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The self-consistency problem
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Ideally, one would like to construct self-consistent, self-gravitating
models for galaxies, by solving the two coupled, fundamental
equations:

u
∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0.

and
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
≡ ∇2Φ = 4πGρ(x , y , z)

Unfortunately, in general this is not possible.
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There are two possible apporaches:

I The direct method. Assume a potential Φ on the basis of the
density distribution, inferred from observations. Then use the
observed kinematics to derive further properties of the
distribution function.

I The inverse method. Make a guess for the dependence of the
distribution function on the isolating integrals and calculate
the density, potential, motions and velocity distrubutions.

The direct approach is straightforward in e.g. the case of the
vertical distributions in a galactic disk (where it reduces to a
one-dimensional treatment).

The inverse method makes use of functional solutions of
well-defined cases, such a isothermal models.

First we turn to the direct method.
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The Schwarzschild method

Schwarzschild1 proceeds as follows:

I Choose a density distribution for the system you want to
model.

I Solve Poission’s equation (usually numerically).

I Compute a library (many hundreds) of orbits in this potential
and calculate the density distribution that each orbit
generates.

I Add these with appropriate weights to recover the density
distribution started from (usually this involves “linear or
quadratic programming”).

1M. Schwarzschild, Ap.J. 232, 236 (1979)
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Often it is possible to use constraints as the observations of the
kinematics of the stars, i.e. their motions and velocity dispersions.

There is uncertainty whether any outcome is unique.

But it is an extremely powerful approach.
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For simple geometries full semi-analytical solutions for the
distribution function to the set of two fundamental equations can
be obtained.

These solutions refer to self-gravitating systems, which means that
ρ and ν are the same.

Examples are spherical density distributions or density distributions
on stratified layers with isothermal velocity distributions (equal
velocity dispersions at all positions),
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Isothermal sphere and King models

The Poisson equations for spherical symmetry was

1

R2

∂

∂R
(R2KR) = −4πGρ(R)

and the Jeans equation

∂

∂R
(ν〈V 2

R〉) +
ν

R
{2〈V 2

R〉 − V 2
t − 〈(Vθ − Vt)

2〉 − 〈V 2
φ 〉} = νKR

If the velocity distribution is isotropic and if there is no rotation
this reduces to

〈V 2〉 ∂ρ
∂R

= ρKR

Here V is the radial velocity.
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The equations can be combined to give

〈V 2〉
R2

∂

∂R

(
R2∂ ln ρ

∂R

)
= −4πGρ

The solution is

ρ(R) =
〈V 2〉
2πG

R−2

This is called the singular isothermal sphere, since the density is
infinite at the center.

Note that we have not constrained the functional form of the
velocity distribution.
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A well-behaved solution is obtained by assuming that the velocity
distribution is Gaussian.

There is in this spherical, non-rotating case only one isolating
integral of motion, namely the energy E .

According to Jeans’ theorem then the distribution function is only
a function E .

So take the distribution function to be

f (E ) = const.× e−E/〈V 2〉
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With E = −Φ + 1
2V 2 integration over all V gives

ρ(R) = ρ(0)e−Φ(R)/〈V 2〉

Now set the boundary conditions ρ(0) = ρ◦ and (dρ/dR)z=0 = 0.
Then the solution

ρ(R) = ρ0e−Φ

can be found from a numerical integration where Φ follows from

e−Φ =
1

χ2

d

dχ

(
χ2 dΦ

dχ

)
; χ =

(
〈V 2〉

4πGρ0

)1/2

R
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For large R this becomes

ρ(R) =
〈V 2〉
2πG

R−2

and thus approaches the singular isothermal sphere.

This solution has a natural length-scale that is called the core
radius (also King radius)

R0 =

(
4πGρ0

9〈V 2〉

)−1/2

At this core radius the projected surface density is roughly half the
central one.

The next slides show the density distribution and the logarithmic
density slope.
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King models

King models are adapted isothermal spheres with a tidal radius Rt

and a corresponding upper boundary in the velocity distribution.

The distribution function is

f (E ) = const.
[
e−E/〈V 2〉 − e−Eesc/〈V 2〉

]
for E < Eesc

0 for E > Eesc
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Stäckel potentials.

Isothermal sphere and King models
Isothermal sheet and other vertical distributions

Using again E = −Φ + 1
2V 2 and defining the zero-point of Φ such

that Eesc = 0 we may write this as

f (E ) = const.
[
e−E/〈V 2〉 − 1

]
for E > 0

Integrating over all velocities then gives

ρ(R) = ρ◦

[
eΦ(R)/〈V 2〉erf

(√
Φ

〈V 2〉

)
−

√
4φ

π〈V 2〉

(
1 +

2Φ

3〈V 2〉

)]

Here erf is the Error Function.
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Then we get

d

dR

(
R2 dΦ

dR

)
= −4πGρ◦R

2

[
eΦ(R)/〈V 2〉erf

(√
Φ

〈V 2〉

)
−√

4φ

π〈V 2〉

(
1 +

2Φ

3〈V 2〉

)]

This again has to be numerically integrated from the center
outwards.

At the tidal radius Rt the density drops to zero.

The ratio c = log(Rt/R◦) is called the concentration.
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Here are some models in projected surface density2.

2I.R. King, A.J. 71, 64 (1966)
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The total mass is

M(Rt) =
2

G
〈V 2〉r◦ f

(
Rt

R◦

)
and the central surface density

σ◦ = ρ0r0 g

(
Rt

R◦

)
The functions f and g can only be calculated numerically and are

given in the literature. The velocity dispersion is

〈V 2〉1/2 ∝ ρ◦M(Rt)

f (Rt/R◦) g (Rt/R◦)

King models are useful to describe globular clusters and to some
extent elliptical galaxies.
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Isothermal sheet and other vertical distributions

For a self-gravitating isothermal sheet the basic equations become

∂Kz

∂z
= −4πGρ(z)

and

〈W 2〉∂ν
∂z

= νKz

The two basic equations can be combined into

−4πGρ(z) = 〈W 2〉 d2

dz2

{
ln
ρ(z)

ρ(0)

}
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The solution is

ρ(z) =
〈W 2〉
2πGz2

0

sech2

(
z

z◦

)
The corresponding surface density is

σ = 2z0ρ◦

and the relation to the velocity dispersion

〈W 2〉 = πGσz◦

The vertical force results from integration of Poisson’s equation as

Kz = −2
〈W 2〉

z◦
tanh

(
z

z◦

)
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Usefull approximations are

sech2

(
z

z0

)
= exp

(
−z2

z2
0

)
for z � z0

sech2

(
z

z0

)
= 4 exp

(
−2z

z0

)
for z � z0

The isothermal sheet is used to describe vertical distributions in
stellar disks.3

3P.C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
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For a second isothermal component of negligible mass and
different velocity dispersion in this force-field we find

ρII(z) = ρII(0)sech2p

(
z

z◦

)
where

p =
〈W 2〉
〈W 2〉II

An application of this is for example the HI-gas layer inside a
stellar disk that contains most of the surface density.
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Exponential and sech-distributions

The isothermal sheet is only an approximate description of the
vertical distribution of stars in disks of galaxies. There is a range of
generations of stars, each with their own velocity dispersion.

Often used is the exponential distribution, since it is a convenient
fitting function.

Since the velocity dispersion now varies with z we have to write
the equation in terms of the velocity dispersion in he plane

〈W 2〉1/2
◦ . The equations corresponding to this case are4:

ρ(z) =
〈W 2〉◦
2πGZ 2

e

exp
(
− z

ze

)
4P.C. van der Kruit, A.&A., 192, 117 (1988)
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σ = 2zeρ◦

〈W 2〉◦ = πGσze

Kz = −2πGσ

{
1− exp

(
− z

ze

)}
If an isothermal component of negligible mass moves in this force
field, then

ρII(z) = ρII(0)exp
[
−2pz

ze
+ 2p

{
1− exp

(
− z

ze

)}]
where now

p =
〈W 2〉0
〈W 2〉II
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As an intermediate case between the isothermal solution and the
exponetial it is also possible to use the sech-distribution5.

This corresponds probably closest to reality. The equations then
are:

ρ(z) =
2〈W 2〉II
π3Gz2

e

sech
(

z

ze

)
σ = πρ◦ze

〈W 2〉0◦ =
π2

2
Gσze

Kz = −4Gσ arctan
{

sinh
(

z

ze

)}
5P.C. van der Kruit, A.&A. 192, 127 (1988)
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For the second isothermal component we now get

ρII(z) = ρII(0)exp
{
− 8

π2
pI

(
z

ze

)}
where

I (y) =

∫ y

0
arctan(sinhx)dx

This integral can be evaluated easily by numerical methods or
through a series expansion.

The properties are illustrated in the following figures, where
properties appropriate for the Solar Neighborhood have been
chosen.
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The density distributions as
a function of z expressed in
magnitudes.
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Stäckel potentials.

General axisymmetric theory
Exponential disk
Rotation curves

General axisymmetric theory

Much attention has been paid to inverting Poisson’s equation.
For the axisymmetric case:

∂2Φ

∂R2
+

1

R

∂Φ

∂R
+
∂2Φ

∂z2
= 4πGρ(R, z)

so that the potential (and the forces) can be calculated when the
density distribution is given.

This is a limited problem in that it does not involve the continuity
equation and the distribution function and therefore is not a
general solution for a dynamical system, such as the isothermal
solutions above.
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At the basis lies the Hankel (or Fourier-Bessel) transform, which in
the radial direction for the density is

ρ̃(k, z) =

∫ ∞

0
uJ0(ku)ρ(u, z)du

J0 is the Bessel function of the first kind.

The important property, why this is useful, is that the transform
can be inverted:

ρ(R, z) =

∫ ∞

0
kJ0(kR)ρ̃(k, z)dk
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Now, if we take this transform in the radial direction for both sides
of the Poisson equation we get6

−k2Φ̃(k, z) +
∂2

∂z2
Φ̃(k, z) = 4πG ρ̃(k, z)

This linear non-homogeneous ordinary differential equation can be
solved to give

Φ̃(k, z) = −2πG

k

∫ ∞

−∞
exp (−k|z − v |)ρ̃(k, v)dv

6S. Casertano, MNRAS 203, 735 (1983)
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Using this, Poisson’s equation can then be inverted to

Φ(R, z) = −2πG

∫ ∞

0

∫ ∞

−∞
J0(kR)ρ̃(k, v)e−k|z−v |dv dk

Then

Φ(R, z) = −2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
uJ0(kR)J0(ku)ρ(u, v)e−k|z−v |dv du dk

The integrations are simpler when the density is separable

ρ(R, z) = σR(R)ρz(z)
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The forces follow by taking the negative derivatives of the
potential in the radial and vertical directions.

KR(R, z) = −∂Φ(R, z)

∂R
=

−2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
ukJ1(kR)J0(ku)ρ(u, v)e−k|z−v |dv du dk

and

Kz(R, z) = −∂Φ(R, z)

∂z
=

−2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
uJ0(kR)J0(ku)ρ(u, v)sign(z − v)e−k|z−v |dv du dk
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Exponential disk

There are various ways of proceeding from here. The first is by
taking an analytical form for the density distribution.

Kuijken and Gilmore7 have done this for exponential disks.

If the radial density distribution is exponential

σR(R) = σ0 exp (−R/h)

then the Hankel transform becomes∫ ∞

0
σ0J0(ku)ue−u/hdu =

σ0h
2

(k2h2 + 1)3/2

7K. Kuijken & G. Gilmore, MNRAS vol. 239, 571 (1989)
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The potential can then be written as

Φ(R, z) = −2πGh2

∫ ∞

0

∫ ∞

−∞

J0(kR)

(k2h2 + 1)3/2
ρz(v)e−k|z−v |dv dk

First note that if ρz(z) is symmetric around z = 0, then

Iz(k, z) =

∫ ∞

−∞
ρz(v)e−k|z−v |dv

= 2ek|z|
∫ |z|

0

ρz(v) cosh(kv)dv + 2 cosh(kz)

∫ ∞

|z|
ρz(v)e−kvdv

= e−k|z|
∫ |z|

0

ρz(v)ekvdv+ek|z|
∫ ∞

|z|
ρz(v)e−kvdv+e−k|z|

∫ ∞

0

ρz(v)e−kvdv
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Kuijken and Gilmore first solve for an exponential z-distribution:

ρz = exp (−|z |/ze)

Solving for this gives

Φ(R, z) = −4πGσ0h
2ze

∫ ∞

0

J0(kR)

(k2h2 + 1)3/2

e−k|z| − zeke
−|z|/ze

1− k2z2
e

dk

The possible term for which the denominator is zero (kze = 1) is
still finite; the last quotient is in that case

1

2zek
(1 + k|z |)e−k|z|
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The forces are

KR(R, z) = −4πGσ0h
2ze

∫ ∞

0
k

J1(kR)

(k2h2 + 1)3/2

e−k|z| − zeke
−|z|/ze

1− k2z2
e

dk

and

Kz(R, z) = −4πGσ0h
2ze

∫ ∞

0
k

J0(kR)

(k2h2 + 1)3/2
sign(z)

e−k|z| − e−|z|/ze

1− k2z2
e

dk
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Next they assume that the density distribution is given by

ρ(R, z) = ρ0 exp (−R/h) sechn(z/nze)

For n = 0 we have again the exponential z-distribution with
vertical, exponential scaleheight ze.
For n = 2 we have the locally isothermal disk8 and for n = 1 the
“sech-disk”9.

Kuijken and Gilmore show that the potential can be written as

Φ(R, z) = −4πGρ0h
2ze2

n

Z ∞

0

J0(kR)(k2h2 + 1)−3/2×

∞X
m=0

“−n

m

” (1 + 2m/n) exp (−k|z |)− zek exp [−(1 + 2m/n)|z |/ze]

(1 + 2m/n)2 − k2z2
e

dk

8P.C. van der Kruit & L. Searle, A.&A. 95, 105 (1981)
9P.C. van der Kruit, A.&A. 192, 117 (1988)
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The possible term, for which m = n(kze − 1)/2, has a zero
denominator and must be written as

1

2zek

(
−n

m

)
(1 + k|z |)e−k|z|

The binomial with the upper coefficient negative can be written as
follows (

−n

m

)
=

(−n)(−n − 1)........(−n −m + 1)

m!

= (−1)m
(

m + n − 1

n − 1

)
= (−1)m

(m + n − 1)!

(n − 1)!m!

So the potential is in this case expressed as a sum of those for
exponential z-distributions.
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This is essentially related to the fact that the sech is written as a
sum of exponentials:

sech x = 2
∞∑
j=0

(−1)je−(2j+1)|x |

This well-known expansion suffers from the fact that it does not
work for x = 0, because the terms are alternatingly +1 and –1.

This does not necessarily make it unsuitable, because after
integration each term gets divided by −(2j + 1) and the series will
converge even for x = 0.

Piet van der Kruit, Kapteyn Astronomical Institute The self-consistency problem and potential theory



Contents
The self-consistency problem

Isothermal solutions and related results
Potential theory

Various potentials
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However, it may remain slow for small x . For example the sum for
x = 0

2
∞∑
j=0

(−1)j

2j + 1
=
π

2

takes 32 steps to reach an accuracy of 1%.

Similar expressions as above can be found for the forces, but this
will not be fully written out here.
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Rotation curves

Casertano10 has derived an expression for the potential in the plane
for an arbitrary density distribution in order to find the rotation
curve of a disk with a density distribution derived from surface
photometry.

He uses the radial force in the plane and performs the integration
over k first (rather than over u).

The equation for the radial force in the plane for a symmetrical
z-distribution is

KR(R, 0) = −4πG

∫ ∞

0

∫ ∞

0

∫ ∞

0
ukJ1(kR)J0(ku)ρ(u, v)e−kvdv du dk

10S. Casertano, MNRAS 203, 735 (1983)
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It helps to have the same order Bessel functions and get rid of the
linear factor k by integrating in parts∫ ∞

0
uJ0(ku)ρ(u, v)du =

u

k
J1(uk)ρ(u, v)

∣∣∣∞
0
−1

k

∫ ∞

0
uJ1(uk)

∂ρ(u, v)

∂u
du

Then

KR(R, 0) = −4πG

∫ ∞

0

∫ ∞

0

∫ ∞

0
uJ1(kR)J1(uk)

∂ρ(u, v)

∂u
e−kvdv dk du

and this can be solved to give

KR(R, 0) = 8G

∫ ∞

0

∫ ∞

0

√
u

Rp

∂ρ(u, v)

∂u
[K (p)− E (p)]du dv

where

p = x −
√

x2 − 1, x =
R2 + u2 + v2

2Ru
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K and E are the complete elliptic integrals of the second and first
kind respectively for which good approximations are known. For
the z-dependence of the density one can take an exponential or the
isothermal distribution.

Casertano’s work can be extended to the potential, vertical force
and the radial force out of the plane. First start with KR at
arbitrary z .

At a general position we had

KR(R, z) = −2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
ukJ1(kR)J0(ku)ρ(u, v)e−k|z−v |dv du dk
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As Casertano we can do the integration over k (after integration
by parts) and obtain∫ ∞

0
J1(kR)J1(uk)e−k|z−v |dk =

(2− p2)K (p)− 2E (p)

πp
√

Ru

where

p = 2

√
Ru√

(z − v)2 + (R + u)2

This is the same as Casertano found (except that he had z = 0),
but he chose to rework it further to the form above.

The formula for p has a singularity at R = u = z = 0. Note
however that for R = u = 0 we already have p = 0 for all z , so
that we should take p = 0 also for z = 0. Of course this only
occurs when evaluating the force in the center.
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The radial force now becomes

KR(R, z) = 2G

∫ ∞

0

∫ ∞

−∞

(2− p2)K (p)− 2E (p)

p
√

Ru

∂ρ(u, v)

∂u
du dv

For the vertical force and the potential itself we have a product of
Bessel functions of equal order before the integration by parts, but
this of different order after that.

When then the integration over k is done, we get expressions
which contain the Heuman Lambda function. This can be
rewritten only in forms that involve incomplete elliptic integrals of
the first and second kind or the elliptic integral of the third kind,
but these are much more difficult to evaluate numerically.
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Also the integrals over u must then be written as the sum of two
different integrals, one from 0 to R and one from R to ∞. So it is
better to start with the forms before the integration by parts.

For the vertical force we start with

Kz(R, z) = −2πG

Z ∞

0

Z ∞

0

Z ∞

−∞
uJ0(kR)J0(ku)ρ(u, v)sign(z−v)e−k|z−v|dv du dk.

The integration over k yields∫ ∞

0
kJ0(kR)J0(ku)e−k|z−v |dk =

|z − v |p3

4π(1− p2)
√

(uR)3
E (p)

and we get

Kz(R, z) = −G

2

∫ ∞

0

∫ ∞

−∞
sign(z − v)

u|z − v |p3E (p)

(1− p2)
√

(uR)3
ρ(u, v)dv du
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For the potential we start with

Φ(R, z) = −2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
uJ0(kR)J0(ku)ρ(u, v)e−k|z−v |dv du dk

The integration over k now yields∫ ∞

0
J0(kR)J0(ku)e−k|z−v |dk =

p

π
√

uR
K (p)

The potential then is given by

Φ(R, z) = −2G

∫ ∞

0

∫ ∞

−∞

upK (p)√
uR

ρ(u, v)dv du
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There are in the literature many particular potentials that can be
used to describe galaxies, but are not isothermal.

The most important ones will be summarized here.

These are not solutions of the Liouville and Poisson equation.
Rather they are convenient expressions for the potential or density
distribution that can be inserted analytically in Poisson’s equation.
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Plummer model

This was originally used to describe globular clusters.

The potential has the simple spherical form

Φ(R) = − GM√
R2 + a2

The corresponding density distribution is

ρ(R) =

(
3M

4πa3

)(
1 +

R2

a2

)−5/2
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Kuzmin model

This derives from the potential

Φ(R, z) = − GM√
R2 + (a + |z |)2

This is an axisymmetric potential that can be used to describe
very flat disks.

The corresponding surface density is

σ(R) =
aM

2π(R2 + a2)3/2
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Toomre models

These are models that derive from the Kuzmin model by
differentiating with respect to a2.

The n-th model follows after (n − 1) differentiations:

σn(R) = σ(0)

(
1 +

R2

4n2a2

)
The corresponding potential can be derived by differentiating the

potential an equal number of times.

It can be seen that Toomre’s model 1 (which has n = 1) is
Kuzmin’s model.

The limiting case of n →∞ becomes a Gaussian surface density
model.
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Logarithmic potentials

These are made to provide rotation curves that are not Keplerian
for large R.

Since these can be flattened they provide an alternative to the
simple isothermal sphere. The potential is

Φ(R, z) =
V 2
◦
2

ln

(
r2
◦ + R2 +

z2

c2

)
V◦ is the rotation velocity for large radii and c controls the

flattening of the isopotential surfaces (c ≤ 1).
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The density distribution is

ρ(R, z) =
V 2
◦

4πGc2

(2c2 + 1)r2
◦ + R2 + 2z2[1− 1/(2c2)]

(r2
◦ + R2 + z2/c2)2

At large radii R � r◦ the isodensity surfaces have a flattening(
b

a

)2

= c4(2− c−2)

In the inner regions R � r◦ it is(
b

a

)2

=
1 + 4c2

2 + 3c−2

The rotation curve is

Vrot =
V◦R√
r2
◦ + R2
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Oblate spheroids

Assume that all iso-density surfaces are confocal ellipsoids with
axis ratio c/a and therefore excentricity

e =

√
1− c2

a2

Let the density along the major axis be ρ(R). Define

α(R, z) = R2 +
z2

1− e2

The forces and the potential can then be calculated. I will not
treat the full derivation11, but simply list the equations.

11See Binney & Tremaine, section 2.5
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Inside the spheroid the forces and potential are

KR = −4πG
√

1− e2

e3
R

∫ sin−1 e

0
ρ(α) sin2 βdβ

Kz = −4πG
√

1− e2

e3
z

∫ sin−1 e

0
ρ(α) tan2 βdβ

Φ(R, z) =
4πG

√
1− e2

e

[∫ δ

0
ρ(α)αβdα+ sin−1 e

∫ a

δ
ρ(α)αdα

]
Here

δ2 = R2 +
z2

1− e2

α2 =
R2 sin2 β + z2 tan2 β

e2

Piet van der Kruit, Kapteyn Astronomical Institute The self-consistency problem and potential theory



Contents
The self-consistency problem

Isothermal solutions and related results
Potential theory

Various potentials
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Outside the spheroid (α > a) we have

KR = −4πG
√

1− e2

e3
R

∫ γ

0
ρ(α) sin2 βdβ

Kz = −4πG
√

1− e2

e3
z

∫ γ

0
ρ(α) tan2 βdβ

Φ(R, z) =
4πG

√
1− e2

e

∫ a

0
ρ(α)αβdα

Here γ follows from

R2 sin2 γ + z2 tan2 γ = a2e2
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Stäckel potentials.

Oblate spheroids
Infinitesimally thin disks
Exponential disk

Infinitesimally thin disks

This is analogous to the treatment of general disk potentials
above, but now the vertical distribution is a δ-function.

The equation we had before based on the Hankel-transform was

Φ(R, z) = −2πG

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
uJ0(kR)J0(ku)ρ(u, v)e−k|z−v |dv du dk

The potential can be written for the infinitesimally thin disk as

Φ(R, z) = −2πG

∫ ∞

0
exp (−k|z |)J0(kR)

∫ ∞

0
σ(r)J0(kr)r dr dk
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The rotation velocity then becomes

V 2
c (R) = −R

∫ ∞

0
S(k)J1(kR) k dk

where

S(k) = −2πG

∫ ∞

0
J0(kR)σ(R)dR

It may be useful to calculate the surface density corresponding to a
known rotation curve Vc(R).
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Using the inversion of the first equation above it can be shown
that

σ(R) =
1

π2G

[
1

R

∫ R

0

dV 2
c

dr
K
( r

R

)
dr +

∫ ∞

R

1

r

dV 2
c

dr
K

(
R

r

)
dr

]
where K is the complete elliptic integral.

There is a contribution from the part of the disk beyond R.

This also holds for disks with finite thickness as long as the density
distribution is not described by spheroids.

In general the rotation curve of a disk depends on the surface
density at all radii.
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Mestel disk

This has the surface density distribution

σ(R) = σ◦
R◦
R

The corresponding rotation curve is flat and has

V 2
c (R) = 2πGσ◦R◦ =

GM(R)

R

where M(R) is the mass interior to R.
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Exponential disk

This is treated in a famous paper by Freeman12. The surface
density is

σ(R) = σ◦ exp
(
−R

h

)
The corresponding potential from the equation above for a
infinitessimaly thin disk is

Φ(R, 0) = −πGσ◦R

[
I◦

(
R

2h

)
K1

(
R

2h

)
− I1

(
R

2h

)
K0

(
R

2h

)]
Here I and K are the modified Bessel functions.

12K.C. Freeman, Ap.J. 160, 811 (1970)
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The rotation curve is (again with the equation above for
infinitessimally thin disks)

V 2
c (R) = 4πGσ◦h

(
R

2h

)2 [
I0

(
R

2h

)
K0

(
R

2h

)
− I1

(
R

2h

)
K1

(
R

2h

)]

The total potential energy of the disk is

Ω ≈ −11.6Gσ2
◦h

3

The rotation curve and the corresponding resonances are shown in
the next figures. Note the approximate constancy of Ω− κ/2 with
radius.
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Stäckel potentials
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Stäckel potentials are potentials that can be written as separable
functions in ellipsoidal coordinate systems.

They are defined as follows13.

If (x , y , z) is a cartesian coordinate system, then the ellipsoidal
coordinates (λ, µ, ν) are the three roots for τ of

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1

where α < β < γ are three constants.

13P.T. de Zeeuw, MNRAS 236, 273 (1985)
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The coordinate system is illustrated in the picture below.
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I will here only treat the axisymmetric case with oblate density
distributions (which means a prolate potential distribution), which
applies to disk galaxies14.

In that case the coordinate system is spheroidal and it can be seen
as a further generalisation of the axisymmetric, plane-parallel case,
where the potential is separable in R and z .

14See also H. Dejonghe & P.T. de Zeeuw, Ap.J. 333, 90 (1988); S.M. Kent
& P.T. de Zeeuw, A.J. 102, 1994 (1991)
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Coordinate system

The new coordinate system is (λ, φ, ν). The relation with the
axisymmetric system (r , φ, z) is, that λ and ν are the two roots for
τ of

r2

τ + α
+

z2

τ + γ
= 1

with
0 ≤ ν ≤ λ

The constants α and γ are sometimes also given in the form

α = −a2, γ = −c2

These correspond to a focal distance

∆ = (|γ − α|)1/2 = (|a2 − c2|)1/2

Note that λ and ν have a dimension of length2.
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The coordinate surfaces are spheroids for constant λ and
hyperboloids for constant ν with the z-axis as rotation axis.

The case for flattened disks obtains, when −α > − γ, so that
−γ = c2 ≤ ν ≤ −α = a2 ≤ λ.

Spheroids of constant λ then are prolate, while the hyperboloids of
constant ν have two sheets.

On each meridional plane of constant φ we then have elliptical
coordinates (λ, ν) with foci on the z-axis at z = ±∆.

Note that the mass distribution is oblate, although the coordinate
system is prolate.
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Other relations between the two coordinate systems are

r2 =
(λ+ α)(ν + α)

α− γ
; z2 =

(λ+ γ)(ν + γ)

γ − α

and

λ, ν = 1
2(r2 + z2 − γ − α)± 1

2

√
(r2 − z2 + γ − α)2 + 4r2z2

Also

λ+ ν = r2 + z2 − α− γ ; λν = αγ − γr2 − αz2

Note that ν and λ occupy different, but contiguous parts of the
positive real line.
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I In the plane we have ν = −γ, λ = r2 − α

I On the z-axis
I ν = z2 − γ, λ = −α for 0 ≤ |z | ≤ ∆
I ν = −α, λ = z2 − γ for |z | ≥ ∆.
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The potential and the density distribution

Suppose that the potential Φ, which is minus the usual potential Φ
and therefore always positive, can be separated as follows

Φ(λ, ν) =
(λ+ γ)G (λ)− (ν + γ)G (ν)

λ− ν

Such potentials are called (axi-symmetric) Stäckel potentials.

For models with a finite mass M the potential should tend to zero
for large radii, which means that for λ→∞ we get

G (λ) ∼ GM

λ1/2
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The density ρ, which is defined such that ρ dx dy dz is the mass in
the volume element dx dy dz , can be calculated from Poisson’s
equation, which has the complicated form

πGρ(λ, ν)(ν − λ) = (λ+ α)(λ+ γ)
∂2Φ

∂λ2
+
(

3
2λ+ 1

2α+ γ
) ∂Φ

∂λ
−

(ν + α)(ν + γ)
∂2Φ

∂ν2
−
(

3
2ν + 1

2α+ γ
) ∂Φ

∂ν

The Kuzmin equation gives the properties, when the density on the
z-axis are given:
Assume that this density is ϕ(τ), where τ = λ, ν and note from
above that on the z-axis we always have τ = z2 − γ for all z .
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Then the density is

ρ(z) = ϕ(z2 − γ) = ϕ(τ)

Define the primitive function of ϕ(τ) as

ψ(τ) =

∫ τ

−γ
ϕ(σ) dσ

Then the density follows from

ρ(λ, ν) =

(
λ+ α

λ− ν

)2

ϕ(λ)−

2
(λ+ α)(ν + α)

(λ− ν)2
ψ(λ)− ψ(ν)

λ− ν
+

(
ν + α

λ− ν

)2

ϕ(ν)
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The total mass is

M = 2π

∫ ∞

−γ

σ + 2γ − α√
σ + γ

ϕ(σ) dσ = 4π

∫ ∞

0
(z2 + ∆2)ϕ(z) dz

The potential follows from

G (τ) = 2πGψ(∞)− 2πG√
τ + γ

∫ τ

−γ

σ + α

2(σ + γ)3/2
ψ(σ) dσ
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Velocities, angular momentum and integrals of motion

In order to convert velocities we write

cos Θ =

[
(ν + α)(λ+ γ)

(α− γ)(λ− ν)

]1/2

; sinΘ =

[
(λ+ α)(ν + γ)

(γ − α)(λ− ν)

]1/2

Velocities are related for the oblate mass models (γ − α > 0) as

Vr = Vλ cos Θ− Vν sin Θ ; sign (z) Vz = Vλ sin Θ + Vν cos Θ

and

Vλ = Vr cos Θ+sign (z) Vz sin Θ ; Vν = −Vr sin Θ+sign (z) Vz cos Θ

Note that Vλ and Vν are velocities in the local Cartesian system
and do not describe the changes in λ and ν.
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For the momenta we need the coefficients of the coordinate system

P2 =
λ− ν

4(λ+ α)(λ+ γ)
; R2 =

ν − λ

4(ν + α)(ν + γ)

The momenta then are

pλ = PVλ, pφ = rVφ, pν = RVν .

The angular momenta are

Lx = y ż − zẏ = rVz sinφ− z(Vr sinφ+ Vφ cosφ)

Ly = zẋ − xż = −rVz cosφ+ z(Vr cosφ− Vφ sinφ)

Lz = xẏ − y ẋ = rVφ

The total angular momentum L is

L2 = (r2 + z2)V 2
φ + (rVz − zVr)
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Integrals of motion

It can then be shown that there are three integrals of motion,
namely

I1 = E = −

(
p2

λ

2P2
+

p2
φ

2r2
+

p2
ν

2R2

)
+ Φ(λ, ν)

I2 = 1
2L2

z

I3 = 1
2(L2

x + L2
y) + (γ − α)

[
1
2V 2

z − z2 G (λ)− G (ν)

λ− ν

]
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The equations of motion then are

p2
λ =

1

2(λ+ α)

[
G (λ)− I2

λ+ α
− I3
λ+ γ

− E

]
p2

φ = 2I2

p2
ν =

1

2(ν + α)

[
G (ν)− I2

ν + α
− I3
ν + γ

− E

]

In the meridional plane the orbits are restricted to the area defined
by

−γ ≤ ν ≤ ν0, λ1 ≤ λ ≤ λ2

where the turning points ν0, λ1 and λ2 are the values for ν and λ
for which respectively Vν and Vλ are zero.

The case ν = −γ corresponds to z = 0.
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The turning points are the three solutions τ1 ≤ τ2 ≤ τ3 of

G (τ)− I2
τ + α

− I3
τ + γ

− E = 0

where in general there should be

I one solution τ1 ≤ −α, which is ν0, and

I two solutions −α ≤ τ2 ≤ τ3, which are λ1 and λ2.
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In the case of an oblate mass distribution (prolate coordinate
system) all orbits are “short axis tubes”, bounded by two prolate
spheroids and one hyperboloid of one sheet.
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