STRUCTURE AND DYNAMICS OF GALAXIES

Lecture course at Beijing, China, September 2011

Prof. Pieter C. van der Kruit, Jacobus C. Kapteyn Professor of Astronomy, Kapteyn Astronomical Institute, University of Groningen, the Netherlands

LECTURES.: Each item below is a 45 to 50 minute lecture.

- 1. Distribution of stars in the Milky Way.
 - Historical introduction.
 - Herschel and Kapteyn.
 - Shapley and Hubble.
 - The luminosity distribution in the Galaxy.
 - Modern views of the Galaxy.
 - Pioneer 10 photometry.

2. Kinematics of the Milky Way.

- Differential rotation.
 - Relative motions.
 - Local approximations and Oort constants.
- Rotation curves and mass distributions.
- 3. Stellar Populations, classification of galaxies.
 - Stellar Populations
 - Origin of the concept.
 - Vatican symposium.
 - The current situation.
 - Classification
 - Definitop by Hubble and latetr extensions.
 - Correlations along the Hubble sequence.
- 4. Galactic dynamics: Fundamental equations.
 - The collisionless Boltzmann equation.
 - Poisson's equation.
 - Hydrodynamic equations.
 - Zeroth order moment of the Boltzmann equation.
 - First order moment of the Boltzmann equation.
 - Second order moment of the Boltzmann equation.
 - Jeans equations.

5. Galactic dynamics: Virial equations and integrals of motion.

- Virial equations.
 - Moment of inertia tensor.
 - Kinetic ernergy tensor.
 - Potential energy tensor.
- Integrals of motion.
 - Isolating integrals; Jean's theorem.
 - Non-isolating integrals of motion.
 - Jean's theorem.

6. Galactic dynamics: Timescales.

- Timescales.
- Two-body relaxation time.
- Violent relaxation.
- Dynamical friction.

7. Galactic dynamics: Stellar orbits.

- Orbits in symmetric potentials.
 - Spherical potentials.
 - The harmonic oscillator.
 - The Keplerian potential.
 - Axisymmetris potentials.
- Third integral.
- Surface of section.
- Rotating non-axisymmetric potentials.

8. Galactic dynamics: Epicycle orbits, instabilities.

- Epicycle orbits.
 - Epicycle theory.
 - Vertical motion.
 - Resonances.
- Instabilities.
 - Jeans instability.
 - Toomre critarion for local stability.
 - Goldreich-Lynden-Bell criterion.
 - Global stability.
 - Tidal radius.

9. Galactic dynamics: The velocity ellipsoid.

- The Schwarzshild distribution.
- Properties of the velocity ellipsoid.
- The closure problem.

10. Galactic dynamics: The self-consistence problem and potential theory.

- The self-consistency problem.
- Isothermal solutions and related results.
 - Isothermal sphere and King models.
 - Isothermal sheet and other vertical distributions.
- Potential theory.
 - General axixymmetrci theory.

11. Galactic dynamics: Various potentials.

- The exponential disk.
 - Forces and potential.
 - Rotation curves.
- Various potentials.
 - Plummer, Kuzmin and Toomre models.
 - Logarithmic potentials.
 - Oblate spheroids.
 - Infinitessimally thin disk.
- Stäckel potentials.
 - Coordinate system
 - The potential and denisty distribution.
 - Velocities, angular momentum and integrals of motion.

12. Luminosity distributions: Bulges and disks.

- Luminosity distributions.
 - Bulge luminosity laws.
 - Luminosity distributions in disks.
- Component separations.
 - Moderately inclined spirals.
 - Edge-on galaxies.

13. Luminosity distributions: Parameters

- Disk galaxies.
 - Distribution of parameters.
 - Selection effects.
 - Selection and Freeman's law.
- Elliptical galaxies.
 - Luminosity distributions.
 - Shells and ripples.
 - Color gradients.

14. Photometric evolution.

- Photometric evolution.
 - Fundamentals.
 - Analytical models.
 - Detailed studies.
 - Schmidt's law for star formation.
- Population synthesis.

15. Dynamics of spiral galaxies.

- Analysis of HI observations.
 - Moment analysis.
 - Tilted rings.
- Example of HI observations.
 - Example of an inclined galaxy: NGC 5055.
 - Example of an edge-on galaxy: NGC891
- HI velocity dispersion.
- CO and H₂.

16. Rotation curves and dark matter.

- Tully-Fisher relation.
- Rotation curves and mass distribution.
 - Exponential disk.
 - Dark matter halo.
 - Maximum disk hypothesis.
 - Independent checks of the maximum disk hypothesis.
 - Modified dynamics.

17. Warps and dust.

- Warps in HI.
 - Warps: observations
 - Warps: origin.
- Dust absorption.
 - Holmberg's analysis.
 - Analysis of Disney et al.
 - Background galaxies.

18. Stellar kinematics and spiral structure.

- Spiral structure.
 - Density wave theory.
 - Stochastic star formation model.
- Stellar kinematics.

19. Dynamics of spiral galaxies: stars.

- Stellar velocity dispersions.
 - Z-velocity dispersions.
 - R- and θ -velocity dispersions.
 - The Bottema relations.
 - Implications for maxium disk and stability.
- Global stability.

20. Elliptical galaxies: Global dynamics

- Fundamental Plane.
- Rotation and shapes
 - Flattening and oblate spheroids.
 - $-V_{\rm m}/\bar{\sigma}$ relaton and triaxiality.
 - Detailed kinematics.

21. Elliptical galaxies: Dynamical structure.

- Central kinematics and black holes.
- Dynamical models and dark matter.
 - Stäckel potentials.
 - The perfect ellipsoid.
 - Types of orbits.
- Dark matter.

22. Chemical evolution.

- Abundance gradients.
- Theory of chemical evolution.
 - The Simple Model.
 - The Extended Simple Model.
 - The Inflow model.
 - The Simple Model with Bells and Whistles.
- Bi-modal star formation.
- Comparison with observations.

23. Formation of galaxies: The Milky Way Galaxy.

- Disk population.
- Eggen, Lynden-Bell and Sandage collpase model.
- The thick disk.
- Globular clusters.
- Sagittarius dwarf.

24. The formation of galaxies.

- Galaxies at high redshift.
- Galaxy formation.
 - Background.
 - Bulge formation.
 - Disk formation.
- This course is a combination of two existing courses I have given at Groningen University. One on *Structure of Galaxies* and one on *Dynamics of Galaxies*.
- The full set of beamer presentations ar available through my website. You can download them as pdf-files from www.astro.rug.nl/ \sim vdkruit/jea3/homepage/Beijingn.pdf with n from 01 to 24.
- For more background information you can also visit my homepage at: www.astro.rug.nl/~vdkruit/#Structure of galaxies www.astro.rug.nl/~vdkruit/#Dynamics of galaxies
- A very recent extensive review, that may be helpful, is the Chapter 'Galaxy disks' by myself and K.C. Freeman in the 2011 volume of Annual Reviews of Astronomy & Astrophysics. This volume appears in September 2011, but has been pre- published in electronic form in August. For a formal reprint I have to provide the following text::

"I am pleased to provide you complimentary one-time access to my Annual Reviews article as a PDF file (http://arjournals.annualreviews.org/eprint/dHqAPFISV9sYEJcGVaVq/full/10.1146/annurev-astro-083109-153241), for your own personal use. Any further multiple distribution, publication, or commercial usage of this copyrighted material requires submission of a permission request addressed to the Annual Reviews Permissions Department, email permissions@AnnualReviews.org."

Prof. dr P.C. van der Kruit
Jacobus C. Kapteyn Distinguished Professor of Astronomy
Kapteyn Astronomical Institute, University of Groningen
P.O. Box 800, 9700AV Groningen, the Netherlands
Landleven 12, 9747AD Groningen
Hertenlaan 65, 9408CH Assen
+31-50-363 4062 (direct), $+31-50-363$ 4073 (secretariat)
+31-592-857 757 (private)
+31-50-3636100
http://www.astro.rug.nl/~vdkruit
vdkruit@astro.rug.nl