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With Fish’s law (constant central surface brightness) and constant
M/L then follows the Faber-Jackson relation1 between luminosity
L and stellar velocity dispersion σ:

L ∝ σ4

This is equivalent to the Tully-Fisher relation for spirals.

There is also a relation between diameter DΣ (the radius at which
the mean surface brightness is 20.75 mag arcsec−2) and the
velocity dispersion2:

DΣ ∝ σ4/3

1S.M. Faber & R.E. Jackson, Ap.J. 204, 668 (1976)
2A. Dressler et al., Ap.J. 313, 42 (1987)
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This can be used to decrease the scatter in the FJ-relation by
including surface brightness (〈SBe〉 = mean surface brightness
within the effective radius) as a second parameter

L ∝ σ2.65〈SBe〉−0.65.

The “fundamental plane” of elliptical galaxies is a relation between
some consistently defined radius (e.g. core radius) R, the observed
central velocity dispersion σ and a consistently defined surface
brightness I 3:

R ∝ σ1.4±0.15I−0.9±0.1

3see J. Kormendy & G. Djorgovski, Ann.Rev.Astron.Astrophys. 27, 235
(1989)
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In broad terms the Fundamental Plane can be understood as
follows.

For equilibrium the Virial Theorem states that

2Tk + Ω = 0

where Tk is the total kinetic energy and Ω the potential energy.

The kinetic energy is proportional to MV 2 and the potential
energy to M2/R. Here M is the total mass, V a typical internal
velocity and R some characteristic radius.

All the information on the detailed density and velocity structure is
in the proportionality constants.
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Thus we have
M ∝ RV 2

For elliptical galaxies the kinetic energy is dominated by that in
random motions rather then rotation. So for V we will take the
mean velocity dispersion4 σ.

With the mass-to-light ratio M/L, we replace M with L(M/L) with
L the total luminosity. For R we take a typical radius such as the
effective radius; then we get

R ∝ L

(
M

L

)
σ2

4If σ is the observed line-of-sight velocity dispersion, the typical velocity is
actually the three-dimensional velocity dispersion 3σ.
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If I is the mean surface brightness within R we have I ∝ LR−2 and

R ∝ σ2I−1

(
M

L

)−1

The observed FP was

R ∝ σ1.4±0.15I−0.9±0.1

The coefficients are close to the observed ones. Differences arise
because of variations in actual structural parameters and possible
dependence of M/L on M and/or σ.
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Flattening of oblate spheroids

If we consider elliptical galaxies to be oblate spheroids, flattened by
rotation we can estimate how much rotation is needed using the
virial equation.

Let the spheroid be flattened along the z-axis. Then the symmetry
with respect to this axis requires

〈VR〉 = 〈Vz〉 = 〈VRVθ〉 = 〈VzVθ〉 = 0

The rotational velocity is 〈Vθ〉.

Start with the motions tensor

Tij = 1
2

∫
v̄i .v̄jd

3x
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We have
〈vx〉 = 〈Vθ〉 sin θ ; 〈vy〉 = 〈Vθ〉 cos θ

Then

Txy = 1
2

∫
ρ〈vx〉〈vy〉d3x

= 1
2

∫ 2π

0

∫ ∞

0

∫ ∞

−∞
ρ(R, z)〈Vθ〉2 sin θ cos θ dz dR dθ

= 0

since ∫ 2π

0
sin θ cos θdθ = 1

2

∫ 2π

0
sin(2θ)dθ =

1
2 sin2(θ)

∣∣2π

0
= 0
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Similarly, all non-diagonal elements of the tensors Tij , Πij and Wij

can be shown to be equal to zero.

Them because of symmetry in the system we must also have

Txx = Tyy ; Πxx = Πyy ; Wxx = Wyy

So the only non-trivial virial equations are

2Txx + Πxx + Wxx = 0 ; 2Tzz + Πzz + Wzz = 0

So
2Txx + Πxx

2Tzz + Πzz
=

Wxx

Wzz
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The ratio Wxx/Wzz for density distributions with surfaces of equal
density being confocal ellipsoids can be shown to be independent of
the actual radial dependence of the density. I illustrate that now.

Assume that the axis ratio is c/a and therefore the excentricity

e =

√
1− c2

a2

Let the density along the major axis be ρ(R). Define

α(R, z) = R2 +
z2

1− e2

Then inside the spheroid with radius a the forces and potential are

KR = −4πG
√

1− e2

e3
R

∫ sin−1 e

0
ρ(α) sin2 βdβ
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Kz = −4πG
√

1− e2

e3
z

∫ sin−1 e

0
ρ(α) tan2 βdβ

Φ(R, z) =
4πG

√
1− e2

e

[∫ δ

0
ρ(α)αβdα+ sin−1 e

∫ a

δ
ρ(α)αdα

]
Here

δ2 = R2 +
z2

1− e2

and

α2 =
R2 sin2 β + z2 tan2 β

e2

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies



Contents
Fundamental Plane

Rotation and shapes
Central kinematics and black holes
Dynamical models and dark matter

Flattening of oblate spheroids
Vm/σ̄ − ε relation and triaxiality
Detailed kinematics

With partial integration we may write in the equation for KR∫ sin−1 e

0
ρ sin2 βdβ = ρB1 −

∫ sin−1 e

0

∂ρ

∂β
dβ

with

B1 =

∫ sin−1 e

0
sin2 βdβ = 1

2(β − sinβ cosβ)
∣∣sin−1e

0

This is a constant and then

KR = −4πG
√

1− e2

e3
RB1

[
ρ−

∫ sin−1 e

0

∂ρ

∂β
dβ

]
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Similarly

Kz = −4πG
√

1− e2

e3
zB2

[
ρ−

∫ sin−1 e

0

∂ρ

∂β
dβ

]

with

B2 =

∫ sin−1 e

0
tan2 βdβ = (−β + tanβ)|sin

−1e
0

Now remember that

WRR = −
∫

R
∂Φ

∂R
d3x =

∫
RKRd3x

Wzz = −
∫

z
∂Φ

∂z
d3x =

∫
zKzd

3x
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So in the ratio Wxx/Wzz the dependence on the functional form of
ρ disappears5.

In fact, to a good approximation, for oblate bodies we have then

2Txx + Πxx

2Tzz + Πzz
=

Wxx

Wzz
∝

(c

a

)−0.9

Now consider the cases where the system is either rotating or not
or has an isotropic or anisotropic velocity distribution.

5The actual ratio is related to parameters in Table 2-1 of Binney &
Tremaine.
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A. Isotropic and rotating.

Then the velocity dispersion σ is independent of direction. But it
may vary with the ellipsoidal surface it is on and therefore we use a
density-weighted rms (one-dimensional) velocity dispersion σ̄. So,
if the total mass is M

Πxx =

∫
ρσ2

xxd
3x = Mσ̄2 = Πzz

Say, the density-weighted rotation velocity (around the z-axis) is
V̄ ; then v2

x = 1
2 V̄ 2, and we get

Tzz = 0

Txx = 1
2

∫
ρv2

x d3x = 1
4MV̄ 2 = Tyy
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Therefore
1
2MV̄ 2 + Mσ̄2

Mσ̄2
=

(c

a

)−0.9

This can be reduced to

V̄

σ̄
=

√
2

[(c

a

)−0.9
− 1

]

This is interesting, since it shows that a large amount of rotation is
necessary to give rise to flatterning. E.g. for a rather modest
flattening of c/a = 0.7 one needs V̄ ∼ 0.9σ̄.
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B. Anisotropic and non-rotating

Then Txx = 0 and Πxx = Mσ̄2
xx , Πzz = Mσ̄2

zz

This gives
σ̄zz

σ̄xx
∼

(c

a

)−0.9

For the same modest flattening of c/a = 0.7 one now needs only
a small anisotropy σ̄zz/σ̄xx ∼ 0.85.
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C. Anisotropic and rotating

Write
Πzz = (1− δ)Πxx = (1− δ)Mσ̄2

We have again Tzz = 0 and 2Txx = 1
2MV̄ 2.

Then

V̄

σ̄
=

√
2

[
(1− δ)

(c

a

)−0.9
− 1

]
This would mean that we can expect a relation between V̄ /σ̄ and

the ellipticity ε = 1− (c/a) in elliptical galaxies.
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However, we observe these systems from random orientations and
see an apparent flattening, a projected rotation and the integrated
velocity dispersion along the line-of-sight.

It turns out that this only shifts the galaxies that are oblate,
isotropic rotators in the apparent (Vm/σ̄ − ε)-plane roughly along
the line of the correlation6.

So we can compare the observations with the predictions from the
anisotropic, rotating case.

6See Binney & Tremaine, section 4.3 (page 217)
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Vm/σ̄ − ε relation and triaxiality

Originally elliptical galaxies were thought to be simple systems,
mainly supported by random motions and flattened by rotation.

The rotation turned out to be too small to provide the flattening
so this had to be due to anisotropic velocity distributions.

A parameter used is the ratio of the observed (projected)
maximum rotation velocity Vm and the observed line-of-sight
velocity dispersion at the center σ̄.

This is a measure of the relative importance of rotation and
random motions.
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It can be compared to the observed flattening ε = 1− b/a with a
and b the (projected) major and minor axis7.

The symbols in the next graph indicate models with isotropic
velocity dispersions that are flattened by rotation and seen under
various inclinations.

The bars are data and rotate less than expected for the observed
flattening.

Note that the models lie on a well-defined line where the intrinsic
relation roughly coincides with the projected one.

7G. Illingworth, Ap.J. 218, L43 (1977)
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Further work8 showed that spiral bulges and faint ellipticals are
fast rotators.

8e.g. J. Kormendy & G. Illingworth, Ap.J. 256, 460 (1982)
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Minor axis rotation was first discovered in NGC 42619.

9R.L. Davies & M. Birkinshaw, Ap.J. 303, L45 (1986)
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The maximum rotation is in p.a.∼ 70◦, while the isophotes have
major axis at ∼ 160◦.

The suggestion was made that this galaxy is prolate.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies



Contents
Fundamental Plane

Rotation and shapes
Central kinematics and black holes
Dynamical models and dark matter

Flattening of oblate spheroids
Vm/σ̄ − ε relation and triaxiality
Detailed kinematics

It turned out that elliptical galaxies are triaxial10.

This explains the (Vm/σ − ε)-relation, the isophote twists and the
minor axis rotation.

Minor axis rotation can result from11:

I projection effects in triaxial systems or

I misalingment of the angular momentum and the shortest axis.

10J. Binney, Mon.Not.R.A.S. 183, 779 (1978)
11M. Franx, G. Illingworth & P.T. de Zeeuw, Ap.J. 383, 112 (1991)
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Define the misalignment ψint

as the angle between the
intrinsic short axis and the
angular momentum.

Define for axes a ≥ b ≥ c the
triaxiality

T =
a2 − b2

a2 − c2
=

1− b2/a2

1− c2/a2

Thus T=0: oblate;
T=1: prolate.
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We can measure the apparent
ellipticity ε and the apparent
misalignment ψ (the ratio of
maximum observed velocity on
the apparent axes)

tanψ =
vmin

vmaj
.
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The distributions observed give the following rough indications:

I Most (at least 50%) ellipticals have a small ψint ( <∼ 10◦), but
some (≈ 10%) rotate along their major axis.

I 〈T 〉 ≈ 0.3 and T has a wide distribution with possibly as
much as 40% of the galaxies prolate.

I The ratio c/a has a peak at about 0.6-0.7.

Dust lanes are often seen12 and occur usually along the apparent
minor axis, but also sometimes along the major axis.

12F. Bertola & G. Galletta, Ap.J. 226, L115 (1978)
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Here is NGC 1947.
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In triaxial potentials stable orbits are possible, but the detailed
kinematics depends on the galaxy shape and body rotation.

In principle dust lanes can be used to determine the intrinsic shape
of an individual galaxy 13.

13R.L. Merritt & P.T. de Zeeuw, Ap.J. 267, L19 (1983); J. Kormendy & G.
Djorkovski, Ann.Rev.A&A. 27, 235 (1989)
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Detailed kinematics

Detailed kinematics, including higher order moments of the
velocity distyribution, of the velocity distributions can now be
observed very well.

An example is a study of NGC337914.

Dynamical modeling shows that NGC 3379 may be a flattened,
weakly triaxial system seen in an orientation that makes it appear
round.

14T.S. Statler & T. Smecker-Hane, A.J. 117, 839 (1999)
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Recently the SAURON integral
field spectrograph has been
built and used to survey
kinematics and structure of
elliptical galaxiesa.

aP.T. de Zeeuw et al.,
Mon.Not.R.A.S. 329, 513 (2002)
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The central regions often show kinematics deviating from the outer
parts.

These distinct cores may show:

I Rapid rotation in the core but slow rotation in the main body

I Opposite rotation in the core relative to that in the main body

I Core rotation along the minor axis.

The distinct cores usually show small velocity dispersions, which
suggest a two-component galaxy consisting of an elliptical with a
small central disk.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies
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Evidence for black holes comes from rapid rotation and high
velocity dispersions in the inner regions, such as in NGC 459415 or
our own Galaxy.

15J. Kormendy et al., Ap.J. 473, L91 (1996)
Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies



Contents
Fundamental Plane

Rotation and shapes
Central kinematics and black holes
Dynamical models and dark matter

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies



Contents
Fundamental Plane

Rotation and shapes
Central kinematics and black holes
Dynamical models and dark matter

A compilation of all available data16 shows a tight correlation
between the mass of the black hole and the luminosity or velocity
dispersion in the main body of the elliptical galaxy or bulge.

Probably this means no more than that larger galaxies have more
material to feed into the center.

16S. Tremaine et al., Ap.J. 574, 740 (2002)
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Stäckel potentials
The perfect ellipsoid
Types of orbits
Dark matter

Dynamical models and dark
matter
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Stäckel potentials

The most simple description of an elliptical is that of King models,
which are isothermal spheres with tidal radii and truncations in the
velocity distributions. For these we have can estimate the total
mass from

M

L
=

9σ2

2πGI0rc
.

However, we have seen that ellipticals have anisotropic velocity
distribrutions and are in general triaxial.

A describtion then is with Stäckel potentials, which are potentials
that are separable in ellipsoidal coordinates.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies
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Stäckel potentials
The perfect ellipsoid
Types of orbits
Dark matter

These are coordinates (λ, µ, ν) that are the three roots of τ for

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1

with α ≤ β ≤ γ three constants. It then turns out that

−γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ

The line element is ds2 = P2dλ2 + Q2dµ2 + R2dν2 with

P2 =
(λ− µ)(λ− ν)

4(λ+ α)(λ+ β)(λ+ γ)
; Q2 =

(µ− ν)(µ− λ)

4(µ+ α)(µ+ β)(µ+ γ)

R2 =
(ν − λ)(ν − µ)

4(ν + α)(ν + β)(ν + γ)
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In such coordinate systems surfaces of constant λ are ellipsoids, of
constant µ hyperboloids of one sheet and of constant ν
hyperboloids of two sheets.
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Stäckel potentials
The perfect ellipsoid
Types of orbits
Dark matter

Stäckel potentials are of the form

Φ(λ, µ, ν) = − F (λ)

(λ− µ)(λ− ν)
− F (µ)

(µ− ν)(µ− λ)
− F (ν)

(ν − λ)(ν − µ)

This can be used to describe triaxial galaxies17.

Many density distributions can be locally approximated with a
Stäckel potential.

For example, it is possible to derive a local approximation to the
the potential in a disk with a flat rotation curve by a Stäckel
potential18.

17P.T. de Zeeuw & D. Lynden-Bell, Mon.Not.R.A.S. 215, 713 (1985); P.T.
de Zeeuw, Mon.Not.R.A.S. 216, 273 (1985)

18T.S. Statler, Ap. J. 344, 217 (1989)
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If the density is specified on the z-axis and if the potential is of the
Stäckel-form in a specified ellipsoidal coordinate system, then the
density at any point can be calculated with the so-called
generalized Kuzmin formula19.

A set of models with simple density profiles has been calculated20

to illustrate the usefulness.

A nice example is the modified Hubble model, which has

ρ(z) = ρ◦(1 + z2)−3/2

Then the coordinate system determines what the axis ratio’s are in
the density distributions and these change with radius.

19P.T. de Zeeuw, Mon.Not. R.A.S. 216, 599 (1985)
20P.T. de Zeeuw, R. Peletier & M. Franx, Mon.Not.R.A.S. 221, 1001 (1986)
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Here are isodensity curves for a typical triaxial modified Hubble
model (contour interval log 3).

So, this density distribution has smooth isodensity surfaces and has
in a potential of Stäckel form!
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The perfect ellipsoid

Every orbit in a Stäckel potential is the sum of three motions, one
in each coordinate.

As a result motion is bounded by coordinate surfaces.

It is of use to study the types of orbits that arise in triaxial
potentials.

A beautiful illustration is the case of the perfect ellipsoid21, which
is both stratified on concentric (triaxial) ellipsoids and produces
exactly a Stäckel potential.

21P.T. de Zeeuw, Mon.Not.R.A.S. 216, 273 (1985)
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The perfect ellipsoid has the density distribution

ρ =
ρ◦

(1 + m̃2)2
; m̃2 =

x2

a2
+

y2

b2
+

z2

c2
; a ≥ b ≥ c

This has semi-axes m̃a, m̃b and m̃c and falls off as m̃−4 at large
distances.

The function F (τ) in the equation for the potential then is

F (τ) = πGρ◦abc(τ + α)(τ + γ)

∫ ∞

0

√
u − β√

(u − α)(u − γ)

du

u + τ
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There are exact solutions for the (isolating) integrals of motion:

H = X + Y + Z

J = (µ+ ν)X + (ν + λ)Y + (λ+ µ)Z

K = µνX + νλY + λµZ

where

X =
P2λ̇2

2
− F (λ)

(λ− µ)(λ− ν)
; Y =

Q2µ̇2

2
− F (µ)

(µ− ν)(µ− λ)

Z =
R2ν̇2

2
− F (ν)

(ν − λ)(ν − µ)
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These integrals are all quadratic in velocity and have the dimension
of an energy.

It is more insightfull to write the integrals as the energy (as usual)
and two non-classical integrals:

I1 = H

I2 =
α2H + αJ + K

α− γ

I3 =
γ2H + γJ + K

γ − α

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies
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Special case I: the prefect prolate spheroid. Here γ = β (so the
long axis is the x-axis). Since

−γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ

we have
ν = −γ = β

The third integral then becomes the (classical) angular
momemtum along the x-axis

I3 = 1
2(y ż − zẏ)2 = 1

2L2
x

The integral I2 remains a non-classical one.
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Special case II: the perfect oblate spheroid. Then we have
µ = −β = −α.

In this case the angular momentum around the z-axis is an
isolating integral:

I2 = 1
2(xẏ − y ẋ)2 = 1

2L2
z

I3 is the well-know third integral of Galactic dynamics.

I3 remains a non-classical integral.
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Special case III: If we collapse the perfect oblate spheroid along the
symmetry axis we get the Kuzmin disk.

With µ = −β = −α and γ = 0 we get the same I2 as above and in
addition

I3 = 1
2L2

x + 1
2L2

y + 1
2aż2 − a|z |Φ

(a is the coordinate system focal distance above and below the
plane)

I3 has the property of an energy associated with the z-axis.

In this case we then have three isolating integrals E , I2 and I3.
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Special case IV: the perfect sphere. Then
µ = ν = −γ = −β = −α. So

J = 1
2L2 − 2αH : K = α2 − 1

2αL2 ; I2 + I3 = 1
2L2

with ~L the total angular momentum vector (Lx, Ly, Lz).

Then there are four isolating integrals of motion , namely the total
energy E and the three components of the angular momentum Lx,
Ly and Lz.
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Types of orbits

For dynamical studies it is important to investigate the possible
general types of orbits in the kind of potential considered. Here we
look at orbits in triaxial potentials using the perfect ellipsoid.

It can be shown that the equations of motion become

E = 2(τ + β)p2
τ + Φeff(τ)

with
pλ = P2λ̇ ; pµ = Q2µ̇ ; pν = R2ν̇

Φeff =
I2

τ + α
+

I3
τ + γ

− G (τ)

Depending on the values of the integrals there are four general
types of orbits.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies



Contents
Fundamental Plane

Rotation and shapes
Central kinematics and black holes
Dynamical models and dark matter
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Box orbits
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Inner long axis tube orbits
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Outer long axis tube orbits
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Short axis tube orbits
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Next consider orbits in the (x , y)-plane.

This is for ν = −γ and p2
ν/2R2 = 0.

It can be shown that for orbits in this plane we have

I3 = 0

Then two types of orbits remain, which are versions of the orbits
earlier, but now collapsed onto the (x , y)-axis.

These orbits turn out to be stable for perturbations perpendicular
to this plane.

Piet van der Kruit, Kapteyn Astronomical Institute Dynamics of elliptical galaxies
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The two types of orbits that remain are butterflies (collapsed box
orbits with I2 < 0; left) and loops (collapsed short axis tubes with
I2 > 0; right), resp. inside or outside the foci.
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The orbits can be distinguished according to the integrals.

The limiting cases are x-axis orbits, y -axis orbits (which are
unstable for x-perturbations) and elliptic closed orbits.
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Then orbits in the (x , z)-plane.

Since µ = −β or ν = −β

E − E◦ =
I2

α− β
+

I3
γ − β

The fundamental orbits are again butterflies and loops.

The butterflies can either be stable (and then are collapsed box
orbits) or unstable for perturbations in the y -direction. When
stable they are collapsed box orbits.

The loops are all unstable.
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Unstable butterfly
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Unstable loop
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Classification of (x , z)-orbits (shaded is stable, dashed is unstable
periodic orbits).
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Orbits in the (y , z)-plane.

Now λ = −α or µ = −α.

Now we have
I2 = 0

.
We have again butterflies and loops, but these can now be both
stable and unstable.

The stable butterfly is a collapsed box orbits. There are two types
of stable loops, either collapsed inner or outer long axis tubes.
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Left the stable butterfly and on the right the two stable loops.
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Unstable butterfly
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Unstable loop
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Classification of orbits
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In the case of a prolate spheroid only two types of orbits are
possible.
Here is the inner long axis tube.
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The vertical axis indicates that this is any meridional plane
perpendicular to x .
The other possibility is the outer long axis tube
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In the case of the oblate spheroid only short axis tube orbits are
possible.
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Dark matter

Solutions for isotropic models usually have gradients in M/L, while
for triaxial models solutions with constant M/L are usually
possible.

The manner to proceed and make progress then is to consider
higher order moments of the observed velocity profiles.

For example Carollo et al.22 show that at least three out of their
four ellipticals must have dark haloes.

22C.M. Carollo, P.T. de Zeeuw, R.P. van der Marel, I.J. Danziger & E.E.
Qian, 441, L25 (1995)
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X-ray halos

X-ray emission at large radii can also be used to measure masses of
large ellipticals and clusters.

Measure the X-ray emissivity distribution ε(r) from the distribution
on the sky and the X-ray energy distribution.

Infer from the distribution of ε the density distribution of the gas
ρgas(R) and the distribution of temperature T (r).
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Then the hydrostatic equation gives for the pressure P

dP

dR
= −GM( < R)

R2
ρgas(R)

The ideal gas equation gives

P = ρgas
kT

µmp

Then

M( < R) = −kT (R)R

Gµmp

[
d log ρgas

d log R
+

d log T

d log R

]
.
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Here are X-ray distributions in two clusters of galaxies.

The next two graphs show the analysis of the giant elliptical M 87
in the center of the Virgo cluster23.

23Fabricant & Gorenstein, Ap.J. 267, 535 (1983)
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Shells can also be used. Simulations show that their spacing
depends on the mass profile.

Finally we can measure masses of whole clusters of galaxies.

The Virial Theorem 2T + Ω ∼ 0 for equilibrium for a uniform,
spherical distribution gives

2T =
∑

mV 2 ∼ M〈V 2〉 ∼ −Ω ∼ 3GM

5R

Thus

M ∼ Rσ2
v

G
∼

(
R

1 Mpc

) (
σv

103 km s−1

)2

1015 M�
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This indicates masses of up to 1015 M�.

Nowadays also gravitational arcs can be used (e.g. in Abell
221824).

24J.P. Kneib et al., A.&A. 303, 27 (1995)
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Here are the inferred distributions.
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