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The collisionless Boltzmann equation

Studies of galactic dynamics start with two fundamental equations.
The first is the continuity equation, also called the Liouville or
collisionless Boltzmann equation.

It states that in any element of phase space the time derivative of
the distribution function equals the number of stars entering it
minus that leaving it, if no stars are created or destroyed.

Write the distribution function in phase space as
f (x , y , z , u, v ,w , t) and the potential as Φ(x , y , z , t).

Now look first for the one-dimensional case at a position x , u.
After a time interval dt the stars at x − dx have taken the place of
the stars at x , where dx = udt.
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So the change in the distribution function is

df (x , u) = f (x − udt, u)− f (x , u)

df

dt
=

f (x − udt, u)− f (x , u)

dt
=

f (x − dx , u)− f (x , u)

dx
u = −df (x , u)

dx
u

For the velocity replace the positional coordinate with the velocity
x with u and the velocity u with the acceleration du/dt. But
according to Newton’s law we can relate that to the force or the
potential. So we get

df

dt
= −df (x , u)

du

du

dt
=

df (u, x)

du

dΦ

dx
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The total derivative of the distribution function then is

∂f (x , u)

∂t
+
∂f (x , u)

∂x
u − ∂f (x , u)

∂u

∂Φ

∂x
= 0

In three dimensions this becomes

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0
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Usually dynamical systems are assumed to be in equilibrium so
that we have

u
∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0.

This is the collisionless Boltzmann equation
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Usually (especially in disk galaxies) we work in cylindrical
coordinates.

The distribution function then is f (R, θ, z ,VR,Vθ,Vz, t) and the
collisonless Boltzmann equation becomes

VR
∂f

∂R
+

Vθ

R

∂f

∂θ
+ Vz

∂f

∂z
+

(
V 2

θ

R
− ∂Φ

∂R

)
∂f

∂VR

−
(

VRVθ

R
+

1

R

∂Φ

∂θ

)
∂f

∂Vθ
− ∂Φ

∂z

∂f

∂Vz
= 0.

Piet van der Kruit, Kapteyn Astronomical Institute Fundamentals



Contents
Fundamental equations

Hydrodynamic equations
Virial equations

Integrals of motion

The collisionless Boltzmann equation
Poisson’s equation

For axial symmetry this reduces to

VR
∂f

∂R
+ Vz

∂f

∂z
−

(
∂Φ

∂R
−

V 2
θ

R

)
∂f

∂VR
− VRVθ

R

∂f

∂Vθ
− ∂Φ

∂z

∂f

∂Vz
= 0.

For spherical symmetry this reduces further to

VR
∂f

∂R
−

(
∂Φ

∂R
−

V 2
θ

R

)
∂f

∂VR
= 0.

Here the velocity Vθ corresponds to the angular momentum of the
system.
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Poisson’s equation

The second fundamental equation is Poisson’s equation, which says
that the gravitational potential derives from the combined
gravitational forces of all the matter.

It can be written as

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
≡ ∇2Φ = 4πGρ(x , y , z)

In cylindrical coordinates

∂2Φ

∂R2
+

1

R

∂Φ

∂R
+

1

R2

∂2Φ

∂θ2
+
∂2Φ

∂z2
= 4πGρ(R, θ, z).
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For the axisymmetric case

∂KR

∂R
+

KR

R
+
∂Kz

∂z
= −4πGρ(R, z)

the spherical case

1

R2

∂

∂R

(
R2∂Φ

∂R

)
= 4πGρ(R).

and the plane-parallel case

dKz

dz
= −4πGρ(z).
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The collissionless Boltzmann and Poisson equations together
completely describe the dynamics of a system.

The Poisson equation always refers to the total mass density
distribution ρ. In the Boltzmann equation we may be looking at
the distribution function of a sub-component, for which the mass
density then is denoted by ν.

In a self-gravitating system of course ρ and ν are the same.
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In practice we never observe full distribution functions, but only
the first three moments of it in the form of density, systematic
motion and amount of random motion of velocity dispersion.

The hydrodynamic, moment or Jeans equations are obtained from
the collissionless Boltzmann equation by multiplication by a
velocity to some power followed by integration over all velocities
(as in calculating moments for a distribution).
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The Boltzman equation was

u
∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0.

First we change to the often used notation to write this as

∂f

∂t
+ vi

∂f (~x , ~v)

∂xi
− ∂Φ

∂xi

∂f (~x , ~v)

∂vi
= 0

Implicit is that we sum over all the values for i = 1, 2, 3.
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Next we take the convention
∫∞
−∞

∫∞
−∞

∫∞
−∞ dv1dv2dv3 ≡

∫
d3v

Then the zeroth, first and second order moments in velocity
become ∫

f d3v = ν

1

ν

∫
vi f d3v = 〈vi 〉

1

ν

∫
vivj f d3v = 〈vivj〉

From now on I write f = f (~x , ~v).
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Zeroth order moment of the Boltzmann equation

∫
∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v − ∂Φ

∂xi

∫
∂f

∂vi
d3v = 0

This can be rewritten as

∂ν

∂t
+

∂

∂xi

∫
vi f d3v − ∂Φ

∂xi

∫
f (vi )]

∞
−∞ d2v 6=i = 0

Then

f (vi )]
∞
−∞ = 0 =⇒ ∂ν

∂t
+

∂

∂xi
(ν〈vi 〉) = 0
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First order moment of the Boltzmann equation

∫
vj
∂f

∂t
d3v +

∫
vivj

∂f

∂xi
d3v − ∂Φ

∂xi

∫
vj
∂f

∂vi
d3v = 0

Now∫
vj
∂f

∂vi
d3v =

∫
f (vi )]

∞
−∞ d2v 6=i −

∫ (
∂vj

∂vi

)
f d3v = 0− δijν

so

∂

∂t
(ν〈vj〉) +

∂

∂xi
(ν〈vivj〉) + ν

∂Φ

∂xj
= 0
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Second order moment of the Boltzmann equation

Similarly we find

ν
∂〈vj〉
∂t

− 〈vi 〉
∂(νvj)

∂xi
+
∂(ν〈vivj〉)

∂xi
+ ν

∂Φ

∂xj
= 0

This equation is often rewritten using the velocity dispersion
tensor:

σ2
ij = 〈(vi − 〈vi 〉)× (vj − 〈vj〉)〉 = 〈vivj〉 − 〈vi 〉〈vj〉 = vivj − vi .vj

Then

∂(νσ2
ij)

∂xi
=
∂(ν〈vivj〉)

∂xi
− 〈vj〉

∂(ν〈vi 〉)
∂xi

− ν〈vi 〉
∂〈vj〉
∂xi
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So we can write the second order Bolzmann equation as

ν
∂〈vj〉
∂t

+ ν〈vi 〉
∂〈vj〉
∂xi

+
∂(νσ2

ij)

∂xi
+ ν

∂Φ

∂xj
= 0

So we see that the zeroth, first and second order Boltzmann
equations describe relations between the density distribution of a
component ν, the mean motions 〈vi 〉 and the random motions
〈vivj〉 or σij with the potential Φ.

Densities, mean and random motions are in principle observables.
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Jeans equations

These moment equations are also called Jeans equations and are
usually applied in equilibrium when f is not a function of time.

In the practical case the velocity dispersion tensor is assumed to
have a diagonal form, i.e. there is a velocity ellipsoid with
semi-major axes σ11, σ22, σ33 and all cross-terms equal to zero.

In general the Jeans equation cannot be solved without additional
assumptions.

And in practice we measure only surface density distributions
projected onto the plane of the sky and velocities and velocity
dispersion projected onto the line-of-sight.
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In the axi-symmetric case the Jeans equations are derived in the
same way.

For the radial direction we find:

∂

∂R
(ν〈V 2

R〉)+
ν

R
{〈V 2

R〉−V 2
t −〈(Vθ−Vt)

2〉}+
∂

∂z
(ν〈VRVz〉) = νKR

By assumption we have taken here Vt = 〈Vθ〉 and
〈VR〉 = 〈Vz〉 = 0.

This can be rewritten as:

−KR =
V 2

t

R
− 〈V 2

R〉
[
∂

∂R
(ln ν〈V 2

R〉) +
1

R

{
1− 〈(Vθ − Vt)

2〉
〈V 2

R〉

}]
+

〈VRVz〉
∂

∂z
(ln ν〈VRVz〉)
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The last term reduces in the symmetry plane to

〈VRVz〉
∂

∂z
(ln ν〈VRVz〉) =

∂

∂z
〈VRVz〉

and may then be assumed zero.

For the azimuthal direction the moment equation is seldom used,
because it only contains cross-terms of the velocity tensor. It reads

2ν

R
〈VRVθ〉+

∂

∂R
(ν〈vRVθ〉) +

∂

∂z
(ν〈VθVz〉) = 0
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In the vertical direction the moment equation becomes

∂

∂z
(ν〈V 2

z 〉) +
ν〈VRVz〉

R
+

∂

∂R
(ν〈VRVz〉) = νKz

For spherical symmetry we have velocities VR, Vθ and Vφ

∂

∂R
(ν〈V 2

R〉) +
ν

R
{2〈V 2

R〉 − V 2
t − 〈(Vθ − Vt)

2〉 − 〈V 2
φ 〉} = νKR

In plane-parallel layers the Jeans equation reduces to

d

dz

{
ν〈V 2

z 〉
}

= νKz
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The virial equations are derived from the first-order moment Jeans
equation for a self-gravitating system (so ν = ρ) by taking its first
order moment over spatial coordinates.

∂

∂t
(ρv̄j) +

∂

∂xi
(ρvivj) + ρ

∂Φ

∂xj
= 0

So we get∫
xk
∂ (ρv̄j)

∂t
d3x = −

∫
xk

∂

∂xi
(ρvivj) d3x −

∫
xkρ

∂Φ

∂xj
d3x
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Moment of inertia tensor

Look at the term on the left∫
xk
∂ (ρv̄j)

∂t
d3x

and define the moment of inertia tensor

Ijk =

∫
ρxjxkd3x

Take the first derivative of this tensor.
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d

dt
Ijk =

∫
∂ρ

∂t
xjxkd3x

Now recall the zeroth-order moment Jeans equation:

∂ρ

∂t
+

∂

∂xi
(ρ〈vi 〉) = 0

Then we can write

d

dt
Ijk = −

∫
∂ (ρv̄i )

∂xi
xjxkd3x
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This reduces to

d

dt
Ijk =

∫
ρv̄i (δijxk + δikxj) d3x =

∫
ρ (v̄jxk + v̄kxj) d3x

and
d2

dt2
Ijk =

∫ [
xk
∂

∂t
(ρv̄j) + xj

∂

∂t
(ρx̄k)

]
d3x

The moment of inertia tensor should be symmetric with respect to
the coordinates, so

d2

dt2

(
1
2 Ijk

)
=

∫
xk
∂

∂t
(ρv̄j) d3x
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Kinetic energy tensor

Now take the first term on the right and use integration by parts.

−
∫

xk
∂

∂xi
(ρvivj) d3x =

∫
ρvivj

∂xk

∂xi
d3x −

∫
∂

∂xi
(xkρvivj) d3x

=

∫
δikρvivj

∂xk

∂xi
d3x −

∫
δik

∂

∂xi
(xkρvivj) d3x

=

∫
ρvkvjd

3x − 0 = 2Kkj

where we have defined the kinetic energy tensor.
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We can distinguish between the ordered and random motions using

vkvj = v̄k .v̄j + σ2
kj

This gives rize to a motions tensor Tjk and a velocity dispersion
tensor Πjk

Kij =

∫
ρv̄i .v̄jd

3x + 1
2

∫
ρσ2

ijd
3x

Tij + 1
2Πij
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Potential energy tensor

Finally the second term on the right. This we define as the
potential energy tensor.

Wjk = −
∫

xj
∂Φ

∂xk
d3x

This finally gives

1
2

d2

dt2
Iij = 2Tij + Πij + Wij

The trace of the tensors give the total energies, so the trace of the
last equation reduces for the static case to

2T + Π = 2K = −W
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Recall the collisonless Boltzmanmn equation

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
− ∂Φ

∂x

∂f

∂u
− ∂Φ

∂y

∂f

∂v
− ∂Φ

∂z

∂f

∂w
= 0.

Now consider the equations of motion of an individual star:

dx

dt
= u,

dy

dt
= v ,

dz

dt
= w ,

du

dt
= −∂Φ

∂x
,

dv

dt
= −∂Φ

∂y
,

dw

dt
= −∂Φ

∂z

Fill this in and we get

∂f

∂t
+

dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
+

dz

dt

∂f

∂z
+

du

dt

∂f

∂u
+

dv

dt

∂f

∂v
+

dw

dt

∂f

∂w
≡ Df

Dt
= 0.
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So along the path of any star in phase space the total derivative of
the distribution function Df /Dt is zero.

The density in phase space is constant along the path of any star
and the flow of stars in phase space is incompressible.

The equations of motion of a star can be rearranged as:

dt =
dx

u
=

dy

v
=

dz

w
=

du

−∂Φ/∂x
=

dv

−∂Φ/∂y
=

dw

−∂Φ/∂z

These are 6 independent ordinary differential equations which yield
6 integration constants for each orbit.
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These integration constants thus correspond to a set of 6
independent properties with each combination of values related to
a particular stellar orbits.

The distribution function f then simply tells which of these orbits
are actually populated, so the general solution of the Boltzmann
equation can be written as

f (x , y , z , u, v ,w) = F (I1, I2, ..., I6)

The I ’s are called the integrals of motion.

The question is then to what physical properties (if any!) these
integrals of motion correspond.
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Summarizing we have:

I Integrals of motion are functions Ii (~r , ~v , t) that are constant
along an orbit (or DI/Dt = 0).

I In phase space there are surfaces Ii (~r , ~v , t) = constant and the
orbit is the intersection of these surfaces.

I There cannot be more than 6 integrals of motion.
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Isolating integrals of motion

We see that the distribution function depends only on the integrals
of motion. So what are these?

One can be identified as the energy, which is always conserved
along an orbit:

I1 = E = 1
2(u2 + v2 + w2) + Φ(x , y , z) = constant

This is called an isolating integral of motion, because for
particular values it isolates hyper-surfaces in phase space.

The others in general are non-isolating and are only implicit in the
numerical integration of an orbit.

Piet van der Kruit, Kapteyn Astronomical Institute Fundamentals



Contents
Fundamental equations

Hydrodynamic equations
Virial equations

Integrals of motion

Isolating integrals of motion
Non-isolating integrals of motion
Jeans’ theorem

In an axisymmetric potential there is a second isolating integral:
the angular momentum in the direction of the symmetry axis z is
also conserved along an orbit.

I2 = J = RVθ

Then we have
f (R, z ,VR,Vθ,Vz) = F (E , J)

Actually, in a spherically symmetric potential all three components
of the angular momentum are isolating intergals.
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In the case of the Galaxy near the plane (at small z) the potential
is separable and the R- and z-motions will then be decoupled

Φ(R, z) = Φ1(R) + Φ2(z)

Then the decoupled z-energy is a third integral of motion:

I3 = 1
2V 2

z + Φ2(z)

I will have much more to say later about the so-called third
integral problem, which is related to this.
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In general any symmetry in the potential or any coordinate system
in which the potential can be separated gives rise to integrals of
motion.

The integrals that I mentioned for these specific cases restrict the
orbit of a star to certain regions of 6-dimensional phase space.

That is why they are called isolating integrals of motion.

But not all integrals of motion have this property and they are
called non-isolating integrals and are not of much use.

The concept isolating versus non-isolating will be illustrated next
with a simple example.
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Non-isolating integrals of motion

Consider the two-dimensional harmonic oscillator with different
periods. The equations of motion are

x = X sinα(t − tx) ; y = Y sinβ(t − ty )

Obviously when α/β is rational the orbit is periodic and has a
single path.

What are the integrals of motion? First realise that

dx

dt
= Xα cosα(t − tx)
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From x and dx/dt we can form a time-independent parameter:

I1 =

(
dx

dt

)2

+ α2x2 = X 2(α2 + 1) = constant

This then is an integral of motion and confines x to the interval
(−X < x < X ).

Similarly we have

I2 =

(
dy

dt

)2

+ β2y2 = Y 2(β2 + 1)

Together these integrals then confine the orbit to the area
(−X < x < X ,−Y < y < Y ).
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There is a third time-independent quantity that we can derive as
follows.

Eliminate t from the two equations of motion; then we get

I3 =
1

α
arcsin

( x

X

)
+

1

β
arcsin

( y

Y

)
= tx − ty

This can be re-arranged as

x = X sin

[
αI3 −

α

β
arcsin

( y

Y

)]

Now arcsin(y/Y ) repeats every interval 2π and therefore the
second term repeats every interval 2πα/β.
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If α/β is rational we then get for any value of y a finite number of
values for x between −X and X and therefore the orbit is periodic.
Then I3 can also assume a finite number of values and therefore is
an isolating integral of motion.

But if α/β is irrational, the second term can assume an infinity of
values and x also is not constrained and I3 can have an infinite
number of values and does not constrain the orbit within the area
(−X < x < X ,−Y < y < Y ).

Then I3 is a non-isolating integral of motion and of no practicle
value.
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So we see that:

I The number of isolating integrals of motion depend on both
the potential and the particular orbit and

I For a particular potential some orbits can have more isolating
integrals than others.
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A further illustration of non-isolating integrals of motions is phase
mixing1.

Assume that stars move in a potential Φ(~r) and have closed orbits
on (~r , ~v). One integral of motion is the total energy of a star

E = 1
2v2 + φ(~r)

The orbital period T (E ) depends on E . Take for the starting
position ~r◦.

Then the orbital phase angle ψ of the star at time t is

ψ(E ,~r) = ψ(E , ~r◦) + 2π
t

T (E )

1K.C. Freeman, Stars & Stellar Sytems IX, 409 (1975)
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Therefore

ψ(E , ~r◦) = ψ(E ,~r)− 2π
t

T (E )

is another integral of motion.

So the distribution function can be written as f (E , ψ − 2πt/T )
and we can follow f in the (E , ψ)-plane.

Say, it intially starts as a distribution limited by values of E and ψ.
Then since T is a function of E we find a development as in the
following schematic figure.
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Although initially confined to a small range ∆E∆ψ, the
distribution function evolves to a distribution over all phases.

So the distribution function looses its dependence on phase angle
and the second integral is non-isolating.

The only isolating integral is the energy.

In general, it may be stated that the non-isolating integrals do
define surfaces in phase space, they come close in phase space to
any point allowed by the isolating integrals and therefore provide
no further constraints on the properties of the orbits.
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Jeans’ theorem

Jeans’ theorem is:
Any arbitrary function of the integrals of motions satisfies the
collisionless Boltzmann equation

This is so because the distribution function is constant along the
path of an orbit, Df /Dt = 0. If f is any function of I1....In.

Df

Dt
=

n∑
i=1

∂f

∂Ii

dIi
∂t

= 0

However, in order to make a self-consistent system as a solution
that resembles a real galaxy, we also need to satisfy the Poisson
equation. This is referred to as the self-consistency problem.
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Now, the integral of f (Ii ) over all integrals Ii at any position is the
local density and this must be single valued.

But in general we only know the (single valued) isolating integrals.

Lynden-Bell2 inferred from this that the distribution function can
be completely defined by the isolating integrals only.

E.g. in a system that is spherical in all its properties (so it must
depend on the magnitude of the angular momentum, but not its
direction) the distribution function is f = f (E , L2).

Lynden-Bell3 showed that it is possible for rotating systems to be
spherical, while intuitively one expects it to be always oblate.

2D. Lynden-Bell, MNRAS 123, 1 (1962)
3D. Lynden-Bell, MNRAS 120, 240 (1960)
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