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Range of timescales

There are a few timescales that are important.

I Crossing time, which is simply the radius divided by the
velocity R/V .
For a galaxy we take some charactristic radius and typical
velocity.
Note that for a uniform sphere with mass M and radius R we
have for the typical velocity the circular speed and then

V =

√
GM

R
ρ =

3M

4πR3
tcross =

√
3

4πGρ
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I For a galaxy the crossing time is of the order of 108 years.

I Hubble time, which is an estimate of the age of the Universe
and therefore of galaxies. It is of the order of 1010 years.

I The fact that the crossing time is much less than the Hubble
time the suggests that we may take the system in dynamical
equilibrium.

I Two-body relaxation. This is important for two reasons:
I Collisions between stars are extremely rare, so collissional

pressure is unimportant (contrary to a gas), and
I Two-body encounters are able to virialize a galaxy so that the

kinetic energy of the stars acts as a pressure to stabilize the
system, balancing the potential energy.
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Two-body relaxation time

Two-body encounters provide processes for a galaxy to come into
equilibrium and “virialize”, which means that the stellar velocity
distribution randomizes.

We will now estimate this relaxation time.

Suppose that we have a cluster of radius R and mass M, made up
of N stars with mass m, moving with a mean velocity V .

If two stars pass at a distance r , the acceleration is about Gm/r2.

Say, that it lasts for the period when the stars are less than the
distance r from the closest approach and therefore for a time 2r/V .
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The total change in V 2 is then (acceleration times time)

∆V 2 ∼
(

2Gm

rV

)2

The largest possible value of r is obviously R.

For the smallest, we may take r = rmin, where ∆V 2 is equal to V 2

itself, since then the approximation breaks down. It is not critical,
since we will need the logarithm of the ratio R/rmin.

So we have

rmin =
2Gm

V 2
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The density of stars is 3N/4πR3 and the surface density N/πR2.

The number of stars with impact parameter r is then the surface
density times 2πrdr .

After crossing the cluster once the star has encountered all others.
We can calculate the total change in V 2 by integrating over all r

(∆V 2)tot =

∫ R

rmin

(
2Gm

rV

)2 2Nr

R2
dr =

(
2Gm

RV

)2

2N ln Λ

where Λ = R/rmin.
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The relaxation time is equal to the number of crossing times it
takes for (∆V 2)tot to be become equal to V 2.

Since a crossing time is of order R/V and since the virial theorem
tells us that V 2 ∼ GNm/R, we find

trelax ∼
RN

8V ln Λ
∼

(
R3N

Gm

)1/2
1

8 ln Λ

With the expression above for rmin we find

Λ =
R

rmin
=

RV 2

2Gm
∼ GNm

2GRm
∼ N

2
∼ N
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The final expression for the two-body relaxation time then is

trelax ∼
(

R3

GM

)1/2
N

8 lnN

This ranges from about 109 years for globular clusters to 1012 years
for clusters of galaxies.

Within galaxies encounters are unimportant and they can be
treated as collisionless systems.
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Violent relaxation

If galaxies are relaxed systems another mechanism must be at
work. This is violent relaxation1.

This occurs when the potential changes on timescales comparable
to the dynamical timescale.

If E (~v , t) = 1
2v2 + Φ(~x , t) then

dE

dt
=

dE

d~v

d~v

dt
+

dΦ

dt
= ~v

d~v

dt
+

dΦ

dt

= −∂~r

∂t

∂Φ

∂~r
+

∂Φ

∂t
+

∂Φ

∂~r

d~r

dt

=
∂Φ

∂t

1D. Lynden-Bell, MNRAS 136,101 (1967)
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Thus a star can change its energy in a collisonless system by a
time-dependent potential, such as during the collapse of a galaxy.

The timescale associated with violent relaxation is, according to
Lynden-Bell

tvr ∼ 〈 Φ̇
2

Φ2
〉

So the timescale of violent relaxation is of the order of that of the
change of the potential.

A very important aspect is that the change in a star’s energy is
independent of its mass, contrary to other relaxaton mechanisms,
such as two-body encounters, which give rise to mass segregation.
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Also some of the information on the initial condition will get lost.

Van Albada2 was the first to numerically simulate violent
relaxation.

He found some remarkable things:

I If the collapse factor was large, irregular initial conditions gave
rise to an R1/4-law3 surface density distribution, as observed
in elliptical galaxies over a range of up to 12 magnitudes.

I The binding energy of particles before and after collapse
correlate, showing that some information on the initial state is
not wiped out.

2T.S. van Albada, MNRAS 201, 939 (1982)
3log I (r) = log I◦ − 3.33(r/re)

1/4.
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Dynamical friction

As a star moves through a background of other stars, the small
deflections will give a small overdensity behind the star and
consequently induce a drag.

Suppose that a body of mass m moves in a circular orbit with
radius R through a background of bodies with mass M at a speed
Vc and assume that the background is an isothermal sphere4 with
Vc the circular speed (and Vc/2 the velocity dispersion).

4An isothermal sphere is a distribution where everywhere the velocity
dispersion is constant and isotropic and that is in equilibirium with its own
gravity; see later.

Piet van der Kruit, Kapteyn Astronomical Institute Timescales and stellar orbits



Contents
Timescales

Stellar orbits

Range of timescales
Two-body relaxation time.
Violent relaxation
Dynamical friction

Then the loss of angular momentum is about

dJ

dR
∼ −0.4

Gm2

R
ln Λ

where

Λ =
RcV

2
c

G (m + M)

Rc is the core radius of the isothermal sphere (the typical
lengthscale of the background density distribution).

The timescale of dynamical friction for the body to spiral into the
center is then

tdf ∼
R2Vc

Gm ln Λ

This timescale is large and only relevant for globular clusters in the
inner halo or for galaxies in the central parts of clusters.

The effect may contribute to respectively the formation of galactic
nuclei and the central cD or gE galaxies in clusters through
cannibalism.

The timescale for the Magellanic Clouds to be drawn in into the
Galaxy is about another 1010 years.
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Spherical potentials

The equation of motion in a spherical potential is in vector
notation

R̈ = −dΦ

dR
êR

The angular momentum is

R× Ṙ = L

This is constant and the orbit therefore is in a plane.
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We then use polar coordinates in this plane these two equations
become

R̈ − R θ̇2 = −dΦ

dR

R2θ̇ = L

Integrating this we get

1
2 Ṙ2 +

1

2

L2

R2
+ Φ(R) = E

The energy E is constant.
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If E < 0 then the star is bound between radii Rmax and Rmin,
which are the roots of

1

2

L2

R2
+ Φ(R) = E

The radial period is the interval between the times the star is at
Rmin and Rmax and back.

TR = 2

∫ Rmax

Rmin

dt = 2

∫ Rmax

Rmin

dR

Ṙ
=

2

∫ Rmax

Rmin

dR

{2[E − Φ(R)]− L2/R2}1/2
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In the azimuthal direction the angle θ changes in the time TR by

∆θ =

∫ TR

0

dθ

dR
dR = 2

∫ TR

0

(
L

R2

)
dR

Ṙ

This can be evaluated further in terms of TR, which depends upon
the particular potential.

The orbit is closed if
∆θ = 2π

m

n

with m and n integers.

This is not generally true and the orbit then has the form of a
rosette and can the star visit every point within (Rmin,Rmax).
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Even in the simple case of a
spherical potential, the
equation of motion of the orbit
must be integrated
numerically.

The Rosette orbit can be closed by observing it from a rotating
frame (see below under resonances), when it is rotating at an
angular velocity of

Ωp =
(∆θ − 2π)

TR

Piet van der Kruit, Kapteyn Astronomical Institute Timescales and stellar orbits



Contents
Timescales

Stellar orbits

Spherical potentials
Axisymmetric potentials
Third integral and surface of section
Rotating non-axisymmetric potentials

We will treat two special cases which can be solved analytically.

The harmonic oscillator

This concerns the potential of a uniform sphere

Φ = 1
2Ω2R2.

Then we take cartesian coordinates x = r cos θ, y = r sin θ and
then

d2x

dt2
= −Ω2x ;

d2y

dt2
= −Ω2y

Then

x = X cos(Ωt + ax,◦) ; y = Y cos(Ωt + ay,◦)

The orbits are closed ellipses centered on the origin and ∆θ is
equal to π in TR.
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The Keplerian potential

The potential now is that of a point source in the center and this
is the well-known two-body problem5:

Φ = −GM

R

The orbits are closed ellipses with one focus at the origin:

R =
a(1− e2)

{1 + cos(θ − θ◦)}

5There is a complete derivation of the two-body problem available at
(http://www.astro.rug.nl/∼vdkruit/jea3/homepage/two-body.pdf).
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Here semi-major axis a and excentricity e are related to E and L by

a =
L2

GM(1− e2)
; E = −GM

2a

Rmax,Rmin = a(1± e)

TR = Tθ = 2π

√
a3

GM
= TR(E )

Now ∆θ = 2π in TR.

Galaxies have mass distributions somewhere between these two
extremes, so we may expect that ∆θ is in the range π to 2π in TR.
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Axisymmetric potentials

We now have a potential Φ = Φ(R, z), that may be applicable to
disk galaxies. The equations of motion are

R̈ − R θ̇2 = −∂Φ

∂R

d

dt
(R2θ̇) = 0

z̈ =
d2z

dt2
= −∂Φ

∂z

Integration of middle one of these equations gives

Lz = R2θ̇
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The motion in the meridional plane then can be described by an
effective potential

R̈ = −∂Φeff

∂R

z̈ = −∂Φeff

∂z

where

Φeff = Φ(R, z) +
L2

z

2R2

The energy of the orbit is

E = 1
2 Ṙ2 + 1

2 ż2 + Φeff(R, z)
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The orbit is trapped inside the appropriate contour E = Φeff ,
which is called the zero-velocity curve.

Only orbits with low Lz can approach the z-axis.

The minimum in Φeff occurs for ∇Φeff = 0, or at z = 0 and where

∂Φ

∂R
=

L2
z

R3

This corresponds to the circular orbit with L = Lz.

It is the highest angular momentum orbit that is possible for a
given E , or in other words, it has all its kinetic energy in θ-motion.
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As an example we take the logarithmic potential

Φ(R, z) = 1
2V 2

◦ ln

(
R2 +

z2

q2

)

Here are countours of Φeff for
the case q = 0.5 and Lz = 0.2.

The minimum in Φeff occurs
where ∇Φeff = 0 that is in the
plane (z = 0).

Piet van der Kruit, Kapteyn Astronomical Institute Timescales and stellar orbits



Contents
Timescales

Stellar orbits

Spherical potentials
Axisymmetric potentials
Third integral and surface of section
Rotating non-axisymmetric potentials

If E and Lz were the only two isolating integrals the orbits would
be able to visit all points within their zero-velocity curves.
In simulations this is often not the case and there must be a third
integral.

Here is the case of actual simulated
orbits in a slightly flattened
logarithmic potential. We show the
motion in the meridional plane,
rotating along with the angular
momentum of the orbit.

The blue line is the zero-velocity
curve corresponding to this orbit.
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Third integral and surface of section

Recall that for small deviations from the symmetry plane the
energy in the z-direction was a third isolating integral.

Here are two diagrams from an early study by Ollongren6. We have
either periodic or non-periodic orbits.

6A. Ollongren, B.A.N. 16, 241 (1962)
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Ollongren did numerical
integrations using the potential
of a recent model of the mass
distribution in the Galaxy by
Schmidta.

He found that there was a
distortion of the box that was
covered by the orbit.

aM. Schmidt, B.A.N. 13, 15
(1956)
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He also found that the most general separable case was in elliptical
coordinates, in which a third integral is quadratic in the velocities7.

7See also H.C. van de Hulst, B.A.N. 16, 235 (1962)
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Summarizing:

I If E and Lz are the only two isolating integrals, the orbit
would visit all points within the zero-velocity curves.

I In practice it was found that there are limiting surfaces that
seem to forbid the orbit to fill the whole volume within the
zero-velocity curves.

I This behaviour is very common for orbits in axisymmetric
potentials, when the combination (E , Lz) is not too far from
that of a circular orbit. A third integral is present, although in
general its form cannot be explicitly written down.
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For each orbit the energy E (R, z , Ṙ, ż) is an integral, so only three
of the four coordinates can be independent, say R, z and Ṙ.

The orbit can visit every point in (R, z , Ṙ)-space as far as allowed
by E .

Now take a slice through (R, z , Ṙ)-space, e.g. at z = 0. This is
called a surface of section.

The orbits’ successive crossings of z = 0 generate a set of points
inside the region E = 1

2 Ṙ2 + Φeff(R, 0).
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Hénon & Heiles8 did a famous study of third integrals and surfaces
of section. They used a convenient analytical potential in
coordinates (x , y):

Ψ(x , y) = 1
2(x2 + y2 + 2x2y − 2

3y3)

The figure shows consecutive
crossings of the surface of section
(y , ẏ).

After an infinite time the full curve
will be filled.

This is a signature of a third isolating
integral; the orbit is constrained
inside the zero-velocity curve.

8M. Hénon & C. Heiles, A.J. 69, 73 (1964)
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Here are some orbits for E = 0.08333. All have a third integral.
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Here are orbits for E = 0.125. Now some orbits have no third
integral.
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For E = 0.16667 almost no orbits have a third integral.
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Hénon & Heiles divised a
method to derive the fraction
of orbits that have a thrid
integral for each energy.

For E < 0.11 all orbits have a
third integral, but for E > 0.17
almost none do.
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If there is no other integral then these points fill the whole region.

If there is another integral, then its surface IR(R, z , Ṙ) cuts the
plane in a curve IR(R, 0, Ṙ) = constant.

A periodic orbit is a point or a set of points on the (R, Ṙ) surface
of section.

Such curves and points are called invariant, because they are
invariant under the mapping of the surface of section onto itself
generated by the orbit.

Invariant points often have closed invariant curves around them on
the surface of section. These represent stable periodic orbits. Ones
where invariant curves cross are unstable periodic orbits.
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This diagram (taken from Ken Freeman) summarizes the points.
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Rotating non-axisymmetric potentials

In cases of bars or some elliptical galaxies we may consider a
potential that rotates with a rigid angular velocity Ω.

Then the equation of motion is

r̈ = −∇Ψ− 2(Ω× r)−Ω× (Ω× r)

The second term on the right is the Coriolis force and the third
one the centrifugal force.

Then we can define an effective potential, so that

r̈ = −∇Ψeff − 2(Ω× r)
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Such a potential has
equipotential curves in the
z = 0 plane that show neutral
points.

L1 and L2 are saddle points
and are unstable.

L3 is a minimum and is stable.

L4 and L5 are maxima that can
either be stable or unstable.
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These point should in spite of their notation not be confused with
Lagrange points in the restricted three-body problem, although
there is some similarity.

There are two bodies (here
Sun and Earth) in circular
orbits.

The Lagrange points L1, L2

and L3 are saddle points and
unstable.

L4 and L5 are stable.
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Stars describe orbits that reinforce the bar potential.
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