one decreases with a ra-
dial e-folding of two luminosity (and density) scalelengths in order to keep the old disk
thickness constant. I have illustrated above that, when effects of the gas on the value of
Q are taken into account, these two properties may in practice arise in the simple case
of a constant axis ratio of the velocity ellipsoid. The constant Q may arise from the
fact that disks heat until this situation has been established, after which suppression of
large instabilities then feeds back into less heating, as is indeed observed in numerical
experiments (Sellwood and Carlberg, 1984). Note that the central velocity dispersion is
then so large that it also suppresses global stabilities (Sellwood, 1983; Athanassoula and
Sellwood, 1986) and this may just as well be part of the feedback cycle.

Bottema (1988) has found that the radial stellar velocity dispersion at one scalelength
from the center correlates with the rotation velocity of the flat rotation curve and therefore
through the Tully-Fisher relation also with the integrated luminosity. An up-to-date
version of his relation is shown in fig. 10.6, where the horizontal axis is the luminosity of
the old disk only. Face-on galaxies have been added with the vertical velocity dispersion
at the center. For the exponential decline described above the dispersion at R = h will be
a factor e−1/2 = 0.61 lower than at the center, which is about the ratio of vertical to radial
velocity dispersion of the stars in the disk of the Galaxy near the sun, so this central value
of the vertical dispersion should be comparable to the radial one at one scalelength. The
correlation can be understood qualitatively as follows. Assume again a flat rotation curve
with rotation velocity Vm and an exponential disk with central surface brightness µo and
constant M/L. The radial velocity dispersion at one scalelength h can then be written as

〈V 2
R〉

1/2
h ∝ µo(M/L)Qh/Vm. (10.14)

Noting that the disk luminosity L is proportional to µoh
2, we get

〈V 2
R〉

1/2
h ∝ µ1/2

o (M/L)QL1/2/Vm. (10.15)

Taking the Tully-Fisher relation as L ∝ V n
m replaces Vm by L1/n. A reasonable value for n

is about 4, so that over a range in L of 4 magnitudes the velocity dispersion is predicted
to increase by a factor 2.5, similar to what is seen in fig. 10.6, if indeed µo, M/L and
Q are constant from galaxy to galaxy. The constancy of µo is “Freeman’s law” and has
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Figure 10.6: The stellar velocity dispersion in galactic disks as a function of the integrated
magnitude of the old disk component. For inclined galaxies (crosses) the observed radial
velocity dispersion at one photometric scalelength from the center has been plotted; for
face-on galaxies (dots) the vertical velocity dispersion at the center is entered. From
Bottema (private communication).

been presented already above and its possible origin will be discussed later. It then is
a remarkable property of galactic disks, that M/L (resulting from the mass spectrum
of stars at birth, the so-called initial mass function) and Q (resulting from dynamical
heating) or at least the product of these two, are independent in first approximation of
the mass of the galaxy. Note that the Galaxy is also included in the figure, using the data
from Lewis (1986, see also Lewis and Freeman, 1989) and that the point fits rather well
with the external galaxies.
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10.4 Observations of the kinematics and distribution

of the gas

The distribution and kinematics of the gas can be observed using optical emission lines,
such as Hα, Hβ, [OIII], etc. or radio lines, such as the 21–cm line of HI or molecular lines
as from CO. The older method of optical slit spectroscopy will not be discussed here in
detail and I will concentrate on observations that map the velocity field over a large part
of the galaxy. In principle a large number of slit positions can be used for this also, while
in the radio a velocity field can in principle be found from a large number of observations
at individual positions with a single-dish instrument. The fastest method these days is
the use of interferometric techniques. In the radio this is done with the use of aperture
synthesis telescopes, such as at Westerbork or the VLA. At optical wavelengths the last
few years have seen the advent of scanning Fabry-Perot instruments, such as TAURUS.

The detailed workings of such instruments will not be discussed here and I will limit
myself to saying that one ends up after observation and calibration (both in position,
intensity and wavelength) with a set of so-called channel maps. These are maps of the
intensity on the sky in a small range of wavelength or radial velocity. A set of maps
contiguous in radial velocity make up the “data-cube” (two spacial and one velocity
dimension) and it is this information that is used to derive the desired kinematics. One
critical procedure that proceeds all analysis is the subtraction of the continuum emission,
which is derived by averaging all maps at velocities outside the range present in the galaxy.

There are two methods to derive the maps of parameters, that one wishes to determine,
namely integrated intensity, radial velocity and velocity dispersion. These are of course
related at each position to the first three moments of the intensity distribution as a
function of velocity, the so-called profile. The first method directly determines these
moments. However, the velocity ranges outside the line emission from the galaxy contain
noise that in particular in area’s of low signal-to-noise have devastating effects on the first
and second moments, while it is always unwise to add unnecessary noise in the calculation
of the zeroth moment. One overcomes this by defining a “window” in velocity at each
position, over which emission from the galaxy is observed. This can be done automatically,
but it is much better to do this interactively by displaying cuts through the data-cube on
a television screen. These cuts have a spacial (e.g. R.A. or Dec) and a velocity dimension
and are often referred to as “l−V diagrams”. One then uses a cursor to define at each sky
position the velocity extent over which galaxy emission is present in this diagram. Only
the regions within the window are then used to calculate the moments. This method is in
principle sensitive to personal bias and may depend on the (usually color) display levels
on the monitor.

The second procedure is to fit a Gaussian to each individual profile and determine the
kinematic parameters in this way. The advantage of the window method is that it does not
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presuppose the profile to have a particular functional form, so that higher order moments
can in principle also be calculated. However, these are difficult to measure and Gaussian
profiles are usually assumed as soon as one starts to interprete velocity dispersions. The
fitting of Gaussians can be done automatically without human interference. The two
methods have been compared in detail for the determination of the HI velocity dispersion
in face-on spirals from Westerbork maps by van der Kruit and Shostak (1982), using the
data on NGC 3938. It turns out that for the window method the personal bias is small



10.4. OBSERVATIONS OF THE KINEMATICS AND DISTRIBUTION OF THE GAS47

Figure 10.7: Schematic representation of the rotation of disk galaxies and the determina-
tion of dynamical parameters. A galaxy with the orientation at top-left shows a pattern
of line-of-sight velocities at top-right, where lines of equal radial velocity are sketched.
The contours close around the radius of maximum rotation velocity on the line of nodes;
a flat rotation curve will fail to show this feature. The relevant equations are then given.
The systematic pattern of residual velocities is then shown for the case that all but one
of the dynamical parameters are chosen correctly. Note that the patterns are different so
that these parameters can be fitted independently to the observed velocity field. The last
two examples show the effects of noncircular motion in the radial and tangential direction.
From van der Kruit and Allen (1978).

and that for the integrated emission and velocities both methods give very similar results.
However, for the determination of velocity dispersions the fitting of Gaussians is to be
preferred, but one always has to check how well the observed profiles are actually fitted
by Gauss functions. For HI in undisturbed galaxy disks this is in general the case. In
area’s of low signal-to noise the window method usually produces a superior estimate for
the surface densities.

The observed velocity fields across disks of galaxies are almost always dominated by the
pattern indicative of circular rotation. From this one then wants to derive a rotation curve
Vrot(R), which specifies the rotational velocity as a function of galactocentric distance. The
usual procedure is to use a least-squares scheme to determine five parameters: position
of the rotation center (two numbers), systemic velocity Vsys, inclination i of the normal
to the galaxy plane with the line of sight (so 0◦ is face-on) and the position angle φo of
the line of nodes (major axis). These parameters are determined from different symmetry
properties of the observed velocity field, as is illustrated in fig. 10.7. Note, however that
a systematic pattern of radial expansion or contraction has an effect similar to a change
in φo. Furthermore, deviations in the velocities owing, for example, to a density wave
may perturb the derived rotation curve; a detailed self-consistent model has to be used to
extract an estimate of the unperturbed rotation curve in that case. Finally, a transverse
motion of the galaxy perpendicular to the line of sight produces errors both in φo and
Vrot(R), but these effects are only appreciable for galaxies of large angular size. Lately,
various refinements have been used in view of the observation that HI layers often deviate
from a single plane beyond the optical extent of the disk, such as determining i and φo as
a function of galactocentric distance by analyzing the velocity field in annular rings.

These methods of analysis can be applied to all observations of a data-cube as de-
scribed, radio or Fabry-Perot interferometry. I will illustrate some important results for
the case of HI synthesis. First I choose NGC 628 (Shostak and van der Kruit, 1984) to
show the derivation of a rotation curve, a warp and the HI velocity dispersion. This is
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Figure 10.8: Distributions of optical light and HI gas in NGC 628 represented on the
same scale. The HI spiral structure in the inner regions fit onto the optical arms, but in
the gas these extend out to much larger radii. The two sharp feature in the HI map are
processing artifacts and the crosses indicate positions of field stars. From van der Kruit
and Shostak (1983).

a rather face-on system, so that the velocity variation due to rotation over a resolution
element (telescope beam) is smaller than the effect of velocity dispersion. First we have
in fig. 10.8 the integrated HI surface density. The gas is much more extended than the op-
tical disk and, although this is somewhat extreme in NGC 628, this is a general property
of disks. A close inspection shows that the HI has maxima on top of the optical spiral
arms and these gaseous spiral arms actually continue beyond the extent of the optical
structure. Also note the hole of HI in the inner regions, which is a feature common to
many spirals.

A general feature of the radial HI distributions is that, at least beyond a central hole,
if present, it declines much slower than the optical surface brightness. For Sb and Sc
galaxies typical values of this ratio are 10−1 M⊙/L⊙,B in the inner regions to a few at the
optical edges (see e.g. Wevers et al., 1986). In earlier types the general HI surface density
is lower, but the amount of variation is similar. The largest HI surface density that occurs
in late-type spirals is usually about 8.0 M⊙ pc−2.

The radial distribution of CO and therefore probably also of H2 has been derived now
in a fair number of spirals. A recent review has been given by Young (1987). In Sc galaxies
the azimuthally averaged intensities of CO peak in the center and decrease with radius
in the disk. The distributions of Hα, optical and radio continuum surface brightness
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are similar, which can be interpreted to mean that the massive star forming efficiency is
constant with radius, since massive stars appear to form exclusively in molecular clouds.
This similarity also means that the ratio of molecular to atomic hydrogen decreases as
fast as given above for HI to optical light. In Sa and Sb galaxies at least 40% (improved
resolution may increase this number) show a central hole in their CO distributions, similar
to that observed in our Galaxy. At present none of the observed Sc galaxies have CO
distributions resembling that in the Milky Way.

The observed HI-velocity field of NGC 628 is given in fig. 10.9. At first glance this
looks very disturbed, but some general features appear upon closer inspection. First notice
that over roughly the optical extent we can discern a pattern as drawn schematically in
fig. 10.7 with the dynamical major axis in a position angle of about 30◦. This part can
be fitted well be the procedure described above, although because of the low inclination
the result is in this case insensitive to the value of i. The observed rotation curve has an
amplitude of about 25 km s−1 in the line of sight. From the integrated luminosity and the
Tully-Fisher relation we can estimate the inclination-corrected rotation amplitude and
from this an inclination of 5 to 7◦ can be estimated. We can subtract the symmetric
rotation field corresponding to the fit from the observed velocities and obtain a field of
residual velocities. This field has an r.m.s. value of only 3.9 km s−1 and displays no
systematic pattern; this shows that there are essentially no vertical motions in excess of a
few km s−1, unless an organized field of such motions exists, such that it mimics in the line
of sight that of circular rotation. This is very unlikely and the result therefore indicates
an extreme flatness of the disk. For comparison, we can calculate the vertical amplitude
of motion, if the HI layer in the solar neighborhood had a z-velocity of 4 km s−1. This is
only 45 pc, which illustrates that the HI disk of NGC 628 has to be flat to within values
of this magnitude.

Further inspection of fig. 10.9 shows that beyond about 7 arcmin (20 kpc) the pattern
remains organized, except that the kinematical major axis rotates to position angle about
100◦. Furthermore, at this radius the contour at the systemic velocity of 655 km s−1

essentially closes around the galaxy (allow for finite resolution effects). This means that
the outer HI layer changes orientation with respect to the inner plane and actually is in
the plane of the sky at 20 kpc radius. The angle in space between the outermost ring and
the inner plane is small, namely no more than 9◦ or so. Such warps (except in very special
situations) always produce effects of a changing kinematical major axis in the observed
velocity field, although the effects on a contour diagram as in fig. 10.9 are usually less
pronounced (e.g. see Bosma, 1981a,b).

Next I turn to the velocity dispersions, which are derived by fitting Gaussians to each
profile. These fits were always satisfactory and show no evidence for superpositions of
two Gaussians (“tails” to the profile). In fig. 10.10 the values have been illustrated by
the distribution in the (velocity dispersion, HI surface density) plane. The area of the
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Figure 10.9: The observed radial velocity field of NGC 628. The resolutions used are
indicated at the bottom-left and are 1 arcmin FWHM for the outer regions and 14 × 48
arcsec in the inner parts. Contours are shown every 5 km s−1. The velocity field is smooth
down to this resolution and continuous contours can be drawn. After Shostak and van
der Kruit (1984).

symbol indicates the number of gridpoints at which the values occurred. For this diagram
the area between 1.5 and 4.5 arcmin (5 to 15 kpc) has been selected only and regions
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Figure 10.10: The distribution of points over the (HI surface density, velocity dispersion)
plane in the inner disk of NGC 628. The area of each symbol is proportional to the
number of grid points. The horizontal line is at the instrumental velocity resolution of 3.5
km s−1 and at the right are the corrected velocity dispersions. Points to the left of the
full-drawn, slanted line have peak surface brightnesses in the profiles less than that where
Gaussian fits can be attempted. The dashed lines indicate the peak surface brightnesses
of the Gaussians expressed in units of the r.m.s. noise in the channel maps. Profiles in
which this is less than 5 are rejected by the automatic routine, because then the formal
error in the profile area would exceed 25%. The horizontal bars are the medians of the
vertical distributions and appear to increase with surface density. Generally speaking,
n(HI) > 10 1020 H-atoms cm−2 correspond to the spiral arms. From Shostak and van
der Kruit (1984).

near the minor axis have also been deleted. These area’s have been excluded because
there the gradient of observed velocity across the telescope beam is too large to derive
the velocity dispersion. At each vertical set of points a small horizontal line indicates the
median and we see that it increases from about 7 km s−1 in low surface brightness regions
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Figure 10.11: (a). The observed HI intensities of NGC 891 in the l − V diagram adapted
from Sancisi and Allen (1979), where l is measured along the major axis. Contour levels
are in relative units 0.5, 1.0 and in steps of 1.0 up to 6.0. (b) The HI intensities for the
model in the same relative units. In this model the derived radial HI distribution is given
at the top; the peak value corresponds to 3.7 M⊙ pc−2 and the radial distance of this
peak is 11 kpc. The derived rotation curve rises from the center to 225 km s−1 at 0.25
arcmin (0.7 kpc) and remains constant at this level for larger radii. From van der Kruit
(1981).

(the “interarm” regions) to about 10 km s−1 in the arms. However, there is no radial
dependence of the HI velocity dispersion.

The velocity dispersion of the gas is likely to be isotropic as a result of the frequent
collisions of gas clouds. There is no obvious reason, why the HI velocity dispersions
always come out about 7 to 10 km s−1 in all galaxies observed so far (see van der Kruit
and Shostak, 1984). It is however interesting to note that neutral interstellar gas has a
very sharp rise in the curve of cooling rate versus temperature at about 104 K due to
ionization of the hydrogen. For sufficient heat input the gas will thus always get warmer
until it reaches this temperature and then will start to cool very efficiently. A kinetic
temperature of 104 K interestingly corresponds to a one-dimensional velocity dispersion
of 9 km s−1. The difference between arm and interarm may simply be the result of heat
input from young O and B stars in the spiral arms.
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I will now turn to an edge-on galaxy, NGC 891 to illustrate measurements of the
thickness of the HI layer as a function of galactocentric distance. The data are from
Sancisi and Allen (1979). In such a case we have to deal with line of sight effects and the
profiles are certainly not Gaussian as a result of this. The basic data can now be given
in an l − V diagram, where l is measured along the galaxy’s major axis (see fig. 10.11a).
Sancisi and Allen have pointed out how this diagram maps the galactic plane. At a
distance r along the major axis the various parts of the line of sight map unto different
observed velocities as follows. On the line of nodes we observe the full rotation, but
moving away from this line a smaller part of the rotation velocity projects onto the line of
sight and therefore the observed velocity approaches more and more the systemic velocity.
For example at l = 3 arcmin, the line of nodes is seen at about 225 km s−1 with respect to
systemic, while the edge of the HI along this line of sight occurs at about 70 km s−1. The
upper envelope of the HI distribution then corresponds to the rotation curve, except for
an amount dependent on the velocity dispersion. This one-to-one mapping of the galaxy’s
plane onto the diagram is of course similar to the interpretation of the l − V diagrams
in traditional HI studies in the Galaxy. The first step in interpreting fig. 10.11 then is
to model the observed diagram in a radial distribution of the HI and a rotation curve,
using circular symmetry and a value for the HI velocity dispersion. For this purpose one
needs to simulate the observational procedure (angular and velocity resolution) in the
calculations. The best fitting solution is illustrated in fig. 10.11b.

One can use the data-cube to derive the distribution of the thickness of the HI-layer
over the l − V diagram. For this purpose Sancisi and Allen derived the equivalent width,
which is at each position in this diagram the sum of HI over all points perpendicular
to the major axis, divided by the value in the plane. The result is given in fig. 10.12a.
One can see there that the largest equivalent widths are at each l closest to the systemic
velocity and therefore at the radial boundaries of the HI distribution. As Sancisi and
Allen pointed out qualitatively and as was subsequently confirmed quantitatively, line-
of-sight effects will have a significant influence on this diagram in case the inclination
deviates slightly from 90◦. Fortunately, the signature of inclination and layer-thickening
are different across the diagram; the widths at the line of nodes (at each l the maximum
deviation from systemic velocity) is not affected by inclination. Detailed modeling, taking
again the observational resolutions into account, is necessary for a detailed interpretation.

Let us first see what to expect in an exponential disk with constant M/L. In the
isothermal disk with a vertical scale parameter zo, the vertical distribution of a second
component, moving in this force-field with a velocity dispersion 〈V 2

z 〉
1/2
g , will be

ρg(z, R) = ρg(0, R)sech2p(z/zo), where p =
〈V 2

z 〉∗
〈V 2

z 〉g
. (10.16)

In disks the velocity dispersion of the gas is considerably smaller than that of the stars,
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Figure 10.12: (a) The observed equivalent width of the HI layer in the disk of NGC 891
over the l − V diagram, adapted from Sancisi and Allen (1979). (b) The best fitting
model for the observed equivalent width, derived from detailed modeling as described in
the text. This involves a gradual thickening of the HI layer with galactocentric distance
and an inclination of 87◦.5. From van der Kruit (1981).

so that p is larger than unity and may possibly approach unity at the edges. Now we can
calculate from this the full width of the HI-layer at half-density points (FWHM) as

FWHMg = 1.6625 p−1/2zo for p ≫ 1,

FWHMg = 1.7628 zo for p = 1. (10.17)

With the equation for zo this becomes then to within 3%

FWHMg = 1.7〈V 2
z 〉

1/2
g

[

z0

πG(M/L)µo

]1/2

exp (R/2h), (10.18)

so that the thickness of the HI layer increases exponentially with an e-folding of two
optical scalelengths, if the gas velocity dispersion is constant with radius as observed in
face-on systems.

When this thickening of the gas layer is taken, modelling of the diagram in fig. 10.12a
results in a best fit, which is illustrated in fig. 10.12b. As described above this procedure
involves both a determination of the inclination and of the parameters of the HI thickness.
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The fit is good and implies that in NGC 891 FWHMg = (0.22 ± 0.02) exp (R/2h) kpc
with h = 4.9 kpc and that the inclination is about 87◦.5. This can again be taken as
evidence that (M/L) of the old disk population is not a function of radius.

The thickening of the HI-layer has also been observed in the Galaxy and possibly in
the Andromeda galaxy. It is therefore interesting that Bottema et al. (1986) found that
no such thickening is apparent in NGC 5023. It is true that this is a dwarf galaxy with
a disk radius of only 7.8 kpc and an extent in HI of about 10 kpc. In this dwarf the HI
seems at all radii to have the same thickness as the stellar disk, which also is rather blue
with (U −B) about 0.0 and (B − V ) about 0.4. A possibility is that star formation here
is so vigorous that especially in the inner parts the gas is heated much more efficiently
than in larger spirals and that as a result of this the HI does have a variation in velocity
dispersion with radius. This is consistent with the HI observations, but cannot be proven
from these data.

Finally I will summarize the observations of warps in the HI layers. The presence of
such deviations of the gas layer from the inner flat plane was first found in the Galaxy and
was inferred from the change in kinematical major axis in M83 by Rogstad et al. (1974)
and modeled with the methods involving rings with changing orientations as described
above (“tilted ring model”). Another example of such a warp has already been described
above for NGC 628. The most direct way to look for warps is of course in edge-on galaxies.
Sancisi (1976) has found warps in the HI distribution in four out of five systems and work
since then both on edge-on and moderately inclined galaxies has confirmed that warps
are the rule rather than the exception (Bosma, 1981a,b). One of these exceptions is NGC
891, the galaxy that has just been described. The largest regular warp has been identified
by Bottema et al. (1987) in the edge-on galaxy NGC 4013. There the warp sets in at
precisely the edge of the optical disk (9.5 kpc) and reaches a height of about 6 kpc from
the inner plane at a distance of 20 kpc from the center. The warp is extremely symmetric
between the two sides. The inner disk has a flat rotation curve at 195 km s−1, which
suddenly drops to about 170 km s−1 at the edge of the stellar disk and the start of the
warp, after which it remains constant up to the last measured point.

10.5 The distribution of mass in spiral galaxies

The distribution of mass in a spiral galaxy can be inferred from the rotation curve.
Freeman (1970) has calculated what rotation curve to expect from an exponential disk
with constant M/L. The result for an infinitely flat disk is

Vrot(R) = (πGhσo)
1/2

(

R

h

) [

Io

(

R

2h

)

Ko

(

R

2h

)
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)
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(
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)]1/2

. (10.19)
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I and K are modified Bessel functions. This curve has a maximum at about 2.2 scale-
lengths and then declines steadily and eventually Keplerian. The value of the maximum
is

Vmax = 0.8796 (πGhσo)
1/2. (10.20)

Allowing for the finite thickness of the disk lowers this value by e.g. 4.5% for the case that
h/zo = 5.

The discovery of the flat rotation curves in the HI out to large radii (Roberts, 1975;
Bosma 1981a,b) has immediately shown that the light distribution alone cannot account
for the observed curves if a constant M/L is assumed. Bosma and van der Kruit (1979)
observed six spirals in HI and in the optical and inferred what change in M/L would be
required if all the mass indicated by the rotation curve were in the disk. This gave local
values of M/L order ten (in solar B-units) in the inner regions, after which it increased
steadily and reached values of a few hundred at the edges of the optical disks. Since the
flat rotation curves continue beyond these edges there must be material with even much
higher values there.

It now generally assumed that the material with high M/L is distributed in a more
or less spherical “dark halo”, of which the constitution remains to be determined. This
fits with the evidence for constant M/L in disks and will be discussed in somewhat more
detail below. Carignan and Freeman (1985) have proposed to model the rotation curves
with a combination of two components, one from the observed distribution of surface
brightness (if necessary composed of a disk and a bulge) and an isothermal sphere. They
fitted the inner rotation curve to that expected from the light distribution and added
then an isothermal sphere to represent the outer part of the rotation curve. This worked
satisfactorily in most cases.

Van Albada et al. (1985) have followed a similar scheme, except that they chose a
somewhat different form for the density distribution in the dark halo (see below). In
fitting the HI observations of NGC 3198 they found that satisfactory fits could be found
for a large range of values for the M/L of the disk, all the way from zero (no disk!) to 3.6
in the B-band. The last solution (the “maximum disk” model) gives an amplitude of the
rotation curve from the disk alone that is almost equal to that of the outer flat rotation
speed and consequently gives rise to a “disk – halo conspiracy”. Kent (1986) followed the
same procedure and found that features in the rotation curve could be reproduced from
features in the light distribution and it was therefore argued that the disk must contribute
dominantly to the inner rotation curve and that therefore the solution to be preferred in
practice would be the maximum disk model or one very close to this.

Begeman (1987) has made sensitive HI observations of eight spirals in an attempt to
trace out rotation curves to as large a distance as possible relative to the optical scalelength
h. His record came with NGC 2841, in which HI could be detected out to 17.8 h (h = 2.4
kpc in this galaxy, so the HI extends out to 42.6 kpc). The analysis proceeds as follows.
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The disk surface density σ(r) = L(r) (M/L) can for a flat distribution be translated in a
circular velocity curve with (Casertano, 1983)

V 2
c (R) = −8GR

∫

∞

0
r
∫

∞

0

∂ρ(r, z)

∂z

K(p) − E(p)

(Rrp)1/2
dz dr, (10.21)

where p = x− (x2 −1)1/2 and x = (R2 + r2 + z2)/(2Rr) and where K and E are complete
elliptic integrals. For ρ(z) one may use the isothermal distribution sech2(z/zo).

The bulge is assumed to be spherical with an observed surface density distribution
σ(r) = µ(r) (M/L) (where M/L may of course be different from that of the disk) and
then (Kent, 1986)

V 2
c (R) =

2πG

R

∫ R

0
rσ(r) dr +

4G

R

∫

∞

R

[

arcsin
(

R

r

)

−
R

(r2 − R2)1/2

]

rσ(r)dr. (10.22)

The halo density distribution is assumed to be

ρ(R) = ρo

[
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(
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)2
]−1

, (10.23)

which gives a circular velocity curve

V 2
c (R) = 4πGρoR
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. (10.24)

This is indeed a flat curve for large R and the asymptotic value is (4πGρoR
2
c)

1/2.
The contributions from these components have to be added in quadrature to calculate

the “total” rotation curve.
The fitting procedure then is as follows. From the observed light distributions the

shape of the circular velocity curves of disk and bulge can be calculated, which have to
be scaled by a linear factor that depends on the value of M/L. In the same way the
contribution of the gas is calculated, but there is no necessity to scale this, since the
surface density is measured (25% He is assumed). As a first guess for the disk and bulge
M/L the inner rotation curve is represented by the luminous components only (luminous
includes the gas). Then the halo is added with a first guess at Rc (which determines the
shape) and the amplitude is derived by least squares fitting. The M/L’s of disk and bulge
need to be adapted (decreased) and these are then varied and for each combination a χ2

is calculated and the best fit is selected. This process is repeated for different values of Rc

until the final best fit is obtained. Since this process starts out with the largest possible
value for M/L of the disk, which then is decreased only to accommodate the dark halo,
the final solution has still the largest possible M/L and therefore this is a “maximum
disk” fit.
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Figure 10.13: Analysis of the rotation curve and mass model for NGC 2403 and 2841. The
upper panel shows the photometry from Kent (1987) and a decomposition in truncated
bulge and disk. The lower panel shows the observed rotation curve (points and error
bars), the circular velocity curves for the four components and the total model rotation
curve for the best fitting model. From Begeman (1987).

The result for NGC 2403 and 2841 is shown in fig. 10.13. The photometry in the top
panel is from Kent (1987) and is represented by a (truncated) bulge and a disk. The
lower panel shows the observations, the four contributing circular velocity curves and the
total model rotation curve. Note that the amplitude of the disk circular velocity curve is
similar to the asymptotic value for the dark halo. The M/L of the disk is 1.8 for NGC
2403 and for NGC 2841 9.4 and that of the halo 5.6 for NGC 2841. Within the optical
boundaries (14 kpc) the mass of the halo constitutes 34% of the total mass and within
the outermost point (44 kpc) the dark mass constitutes 79% of the total mass, which is
5.9 1011 M⊙. For his other seven galaxies Begeman finds M/L’s of the disk of 3.1±1.2,
so NGC 2841 is here somewhat exceptional. In one case (NGC 5371) there is no need to
introduce a dark halo in order to arrive at a fit, but here the rotation curve is observed



10.5. THE DISTRIBUTION OF MASS IN SPIRAL GALAXIES 59

out to only 4 scalelengths. For the remaining galaxies the dark mass makes up 44±9%
of the total mass within the optical boundaries. For the sample (except NGC 5371) the
parameters of the dark halos have ranges of 0.008 to 0.036 M⊙ pc−3 for ρo and 2.5 to
15 kpc for Rc. The ratio of dark to total matter (Λ) at the largest radius RM where HI
is observed varies between 0.84 and 0.64. The ratio of Λ and RM (expressed in optical
scalelengths h) is 0.072±0.019 and Λ increases with RM/h, as expected.

It should be stressed that the maximum disk hypothesis implicitly assumed in the
modeling above, has some, although not very strong observational support. The support
mainly comes from the fact that there are features in some rotation curves that appear
to correspond to features in the luminosity profiles. However, the correspondence is not
always present and in many cases features in either the rotation curve or the luminosity
profile are not accompanied by features in the other. There are also cases where the
luminosity profile is affected by spiral structure and where it actually is the contribution
from the HI that appears responsible for the structure in the rotation curve. It is therefore
of great importance to see whether there is other evidence and this could come from
independent ways of measuring the disk mass. Before discussing these I will first look at
the values of disk M/L that are implied by the maximum disk hypothesis.

Begeman has, as described above, found that the maximum disk solutions imply values
for M/L in the rough range 2 to 5 in solar B-units, except in NGC 2841, where the value is
about 9. It is of importance to see first what values are reasonable in view of information
available on the solar neighborhood. The integrated surface density, according to the
data from Pioneer 10 (van der Kruit, 1986) is 20 ± 2L⊙,B pc−2. A lower limit to the
surface density comes from just adding the contribution from known stars of 24 M⊙ pc−2

(Tinsley, 1981) to that from stellar remnants and gas, for which a minimum estimate is
about 10 M⊙ pc−2. Then M/L is at least 1.5 in the usual units. The maximum comes
from Bahcall’s (1984) determination of the surface density from vertical dynamics as 80
M⊙ pc−2, so that M/L is at most 4.5. The solar neighborhood is not in a region of spiral
structure and much young stars, so that the upper limit appears to be a strong one. In
any case the values seem “reasonable”, except for that for the disk of NGC 2841 of 9.4.

One other way of independently estimating the disk mass and checking the maximum
disk hypothesis is to use the fact that disks appear to have sharp edges in their light and
therefore probably in their mass distributions. If the latter is also true, then one may
expect a feature in the rotation curve at this radius Rmax, which can be used to constrain
the disk density distribution. The effects of a sharp edge were calculated by van der
Kruit and Searle (1982a) and by Casertano (1983). Inside Rmax the rotation curve from
a truncated disk is flatter than expected from a pure exponential disk due to the absence
of outer material, which would have exerted an outward pull. At Rmax a rather sudden
decline in the disk rotation curve sets in and this signature is more pronounced when the
ratio Rmax/h is smaller. Casertano found that the HI observations of NGC 5907 showed
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the signature of the disk truncation and derived from this the relative contributions of the
disk and halo to the total mass. Within the optical boundaries the dark mass constitutes
60% of the total mass, which is rather higher than the values found by Begeman in his
maximum disk models, which average for this ratio at 44%.

A second example where the signature of the disk truncation may be identified in
the rotation curve is NGC 4013 (Bottema et al., 1987). This galaxy with its severe HI
warp was already described above. At Rmax the rotation velocity suddenly drops by 25
km s−1 from a inner rotation velocity of 195 km s−1 and then again remains flat. The
interpretation is that the latter is due to the dark halo and that the drop is the truncation
feature of the disk. The model that can fit these data has within the optical boundaries
this time that the dark halo has only 25% of the total mass, which is even less than what
was found by Begeman. So we see that this method is not yet conclusive.

A more direct way is to use “vertical dynamics”, which means the use of vertical
density distributions and velocity dispersions to infer the gravitational field of the disk.
In the disk the gravitation is almost entirely due to the disk itself. Above we have already
seen some applications of this in which it was for example inferred that the disk M/L
is constant with radius, but until now I have not estimated values for M/L from these
data. The method is of course similar to classical estimates of the local surface density
of the disk of our Galaxy, as pioneered by Oort (1932). Above the relevant equations
have already been given for the isothermal sheet approximation and I will first extend
these to different, but plausible distributions at low z and then discuss the outcomes of
these studies. These are important to consider, because the actual distribution of stars
and mass at low z does have important effects on the numerical results even though the
distribution at larger distances from the plane, where we can interprete optical surface
photometry, are the same. So, I will first consider alternatives to the isothermal sheet
formulae that do share the property that the density distribution tends to an exponential
at larger z. This is partly motivated by the fact that Wainscoat (1986) has found some
evidence from surface photometry in the near-infrared in one edge-on galaxy, that the z-
dependence continues exponentially to low values of z and does not flatten off as expected
from the isothermal sech2 function.

The isothermal sheet description was originally introduced for two reasons. Firstly, it
has the property that at large distances from the plane it approximates an exponential,
as indicated by existing observations of edge-on galaxies. Secondly, it is known from the
kinematics of stars in the solar neighborhood (e.g. Wielen, 1977) that stars that have ages
above a few Gyrs all have roughly the same velocity dispersion, so that the mix of stars
should at least moderately far from the plane be dominated by a stellar population with
essentially a single velocity dispersion. Since this old disk population indeed has most
of the disk mass and appears to be self-gravitating, the isothermal sheet immediately
suggests itself, at least for light distributions away from the central dust lane. At low
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Figure 10.14: The density distribution as a function of distance z from the symmetry
plane for the three density models in the text. The parameters have been chosen to give
the same density at large z. The vertical scale is in magnitudes. From van der Kruit
(1988).

z, however, deviations may be expected, because there the stellar mix may no longer be
described as isothermal.

At this point it is not definitely known what distribution for the mass density to use,
but it is reasonable to take the sech2 and an exponential all the way to z = 0 as the two
extremes. Van der Kruit (1988) has calculated the effects of using the family of density
laws

ρ(z) = 2−2/nρe sech2/n(nz/2ze). (10.25)

The isothermal is the extreme for n = 1 and the exponential the other for n = ∞. Here
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ρe is the (extrapolated) density in the plane and ze the exponential scaleheight at large
z. For comparison we have for the isothermal sheet ρo = ρe/4 and zo = 2ze. I will now
summarize the relevant equations for both these extreme cases and the intermediate case
n = 2. The subscripts refer to the value of n. The density distributions are shown in
fig. 10.14. The differences are large only at such small z, where in general optical surface
photometry cannot be attempted due to dust absorption.

Surface densities:

σ1 = ρeze,

σ2 = (π/2)ρeze, (10.26)

σ∞ = 2ρeze.

Vertical force Kz, if the distribution is self-gravitating:

Kz,1 = −2πGσ tanh (z/2ze),

Kz,2 = −4Gσ arctan{sinh (z/ze)}, (10.27)

Kz,∞ = −2πGσ{1 − exp (−z/ze)}.

Velocity dispersion (squared) at z = 0:

〈V 2
z 〉o,1 = 2πGσze,

〈V 2
z 〉o,2 = (π2/2)Gσze, (10.28)

〈V 2
z 〉o,∞ = πGσze.

Velocity dispersion (squared) as a function of z:

〈V 2
z 〉1 = 〈W 2〉o,

〈V 2
z 〉2 = 〈W 2〉o{1 − (2/π)2 arctan2(sinh(z/ze))} cosh(z/ze), (10.29)

〈V 2
z 〉∞ = 〈W 2〉o{2 − exp (−z/ze)}.

In a face-on stellar disk the observed velocity dispersion follows from an integration; the
values (squared) are

〈V 2
z 〉FO,1 = 2πGσze,

〈V 2
z 〉FO,2 = (1.7051)πGσze, (10.30)

〈V 2
z 〉FO,∞ = (3/2)πGσze.
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Figure 10.15: Distribution of some properties in the force field of various vertical density
distributions, indicated by external galaxies and given in fig. 10.14. All three models
have the same integrated surface density of 80 M⊙ pc−2 and exponential density slope at
large z of 325 pc, typical for the solar neighborhood. (a) The vertical force Kz. (b) The
stellar velocity dispersion of the self-gravitating disks. (c) The density distribution of a
gas layer with negligible surface density and a velocity dispersion of 8 km s−1. (d) The
density distribution of a second isothermal component with negligible surface density and
velocity dispersion 45 km s−1. From van der Kruit (1988).
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A second non-gravitating component with isothermal velocity dispersion 〈V 2
z 〉

1/2
II can be

calculated using the parameter

p =
〈V 2

z 〉o
〈V 2

z 〉II
. (10.31)

The result is

ρII,1(z) = ρII(0)sech2p(z/2ze),

ρII,2(z) = ρII(0) exp {−(8/π2)pI(z/ze)}, (10.32)

ρII,∞(z) = ρII(0) exp [−2pz/ze + 2p{1 − exp (−z/ze)}] .

In the second equation the function I follows from

I(y) =
∫ y

0
arctan(sinh x) dx (10.33)

An analytical method to calculate this integral and various other useful approximations
are given in van der Kruit (1988). In fig. 10.15 are some properties plotted for comparison.
In all these cases representative values have been chosen for the solar neighborhood,
namely σ = 80 M⊙ pc−2 and ze = 325 pc.

We now use these equations to derive values for M/L of the old disk population. First
we look at derivations using the observed velocity dispersion of the old disk stars in face-
on disks, combined with the observation in edge-on galaxies that ze = 0.35±0.1 kpc. Van
der Kruit and Freeman (1986) have discussed the data in terms of the isothermal sheet
approximation only and found for the old disk M/L = 6 ± 2 (as always below in solar
B-units). The effects of the two additional models are that it will have to be increased by
17% for n = 1 and by 33 % for the exponential model. On this basis we may take as the
best determination M/L = 7.5 ± 2.5 after allowance for the uncertainty of which model
to choose.

As fig. 10.15c shows, the HI layer is severely affected by the choice of n, understandably
because of the fact that the gas resides at small z and is therefore sensitive to the precise
form of Kz near the plane. The width of the HI layer at half-density points FWHMg can
be conveniently be expressed in terms of a length parameter zg, which equals

dg =

(

〈V 2
z 〉gze

Gσ

)1/2

. (10.34)

Then for the three models we have for p ≫ 1
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FWHMg,1 = 1.33 dg,

FWHMg,2 = 1.18 dg, (10.35)

FWHMg,∞ = 0.94dg.

For p of order unity the numerical values need to be decreased by about 7%.
The effects of the different models are rather large, especially when we remember that

σ follows from dg squared. The effect on M/L is even more severe, because in edge-on
galaxies the face-on surface brightness is determined from fitting to the z-profiles at large
z and the isothermal value is a factor two lower than if an exponential were assumed. For
the fit to the HI layer in NGC 891 (van der Kruit, 1981) the isothermal approximation
gave for the old disk 8±4 and this becomes 4±2 for n = 2 and 2±1 for the exponential.
So, such HI measurements are only useful to monitor a change in M/L and are not very
accurate in determining its value.

The conclusion from such work is that the best value for M/L of the old disk population
is 6±2. This cannot yet be compared directly to Begeman’s values, because we have to
add in the young population. The disk colors can be used for this as a guide. For
example in the Bahcall and Soniera (1984) model for the Galaxy, the integrated color of
the contributions to the disk surface brightness are (B − V ) about 0.56 for old dwarfs,
1.30 for disk giants and −0.03 for young population I (see van der Kruit, 1986). The old
disk can on this basis be expected to have a (B − V ) of about 0.9 and from the observed
colors we may then estimate in a galaxy disk the relative contributions of old disk and
young population I. From this it follows that for a typical Sb disk with a (B − V ) of
0.65 the M/L would be 4, if for the old disk population only it is 6. For an Sc disk
with (B − V ) = 0.4, the M/L becomes 2. So we can see that these estimates of disk
masses result in M/L’s in the range 1 to 5 for disks of Sb galaxies or later types and
fits with the maximum value of 4.5 quoted above for the Galactic disk. This shows that
Begeman’s values of 3±1 (excluding NGC 2841) are indeed “reasonable” in view of this.
On the other hand the uncertainties are large, so that this must not be taken as a strong
confirmation of the maximum disk hypothesis. At this point it therefore is not entirely
clear yet that a disk-halo conspiracy indeed exists. This conspiracy expresses the fact that
in maximum disk fits the disk-alone and (dark) halo-alone rotation curves have essentially
the same amplitude. It is not even clear from the present observations whether the ratio
of luminous to dark matter is closely the same in all galaxies.

Now that we have at least some indications of the M/L to be expected in a disk, it
is of interest to return to the stability questions raised above. For the local stability I
have already indicated that these results lead to values for Toomre’s Q in the range of
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1.5 to 2 and disks appear stable locally. For global stability Efstathiou et al. (1982) have
derived from numerical experiments an empirical parameter Y , which should exceed 1.1
for stability

Y = Vm

(

h

GMd

)1/2

, (10.36)

where Md is the disk mass and Vm the velocity in the flat part of the rotation curve.
Estimates of this parameter for samples of galaxies with rotation curves and surface
photometry give mean values somewhat below the critical value, but it is generally within
the uncertainties. On the other hand, I have already indicated above that the observed
central velocity dispersions in the disks are sufficiently high to contribute also to global
stability. A rough calculation (van der Kruit and Freeman, 1984) shows that the condition
Y = 1.1 means that within the optical boundaries the dark halo must make up about
75% of the mass. In Begeman’s sample this condition is not met, since for his galaxies
the maximum disk fits gave values of about 45±10%. So it follows that the maximum
disk hypothesis in general implies that Y < 1.1 and that therefore the dark halo would
not be sufficiently massive in the inner regions to provide global disk stability.

For NGC 891 the value for Y can be calculated more accurately than above, because
M/L is not needed here. For the observed thickness of the HI layer van der Kruit (1981)
found FWHMg = 0.22 exp(R/2h) kpc and using ze = 0.49 kpc the disk central surface
density becomes for the three models 266 (isothermal), 210 and 133 (exponential) M⊙

pc−2. With h = 4.9 kpc the disk mass becomes respectively 4.0, 3.2 and 2.0 1010 M⊙

and the maximum in the “disk-alone” rotation curve 111, 99 and 79 km s−1. This is
significantly lower than the observed rotation of 225±10 km s−1. The total mass within
Rmax = 21 kpc is about 2 1011 M⊙, so the disk does make up only a small fraction of
the mass within the optical boundaries. The parameter Y also follows immediately as
respectively 1.20, 1.34 and 1.70. So, NGC 891 does not conform to the maximum disk
hypothesis (and this is independent of any assumed value for M/L) and the dark halo in
this case is massive enough to stabilize the disk against global modes.

There is a interesting coincidence that I want to point out finally in respect to dark
halos and the maximum disk hypothesis. Earlier in this course I showed component
separations in the light distributions of the two edge-on galaxies NGC 891 and NGC
7814. These are two extremes in the sense that in NGC 891 82% of the light from old
stars is in an exponential disk, while for NGC 7814 93% is in an R1/4-bulge. In spite of
these major differences in the light and therefore the luminous mass distributions, the
rotation curves of the two galaxies are very similar, both rising to about 225 km s−1 in
about 3 kpc and remaining flat thereafter out to at least 20 kpc. This seems to imply
that the force field cannot be dominated by the gravitation of the luminous material and
must be set by a dark component.

Finally, I note that optical and near-infrared searches have been made for material that



10.6. THE MASS DISTRIBUTION IN OUR GALAXY 67

could constitute the dark halos. This has been reviewed recently by van der Kruit (1987)
and the conclusion is that H-burning main sequence stars can be ruled out, especially by
the measurements in the near-infrared. The local M/L (in B) in the halo is in excess of
1100. IRAS data have not been able to rule out black (or brown) dwarfs, so low mass
objects that are below the H-burning limit are still possible.

10.6 The mass distribution in our Galaxy

To conclude this set of lectures I will make a brief comparison to our Galaxy. In the first
place I note that the Galaxy’s disk velocity dispersion was included in fig. 10.6 above
and that it appears to fit in with the trend noted there. In view of the discussion in the
previous section it is of interest to see whether or not according to the available data
the Galaxy has a “maximum disk”. Observations of the rotation curve and the local
disk surface density are presented and discussed elsewhere in this course and I will not
repeat this. As in essentially all other galaxies, the rotation curve is probably flat and the
amplitude will be taken in what follows as 230±15 km s−1. The disk local surface density
is currently in some dispute, as discussed in this course by Gilmore, and is either 80±20
M⊙ pc−2 following Bahcall (1984) or 45±9 M⊙ pc−2 in the Kuyken and Gilmore (1988)
analysis. These two determinations are from completely different samples; Bahcall (B84)
uses G- and F-dwarfs and K-giants, while Kuyken and Gilmore (KG) base their analysis
on their own sample of K-dwarfs.

First let us look at some local properties, that have been discussed above for external
galaxies. The first is M/L. The local disk surface brightness was estimated from the
Pioneer 10 data in van der Kruit (1986) as 23.8±0.1 B-mag arcsec−2 (= 20±2 L⊙ pc−2),
so that the total disk M/L becomes respectively 4.0±1.0 (B84) or 2.3±0.5 (KG). It was
estimated that the old disk population contributes two-thirds of the surface brightness,
so that the old disk M/L can estimated as respectively 6.0±1.5 and 3.5±0.8. The first
value is comparable to what was found in external galaxies. Another quantity that can
be calculated is Toomre’s Q, which for a radial stellar velocity dispersion of 45±5 km s−1

comes out as 1.5±0.5 (B84) or 2.7±0.9 (KG). Again the value based on Bahcall’s surface
density is comparable to that estimated for external disks.

Schmidt (1985) has recently presented a mass model of the Galaxy consisting of three
components: a “bulge + spheroid” (which in the nomenclature of this course would simply
be called bulge), an exponential disk with a scalelength of 3.5 kpc and a “corona” or dark
halo. A revised version of this has been presented in van der Kruit (1986) for a disk
scalelength of 5 kpc and has been reproduced in fig. 10.16. The bulge has been left
unaltered and constitutes a mass of about 1010 M⊙. In this model the local disk surface
density has been taken as 80 M⊙ pc−2 and its total mass then is 7 1010 M⊙. The dark
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Figure 10.16: Mass model of the Galaxy represented by the rotation curves corresponding
to the gravitational fields of the individual components indicated. This is an adaption of
the model given by Schmidt (1985), allowing for a disk scalelength of 5 kpc. The sun is
at 8.5 kpc from the center. Further parameters of the model are in the text. From van
der Kruit (1986).

halo, which Schmidt modeled as ρ ∝ (a2 + R2)−1 has been adapted to a = 2.8 kpc and
has a mass within the probable disk radius Rmax = 25 kpc of 1.9 1011 M⊙. The local
mass density in the dark halo is 0.009 M⊙ pc−3. The halo constitutes 70% of the mass
within the optical disk radius, which is significantly higher than Begeman’s mean value of
45%, which follows from his maximum disk fits. The inferred value for the global stability
parameter Y is 0.98±0.25.

The model given has a less massive disk than in the maximum disk hypothesis. Clearly,
the local surface density from Kuyken and Gilmore would fail by an even larger margin to
accomplish this. We must still see whether the uncertainties actually rule out a maximum
disk model for the Galaxy. From the maximum disk fits in other galaxies, such a model
would imply that the disk-alone rotation curve would need to have an amplitude of 195
km s−1 or more. The disk in the model in fig. 10.16 has a maximum rotation of about 135
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km s−1. To have an amplitude of 195 km s−1 the disk would need to have a local surface
density of about 140 M⊙ pc−2, if the disk scalelength is 5 kpc, but this can be brought
down to 100 M⊙ pc−2, if the scalelength were 3.5 kpc. This in itself would imply that our
Galaxy is probably not maximum disk, but we should really interprete maximum disk to
mean that all the luminous material (disk and bulge) by itself should be able to explain
the amplitude (or most of it) of the inner rotation curve. From fig. 10.16 we see that at
the solar position the bulge- alone rotation curve has an amplitude of about 80 km s−1

and therefore the amplitude of the rotation curve from all the luminous material is in the
model about 160 km s−1. This still falls short of the required amplitude in the maximum
disk hypothesis.

Sellwood and Sanders (1988) have tried to construct a maximum disk model for the
Galaxy by pushing all constraints to their limits. They can accomplish that by assuming
a disk scalelength of 4 kpc and a much more massive bulge of (3–4) 1010 M⊙ (about 3 or
4 times more than in the model of fig. 10.16). It is especially this bulge mass that allows
their solution, but the problem is that the local bulge density then is (4.6–6.3) 10−4 M⊙

pc−3, which is at least a factor 2 higher than the best observational constraints (Schmidt,
1985). This bulge mass is also inconsistent with the observed drop in the Galactic rotation
curve between 1 and 4 kpc, although it can be argued that this feature is due to absence
of gas or non-circular motions in this region. My conclusion still is that our Galaxy
is probably not maximum disk. Sellwood and Sanders also note that the Kuyken and
Gilmore local surface density would make the solution even more extreme, requiring a
local circular velocity of 200 km s−1 and a solar galactocentric distance of 9.5 kpc.
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