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Differential rotation

The Galaxy does not rotate like a solid wheel. The period of
revolution varies with distance from the center. This is called
differential rotation.

Each part moves with respect to those parts that do not happen to
be at the same galactocentric distance.
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Say, the rotation speed is
V (R) and in the solar
neighborhood it is V◦.

If the Sun Z is at a distance
R◦ from the center C,
then an object at distance r
from the Sun at Galactic
longitude l
has a radial velocity w.r.t. the
Sun Vrad and a tangential
velocity T .
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Vrad = Vr(R)−Vr(0) = V (R) sin(l + θ)−V◦ sin l

T = T (R)− T (0) = V (R) cos(l + θ)− V◦ cos l

R sin(l + θ) = R◦ sin l

R cos(l + θ) = R◦ cos l − r

Piet van der Kruit, Kapteyn Astronomical Institute Motions, instabilities and the velocity ellipsoid



Contents
Kinematics of the Galaxy

Instabilities
Ellipsoidal velocity distribution

Differential rotation
Epicycle orbits
Vertical motion
Resonances

Substitute this and we get

Vrad = R◦

(
V (R)

R
− V◦

R◦

)
sin l (1)

T = R◦

(
V (R)

R
− V◦

R◦

)
cos l − r

R
V (R) (2)

So, if we would know the rotation curve V (R) we can calculate the
distance R from observations of Vrad. From this follows r with an
ambiguity symmetric with the sub-central point.

The latter is that point along the line-of-sight that is closest to the
Galactic Center.

V (R) can be deduced in each direction l by taking the largest
observed radial velocity. This will be the rotation velocity at the
sub-central point.
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With the 21-cm line of HI, the
distribution of hydrogen in the
Galaxy has been mappeda.
This was the first indication
that the Galaxy is a spiral
galaxy.

aK.K. Kwee, C.A. Muller & G.
Westerhout, Bull. Astron. Inst.
Neth. 12, 211 (1954); J.H. Oort,
F.J. Kerr & G. Westerhout,
Mon.Not.R.A.S. 118, 379 (1958)
and J.H. Oort, I.A.U. Symp. 8, 409
(1959)
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We now make local approximations; that is r � R◦.

Change to angular velocities ω(R) = V (R)/R and ω◦ = V◦/R◦
and make a Tayler expansion

f (a + x) = f (a) + x
df (a)

da
+

1

2
x2 d2f (a)

d2a
+ ....

for the angular rotation velocity

ω(R) = ω◦ + (R − R◦)

(
dω

dR

)
R◦

+ 1
2(R − R◦)

2

(
d2ω

dR2

)
R◦

The cosine-rule gives

R = R◦

[
1 +

(
r

R◦

)2

− 2r

R◦
cos l

]1/2
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Make a Tayler expansion for this expression and ignore terms of
higher order than (r/R◦)

3.

R = R◦

[
1− r

R◦
cos l +

1

2

(
r

R◦

)2

(1− cos2 l)

]

R − R◦ = −r cos l +
1

2

r2

R◦
(1− cos2 l)

(R − R◦)
2 = r2 cos2 l

Substitute this in the equation for ω

ω(R) = ω◦ +

(
dω

dR

)
R◦

R◦

[
− r

R◦
cos l +

1

2

(
r

R◦

)2

(1− cos2 l)

]

+
1

2

(
d2ω

dR2

)
R◦

R2
◦

(
r

R◦

)2

cos2 l
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or in linear velocity

Vrad =

(
r

R◦

)2 (
dω

dR

)
R◦

R2
◦
2

sin l − r

R◦

(
dω

dR

)
R◦

R2
◦ sin l cos l

+
1

2

(
r

R◦

)2
[
−

(
dω

dR

)
R◦

R2
◦ +

(
d2ω

dR2

)
R◦

R3
◦

]
sin l cos2 l

Use 2 sin l cos l = sin 2l and ignore terms with (r/R◦)
2 and higher

orders. Then

Vrad = −1
2R◦

(
dω

dR

)
R◦

r sin 2l ≡ Ar sin 2l

So, stars at the same distance r will show a systematic pattern in
the magnitude of their radial velocities accross the sky with
Galactic longitude.
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For stars at Galactic latitude b we have to use the projection of the
velocities onto the Galactic plane:

Vrad = Ar sin 2l cos b

For the tangential velocities we make a change to proper motions
µ. In equivalent way we then find

T

r
= 4.74µ = −ω◦ +

3

2

(
dω

dR

)
R◦

r cos l −
(

dω

dR

)
R◦

R◦ cos2 l

+
r

2R

[
−

(
dω

dR

)
R◦

+

(
d2ω

dR2

)
R◦

R2
◦

]
cos3 l
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Now use cos2 l = 1
2 + 1

2 cos 2l and ignore all terms (r/R◦) and
higher order.

4.74µ = −ω◦ − 1
2

(
dω

dR

)
R◦

R◦ − 1
2R◦

(
dω

dR

)
R◦

cos 2l

≡ B + A cos 2l

Now the distance dependence has of course disappeared.

For higher Galactic latitude the right-hand side will have to be
multiplied by cos b.

The constants A and B are the Oort constants. Oort first made
the derivation above (in 1927) and used this to deduce the rotation
of the Galaxy from observations of the proper motions of stars.
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The Oort constanten can also be written as

A =
1

2

[
V◦
R◦

−
(

dV

dR

)
R◦

]

B = −1

2

[
V◦
R◦

+

(
dV

dR

)
R◦

]

Furthermore

A + B = −
(

dV

dR

)
R◦

; A− B =
V◦
R◦

Current best values are

R◦ ∼8.5 kpc A ∼13 km s−1 kpc−1

V◦ ∼ 220 km s−1 B ∼-13 km s−1 kpc−1

Piet van der Kruit, Kapteyn Astronomical Institute Motions, instabilities and the velocity ellipsoid



Contents
Kinematics of the Galaxy

Instabilities
Ellipsoidal velocity distribution

Differential rotation
Epicycle orbits
Vertical motion
Resonances

The rotation curve V (R) is difficult to derive beyond R◦ and this
can only be done with objects of known distance such as HII
regions). One determination of the Galactic rotation curve:
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We see that up to large distances from the center the rotation
velocity does not drop.

In a circular orbit around a point mass M we have M = V 2R/G
(as in the Solar System). This is called a Keplerian rotation curve.

One expects that the rotation curve of the Galaxy tends to such a
behavior as one moves beyond the boundaries of the disk. We we
do see a flat rotation curve.

We also see this in other galaxies. It shows that more matter must
be present than what we observe in stars, gas and dust and this is
called dark matter.

With the formula estimate the mass within R◦ as ∼ 9.6× 1010M�.

At the end of the measured rotation curve this enclosed mass
becomes ∼ 1012M�.
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Epicycle orbits

For small deviation from the
circular rotation, the orbits of
stars can be described as
epicyclic orbits.

If R◦ is a fudicial distance from the center and if the deviation
R − R◦ is small compared to R◦, then we have in the radial
direction

d2

dt2
(R−R◦) =

V 2(R)

R
−V 2

◦
R◦

= 4B(A−B)(R−R◦) = −κ2(R−R◦),

where the last approximation results from making a Taylor
expansion of V (R) at R◦ and ignoring higher order terms.
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This equation is of the form ẍ = −κ2x and is easily integrated

R − R◦ =
VR,◦
κ

sin κt,

In the tangential direction we have

dθ

dt
=

V (R)

R
− V◦

R◦
= −2

A− B

R◦
(R − R◦),

where θ is the angular tangential deviation seen from the Galactic
center. Then

θR◦ = −
VR,◦
2B

cos κt
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The orbital velocities are

VR = VR,◦ cos κt,

Vθ − Vθ,◦ =
VR,◦κ

−2B
sin κt.

The period in the epicycle equals 2π/κ and κ is the epicyclic
frequency

κ = 2{−B(A− B)}1/2.

In the solar neighborhood κ ∼36 km s−1 kpc−1.
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For a flat rotation curve we have

κ =
√

2
V◦(R)

R
.

Through the Oort constants and the epicyclic frequency, the
parameters of the epicycle depend on the local forcefield, because
these are all derived from the rotation velocity and its radial
derivative.

The direction of motion in the epicycle is opposite to that of
galactic rotation.
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The ratio of the velocity dispersions or the axis ratio of the velocity
ellipsoid in the plane for the stars can be calculated as

〈V 2
R〉1/2

〈V 2
θ 〉1/2

=

√
−B

A− B
.

For a flat rotation curve this equals 0.71.

With this result the hydrodynamic equation can then be reduced to
the so-called asymmetric drift equation. Recall

−KR =
V 2

t

R
− 〈V 2

R〉
[

∂

∂R
(ln ν〈V 2

R〉) +
1

R

{
1− 〈(Vθ − Vt)

2〉
〈V 2

R〉

}]
+

〈VRVz〉
∂

∂z
(ln ν〈VRVz〉)
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For the case the cross-dispersion in the last term is zero, we can
now write

V 2
rot − V 2

t =

−〈V 2
R〉

{
R

∂

∂R
ln ν + R

∂

∂R
ln〈V 2

R〉+

[
1− B

B − A

]}
.

Here Vrot is the ‘circular’ velocity that corresponds directly to a
centrifigal force V 2

rot/R equal to the gravitational force KR.
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If the asymmetric drift (Vrot − Vt) is small, the left-hand term can
be approximated by

V 2
rot − V 2

t ∼ 2Vrot(Vrot − Vt).

The term asymmetric drift comes from the observation that
objects in the Galaxy with larger and larger velocity dispersion lag
more and more behind in the direction of Galactic rotation.
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Vertical motion

For the vertical motion the equivalent approximation is also that of
a harmonic oscillator.

For a constant density the hydrodynamic equation reduces to

Kz =
d2z

dt2
= −4πGρ0z .

Integration gives

z =
Vz,◦
λ

sin λt ; Vz = Vz,◦ cos λt.

The period equals 2π/λ and the vertical frequency λ is

λ = (4πGρ0)
1/2.
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For the solar neighbourhood we have ρ0 ∼0.1 M� pc−3.

With the values above for R◦, V◦, A and B, the epicyclic period
κ−1 ∼ 1.7× 108 yrs and the vertical period λ−1 ∼ 8× 107 yrs.

This should be compared to a period of rotation of 2.4 ×108 yrs.

The Sun moves with ∼20 km s−1 towards the Solar Apex at
Galactic longitude ∼ 57◦ and latitude ∼ +27◦.

From the curvature of the ridge of the Milky Way the distance of
the Sun from the Galactic Plane is estimated as 12 pc.

The axes of the solar epicycle are about ∼0.34 kpc in the radial
direction and ∼0.48 kpc in the tangential direction.

The amplitude of the vertical motion is ∼85 pc.
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Resonances

The most important ones are between epicyclic frequency and
some other frequency that we will call pattern speed Ωp.

The inner Lindblad resonance occurs for

Ωp = Ωrot(R)− κ

2

where Ωrot(R) is the angular rotation speed.

This resonance occurs at the radius, where –in a rotating frame
with angular velocity Ωp– the particle goes through 2 epicycles in
the same time is it goes once around the centre. The resulting
orbit in that frame then is closed and has an oval shape.

It goes back to Lindblad’s discovery that the property
Ωrot(R)− κ/2 in the inner Galaxy is roughly constant with R.
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The pattern speed may be identified with that of the rotating
frame in which the spiral pattern (not the spiral arms as physical
structures themselves) is stationary or with the body rotation of a
bar or oval distortion.

Equivalently we have the outer Lindblad resonance

Ωp = Ωrot(R) +
κ

2

and co-rotation
Ωp = Ωrot(R)

Higher order Lindblad resonances (involving κ/n) sometimes also
play a role.
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Jeans instability

We then start with the Jeans instability in a homogeneous
medium.

There are various ways of describing it to within an order of
magnitude.

The first is to make use of the virial theorem

2 Tkin + Ω = 0

for stability against gravitational contraction.
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In a uniform, isothermal sphere the kinetic energy is

Tkin = 1/2 M〈V 2〉

and the potential energy

Ω = −3

5

GM2

R

So the sphere will contract when its mass M is larger than the
value required by the virial theorem.

This is called the Jeans mass MJeans, which then comes out as

MJeans =

(
5

3G

)3/2 (
3

4π

)1/2 (
〈V 2〉3

ρ

)1/2
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A method that gives roughly the same result starts by calculating
the free-fall time of a homogeneous sphere.
Anywhere the equation of motion is

d2r

dt2
= −G M(r)

r2
= −4π

3
Gρr

Solve this and apply for r = 0, then

tff =

(
3π

32Gρ

)1/2

The free-fall time is independent of the initial radius and depends
only on the density. Now, if there were no gravity a star will move
out to the radius of the sphere R in a time

t =
R

〈V 2〉1/2
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For marginal stability the two have to be equal and it follows that
the Jeans length is

RJeans =

(
3π

32

〈V 2〉
Gρ

)1/2

Sometimes in the literature the Jeans length is taken as the
diameter of the sphere.
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Toomre criterion for local stability

Next we need to consider Toomre’s1 criterion for local stability:

Q =
〈V 2

R〉1/2κ

3.36Gσ

〈V 2
R〉1/2 is the stellar velocity dispersion in the R-direction, σ is the

local disk surface density and κ is the epicyclic frequency.

An approximate derivation of Toomre’s criterion can be made for
an infinitesimally thin disk.

1. At small scales the Jeans instability needs to be considered.

1A. Toome, Ap.J. 139, 1217 (1964)
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Take an area with radius R and surface density σ. The equation of
motion is

d2R

dt2
= −πGσ

Solve this and apply for R = 0; this gives the free-fall time

tff =

(
2R

πGσ

)1/2

A star moves out to radius R in a time

t =
R

〈V 2〉1/2

and this must for marginal stability be equal to the free-fall time.
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This then gives the Jeans length

RJeans =
2〈V 2〉
πGσ

2. At large scale we need to consider stability resulting from
differential rotation.

Take an area with radius R◦; the angular velocity from differential
rotation is

Ω = B

The centrifugal force is then

Fcf = R◦Ω
2
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Let it contract to radius R, then the angular velocity becomes

Ω =
R2
◦B

R2

and the centrifugal force

Fcf = RΩ2 =
R4
◦B

2

R3

If the contraction is dR then

dFcf

dR
= −3R4

◦B
2

R4
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Now look at the gravitational force

Fgrav = −GπR2
◦σ

R2

This is correct to within a factor 2 for a flat distribution. Then

dFgrav

dR
=

2πGR2
◦σ

R3

At R = R◦ these two must compensate each other, so

Rcrit =
2πGσ

3B2

and the disk is stable for all R > Rcrit.
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3. Toomre’s stability criterion then follows by considering that the
disk is stable at all scales if the minimum radius for stability by
differential rotation is equal to or smaller than the maximum radius
for stability by random motions (the Jeans radius).

Thus

〈V 2〉1/2
crit =

π√
3

Gσ

B

In practice B ≈ −A (for flat rotation curves), so we can write

〈V 2〉1/2
crit ∼ 2π

(
2

3

)1/2 Gσ

κ
= 5.13

Gσ

κ

Toomre in his precise treatment found a constant of 3.36.
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Goldreich–Lynden-Bell criterion

This can be extended to the criterion, that Goldreich and
Lynden-Bell2 derived for stability of gaseous disks of finite
thickness against sheared instabilities:

πGρ

4B(B − A)
<∼ 1

This follows from the result for the Toomre criterion above as
follows.

From the vertical oscillation above we find that the maximum
distance from the plane is

z◦ =
Vz,◦

(4πGρ◦)1/2

2R. Goldreich & D. Lynden-Bell, MNRAS 193, 189 (1965)
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Equate the critical velocity dispersion in our derivation of the
Toomre criterion to Vz,◦, then

12

π
G−1z2

◦ρ◦
B2

σ2

Now take a mean density ρ equal to σ/z◦ and to 1
2ρ0 and using

(B − A) ≈ 2B, we get

π

3
G

ρ

B(B − A)
∼ 1

These sheared instabilities were proposed by Goldreich &
Lynden-Bell as a possible mechanism for the formation of spiral
structure.
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More recently, Toomre3 has studied the process in stellar disks and
finds an instability based on shear due to differential rotation, that
he called swing amplification. This process is prevented when

X =
Rκ2

2πmGσ
>∼ 3

where m is the number of arms. For −B ≈ A (a flat rotation
curve) this can be written as

QVrot

〈V 2
R〉1/2

>∼ 3.97 m

This is Toomre’s local stability citerion if the velocity dispersion is
replaced by 0.22 Vrot/m.

3A. Toomre, Normal Galaxies, ed. S.M. Fall & D. Lynden-Bell, 111 (1981)
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Global stability

For global stability there is a global condition due to Efstathiou,
Lake & Negroponte4 from numerical experiments, which reads

Y = Vrot

(
h

GMdisk

)1/2
>∼ 1.1

For a pure exponential disk with surface density
σ(R) = exp (−R/h) without any dark halo Y = 0.59.

For a flat rotation curve it is then easy to show that the condition
implies that within the disk radius of 4 to 5 scalelengths h the mass
in the halo should exceed that of the disk by a factor of about 3.5.

4G. Efstathiou, G. Lake & J. Negroponte, MNRAS 199, 1069 (1982)
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For a flat rotation curve and an exponential disk Y can be
rewritten as

Y = 0.615

{
QRVrot

h〈V 2
R〉1/2

}1/2

exp
(

R

2h

)
and this gives

QVrot

〈V 2
R〉1/2

>∼ 7.91

Comparing this to the equation for swing amplification we see
that for spirals that are stable against global modes, swing
amplification is possible for all modes with m ≥ 2, at least at those
radii where the rotation curve is flat.
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Ostriker & Peebles5 have also found from numerical experiments a
general condition for global stability.

Stability occurs only when the ratio of kinetic energy in rotation S
to the potential energy Ω

t =
S

|Ω|
<∼ 0.14

The virial theorem says that 2S + 2R + Ω = 0, where S is the
kinetic energy in random motions.

Since R/S > 0, we would have expected t to have the range 0 –
0.5 available.

5J.P. Ostriker & P.J.E. Peebles, Ap.J. 186, 467 (1973)
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The criterion translates into R/S >∼ 2.5, while for the local
Galactic disk it is about 0.15.

So disk galaxies require additional material with high random
motion in order to conform to the criterion, either in the disk itself
(e.g. the stars in the central region) or in the dark halo.
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Tidal radius

Globular clusters have tidal radii due to the force field of the
Galaxy. These radii can be estimated as follows.

Assume two point masses M (the Galaxy) and m (the cluster) and
a separation R in a circular orbit (the following can be adapted to
elliptical orbits as well with R the smallest separation).

Kepler’s third law says

T 2

a3
=

4π2

G (M + m)
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For a circular orbit we can find the angular velocity of the globular
cluster around the center of gravity is

Ω =

[
G (M + m)

R3

]1/2

The center of gravity is at a distance MR/(M + m) from the
cluster.

Take a star at distance r from the center of the cluster in the
direction of M and calculate where the total force on that star is
zero. Thus in terms of accelleration (after dividing by G )

M

(R − r)2
− m

r2
− M + m

R3

(
MR

M + m
− r

)
= 0
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Since r is much less than R we may expand the first term

M

(R − r)2
≈ M

R2

(
1 + 2

r

R

)
Since m is small compared to M the third term can be reduced to

M + m

R3

(
MR

M + m
− r

)
=

M

R2
− mr

R3

Then the equation reduces to

3Mr

R3
− m

r2
= 0
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The tidal radius then is the solution for r of this equation:

rtidal ∼ R
( m

3M

)1/3

For M = 1012 M�, m = 105 M� and R = 10 kpc we get
rtidal ≈ 30 pc.

Observed tidal radii can be used to constrain the mass distribution
in the Galaxy.
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The Schwarzschild distribution

The distribution of space velocities of the local stars can be
described with the so-called ellipsoidal distribution.

This was first introduced by Karl Schwarzschild and is therefore
also called the Schwarzschild distribution.

The distribution is Gaussian along the principal axes, but has
different dispersions. This anisotropy was Schwarzschild’s
explanation of the “star-streams” that were discovered by Kapteyn.
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The general equation for the Schwarzschild distribution is

f (R, z ,VR,Vθ,Vz) =
8〈V 2

R〉〈V 2
θ 〉〈V 2

z 〉
π3/2

ν

exp
[
−

V 2
R

2〈V 2
R〉

− (Vθ − Vt)
2

2〈V 2
θ 〉

− V 2
z

2〈V 2
z 〉
−

VRVθ

2〈VRVθ〉
− VRVz

2〈VRVz〉
− (Vθ − Vt)Vz

2〈VθVz〉

]
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There is an interesting deduction that can be made from this
ellipsoidal velocity distribution, which was done by Oort in the
same paper in which he discovered differential rotation, defined the
Oort constants and laid the foundations for “stellar dynamics”6.

Take the asymmetric drift equation, insert this distribution and add
the condition that z = 0 is a plane of symmetry.

Then you get an equation in terms of velocities and multiplications
thereof that has to be identical, so that all terms need to be zero.

This is a lot of algebra (see Oort’s paper).

6J.H.Oort, B.A.N. 4, 269 (1928), see also his chapter in Stars & Stellar
Systems V, Galactic Structure, ed. Adriaan Blaauw & Maarten Schmidt, 455
(1965)
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The result is

2〈V 2
R〉 = C1 + 1

2C5z
2

2〈V 2
θ 〉 = C1 + C2R

2 + 1
2C5z

2

2〈V 2
z 〉 = C4 + 1

2C5z
2

2〈VRVz〉 = −C5Rz

〈VRVθ〉 = 〈VθVz〉 = 0

Vt =
C3R

C1 + C2R2 + 1
2C5z2

The constants C1 to C5 are positive constants.
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The density distribution at z = 0 follows from

∂ln ν

∂R
= 2C1KR +

C 2
2 R2 + (2C1C

2
3 − C1C2)R

(C2R2 + C1)2
− C1R

C5R2 + 2C4

and the vertical gradient from

∂ln ν

∂z
= (C5R

2 + 2C4)Kz − C5z [RKR+

2(C2 + 2C 2
3 )R2 + C5z

2 + 2C1

(2C2R2 + C5z2 + 2C1)2
+

1

C5z2 + 2C1

]
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Oort’s derivation only holds if the stellar velocity distribution is
exactly Gaussian.

It is too restrictive (e.g. it does not allow high-velocity stars) and
therefore, it cannot be used for a description of galactic dynamics.

In reality, the velocity distributions are not precisely Gaussian and
are better seen as a superposition of Gaussians (such as of groups
of stars with similar ages).

So, these equations are of historical interest only. However, it is
interesting to see that Oort assumed that C5 = 0. This uncoupled
the radial and vertical motion (as for a third integral).
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Properties of the velocity ellipsoid

For the solar neighbourhood, but probably anywhere in galactic
disks, the velocity distribution of the stars is very anisotropic.

I The ratio of the radial versus tangential velocity dispersions is
determined by the local differential rotation and can be
derived using the epicycle approximation.

The axis ratio of the epicycles depend on the local Oort
constants and therefore axis ratio of the velocity ellipsoid is

〈V 2
θ 〉

〈V 2
R〉

=
−B

(A− B)
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I The ratio of the vertical to radial velocity dispersion is
unconstrained, as a result of the third integral.

However, the existence of a third integral does not necessarily
imply that the velocity distribution has to be anisotropic.

If no third integral would exist, the velocity distribution would
have to be isotropic, according to Jeans.
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I The long axis of the velocity ellipsoid in the plane should
point to the center.

However, it does not in practice. This is called the “deviation
of the vertex” and presumably is due to local irregularities in
the Galactic gravitational field.

I The long axis of the velocity ellipsoid outside the plane has an
unknown orientation.

This has been a longstanding problem, also sometimes
referred to as the “tilt” of the velocity ellipsoid.

Oort assumed the long axis to be parallel to the Galactic
plane (C5 = 0), but later assumed it to be pointing always
towards the Galactic center.
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There is an interesting consequence in this respect of flat rotation
curves7.

Take the Poisson equation for the axisymmetric case

∂KR

∂R
+

KR

R
+

∂Kz

∂z
= −4πGρ(R, z)

For a flattened disk, it can be shown that the first two terms in or
near the plane z = 0 are

∂KR

∂R
+

KR

R
≈ 2(A− B)(A + B)

7P.C. van der Kruit & K.C. Freeman, Ap.J. 303, 556 (1986)
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In 1965, Oort8 estimated that the first two terms are in the solar
neighborhood and in the plane of the Galaxy about 34 times
smaller than the third term.

For a flat rotation curve we have A = −B, so the equation reduces
to that for a plane-parallel case.

On this basis one may expect for small distances from the plane
that the long axis is parallel to the plane.

So with flat rotation curves the plane-parallel case turns out to be
a much better description of reality than may expected on the
basis of the form of the Poisson equation.

8J.H. Oort, Stars & Stellar Systems V, Galactic Structure, ed. Adriaan
Blaauw & Maarten Schmidt, p. 455 (1965)
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The closure problem

The hydrodynamical equations were obtained by multiplication of
the Liouville equation with velocities and then integrating over all
velocity space.

This system is not complete (there is a “closure problem”): there
are only three equations for eight unknowns (the density, rotation
velocity, three velocity dispersions and three “cross-dispersions” as
a function of position).

In principle one could take higher order moments (by multiplying
the Jeans equations with velocities once more and again
integrating over all velocities), but this produces more extra
unknowns than extra equations.
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However, with reasonable assumptions9 there has been some
progress.

It works as follows. In analogy to the second moment

σab(R, z) = 〈VaVb〉 =
1

ν

∫
(Va − 〈Va〉)(Vb − 〈Vb〉)fd3V

one defines the third and fourth moments as

Sabc(R, z) = 〈VaVbVc〉 =
1

ν

∫
(Va−〈Va〉)(Vb−〈Vb〉)(Vc−〈Vc〉)fd3V

Tabcd(R, z) = 〈VaVbVcVd〉

=
1

ν

∫
(Va − 〈Va〉)(Vb − 〈Vb〉)(Vc − 〈Vc〉)(Vd − 〈Vd〉)fd3V

9P.O. Vandervoort, Ap.J. 195, 333 (1975); and in particular P. Amendt &
P. Cuddeford, Ap.J. 368, 79 (1991); P. Cuddeford & P. Amendt, MNRAS 256,
166 (1992)
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The third moment correponds to the “skewness” (e.g.
SRRR/(σRR)3/2). It is zero for a Gaussian, since this is completely
symmetric.

The fourth moment corresponds to the “kurtosis” (e.g.
TRRRR/(σRR)2), which decribes how peaked the distribution is; a
Gaussian has a kurtosis of 3.
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The assumptions of Amendt & Cuddeford were
I All parameters can be expanded in terms of a small parameter

ε, which is the ratio of the radial velocity dispersion to the
rotation velocity.

I The ordering scheme of these remains such that only terms in
the leading order have to be taken. Thus e.g. in

Sabc =
∞∑

n=0

εn+3Sn+3
abc

the higher order components of Sabc become smaller with n.
I The velocity distributions are Gaussian (Schwarzschild) up to

one more order than required by the equations. This happens
to translate e.g. for the kurtosis into

TRzzz

σ2
RZσ2

zz

= 3 + O(ε3)
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These assumptions mean that we have to do with a cool, highly
flattened and quasi-isothermal system.

Then the system can be closed and four more equations result
after a lot of algebra. Here they are from the publication
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These equations can be used to derive further information on the
velocity ellipsoid in cool, flattened galaxies (i.e. in disks).

There are a few applications.
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The tilt of the velocity ellipsoid.
From the equations it can be found that

∂〈VRVz〉
∂z

(R, 0) = λ(R)

(
〈V 2

R〉 − 〈V 2
z 〉

R

)
(R, 0)

with

λ(R) =

[
R2 ∂3Φ

∂R∂z2

(
3
∂Φ

∂R
+ R

∂2Φ

∂R2
− 4R

∂2Φ

∂z2

)−1
]

(R, 0)

For a flat rotation curve this gives

λ(R, 0) =

(
2πGR3

V 2
t − 8πGR2ρ

∂ρ

∂R

)
(R, 0)
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The radial dependence velocity dispersions.
A solution of the equations has the following form

f1(R)

(
∂〈V 2

R〉
∂R

)
(R, 0) + f2(R)〈V 2

R〉(R, 0) = f3(R)

The functions f have complicated forms and are related to the
local potential and kinematics through parameters α, β and γ.

α = −
(

∂2Φ

∂z2

)
(R, 0) = −λ2

where λ is the vertical frequency.
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β =

(
∂2Φ

∂R2

)
(R, 0) +

3

R

(
∂Φ

∂R

)
(R, 0)

=
1

R3

(
∂(R2V 2

t )

∂R

)
(R, 0) = −κ2

with κ the epicyclic frequency.

γ =
1

4

{
R

(
∂2Φ

∂R2

) (
∂Φ

∂z

)−1

+ 3

}
(R, 0)

=

(
〈V 2

θ 〉
〈V 2

z 〉

)
(R, 0)

which is the anisotropy in the velocity distribution.
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This can be solved for a given potential; the most realistic solution
is with a logarithmic-exponential potential

Φ(R, z) = A ln R − BR − Cz2 exp
(
−R

h

)
,

which has (
∂2Φ

∂z2

)
(R, 0) = 2C exp

(
−R

h

)
and thus an exponential density profile (as has been observed for

the surface brightness distribution).
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The resulting distributions show

I The radial velocity dispersion 〈V 2
R〉 decreases more or less

exponentially with radius

I The velocity anisotropy 〈V 2
R〉/〈V 2

z 〉 is roughly constant (in the
inner regions at least)

I Toomre Q is constant with radius, except near the center.

The following graphs show this for a number of combinations of
values for C and h.
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The (square of the) radial velocity dispersion 〈V 2
R〉.
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The axis ratio of the velocity ellipsoid 〈V 2
R〉/〈V 2

z 〉.
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The temperature parameter 〈V 2
R〉/V 2

t .
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The axis ratio of the velocity ellipsoid w.r.t. Q = constant.
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A further application is the following new equation(
∂2〈V 2

z 〉
∂z2

)
(R, 0) = −λ(R)

[(
〈V 2

R〉 − 〈V 2
z 〉

R

)
∂ln 〈V 2

z 〉
∂R

]
(R, 0)

Since λ(R) > 0, 〈V 2
R〉 > 〈V 2

z 〉 and 〈V 2
z 〉 decreasing with R, the

righthand side of the equation has to be positive.

That means that 〈V 2
z 〉 has a minimum in the plane.

So disks are not strictly isothermal in z and numerical values
suggest less peaked in density than the exponential function.
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The final application gives a more accurate estimate of the velocity
anisotropy in the plane through

〈V 2
θ 〉

〈V 2
R〉

=
1

2

{
1 +

∂ln Vt

∂ln R
− Sθθθ

Vt〈V 2
R〉

+
1

νRVt〈V 2
R〉

∂R2νSRRθ

∂R
+

R

Vt〈V 2
R〉

∂SRθz

∂z
+

V 2
t − V 2

rot

Vt〈V 2
R〉2

SRRθ +
TRRθθ

〈V 2
R〉2

}
In practice this can be approximated as

〈V 2
R〉

〈V 2
θ 〉

=
1

2

(
1 +

∂ln Vt

∂ln R
+

TRRθθ

〈V 2
R〉2

)
This constitutes a small correction to the classical result

〈V 2
R〉

〈V 2
θ 〉

=
1

2

(
1 +

∂ln Vt

∂ln R

)
=

−B

A− B
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