

Concepts discussed

- · The light path
- Photometric calibration – Standard systems
 - Calibration procedures
- Photometric calibration & VO
- In other words: physics of interaction over light path; calibration: quantifying interactions; sharing your photometry

Jargon and conventions

- Flux (e.g., erg/s/cm^2, W/m^2)
- Flux density (e.g., erg/s/cm^2/Hz or /Ang)
- m(agnitude)=-2.5log₁₀(flux/flux0)
 - m: Apparent magnitude
- M: Absolute Magnitude= apparent magnitude at 10pc
- Color: e.g., blue-red (B-R)

Goal: physics via Spectral Energy Distribution (SED)

What is required spectral resolution (?/d?) to get physics?
Example: temperature of blackbody can be obtained from relative intensity at two wavelengths
Spectral resolution ?
? Efficiency?
broad-band spectroscopy =photometry

Solution: relative measurements

• Measure relative to flux b of reference object:

$m-m_0 = -2.5 \log_{10} (I/I_0)$

- i.e., measure (I/I₀) instead of I: constants cancel

- Unitless system
- $m_0 = -2.5 \log_{10} (I_0/I_0) = 0$ by definition
- I₀ proportional to flux, but can have arbitrary units:
 m=-2.5log₁₀ (countrate) +zeropoint

- Effects of ism, atmosphere, telescope, filter and detector QE and flatfielding are multiplicative gains:
 I_{obs} = I*g_{ISM}(a,d) * g_{atm}(k,z₀) * g_{tel}*g_{filt1}* g_{det1}(x,y)
 I_{0,obs} = I₀*g_{ISM}(a₀,d₀) * g_{atm}(k,z) * g_{tel1}*g_{filt1}* g_{det1}(X₀,y₀)
- Neglected fringing and illumination correction: discussed in werkcollege
- For telescope2,filter2,detector2: $- I_{obs} = I^*g_{ISM}(a,d)^*g_{atm}(k,z)^*g_{tel2}^*g_{filt2}^*g_{det2}(x,y)$
 - $-I_{0,obs} = I_0^* g_{ISM}(a_0, d_0)^* g_{atm}(k, z_0)^* g_{tel2}^* g_{tel2}^* g_{det2}(x_0, y_0)$

4 Integrated archive and Large Data Volume
 Handling of the data is non-trivial Pipeline data reduction Calibration with very limited resources Things change in time: Physical changes (atmosphere, various gains) Code (new methods, bugs) Human insight in changes Working with source lists
Science can only be archive based

Photometric calibration and the VO

- Now you have your result and you want to share it....=VO
- Describing photometry universally: UCDs

 Properties measurement: aperture.....
 - Value and error

