Kapteyn Laboratorium

der Rijksuniversiteit te Groningen
Landleven 12 - Postbus 800 - 9700 AV Groningen - Nederland
telefoon (050) 116695 - telex 53572 stars nl

THE NEW GIPSY DATA STRUCTURE FOR IMAGES

J.P. Terlouw

Summary:

The advent of more astronomical data coming from different instruments is
gradually making the current GIPSY data structures cbsolete.

I present here an approach to solving this problem by adopting a completely
general new data structure.

The main purpose of this document is being a subject of discussion in the

working group which is investigating the requirements of the new GIPSY. It has
not the pretention of being a complete system design.

Groningen, March 1985.

1.

The existing ("old") data structure

The existing data structure originates fram 1975 and was designed by Ekers
and Terlouw for the STER data reduction package for Westerbork data on the
Cyber {1}. With some minor changes it has later been transferred to the
PDP-11/70 to become a part of GIPSY {2,3}. Basically it consists of two
components: a 3-dimensional structure ('set") for images (''subsets'") and
per image a header describing that image. Some elements of these headers
are 1in fact descriptors for the whole 3-dimensional structure and are
present in every image header thus introducing redundancy.

The structure of the headers is positional; every element in the header is
meant to store one specific parameter. This approach necessitated
extending the header with new elements required for other data than
Westerbork, while other elements lost their meaning but still were
physically present because of the positional structure of the headers. For
a program it is often difficult to find out that a header element has lost
its meaning.

The structure does not allow for other than 2- or 3-dimensional data,
while not all dimensions are treated in a uniform way. The third dimension
is treated differently from the first two dimensions.

The new data structure

In my opinion the most important shortcoming of the present data structure
is the lack of generality. This has led to a number of unpleasant
experiences when attempts were made to use GIPSY on other data than
Westerbork for which the system was designed. Patches were necessary to be
able to use the software for optical, IRAS and even VLA data. Same parts
of GIPSY now deserve the name "patchwork".

These problems have convinced me of the necessity of a completely general
new structure; not only an improved structure accomodating the
astronomical parameters we now know of. Such a new structure again would
consist of two parts: a data part and a header (or descriptor) part. The
data part would be an N-dimensional array (as a file on disk), with no
further structure than its N-dimensional shape. This immediately implies
that all further structure must be defined in the header. This can be done
by imposing a hierarchy on the header which is only determined by the
N-dimensional structure, not by a physical interpretation of this
structure. On the highest level of this hierarchy it would be at least
necessary to provide information to enable the interpretation of the
dimensions.

The generality would further be guaranteed by the requirement that all
header elements are accessed by name instead of position. If certain
parameters would not be present, this fact would easily become known by a

program.

The header

The header normally consists of two types of data:

- constants which give information about the nature of the data described
by the header;

- algorithms which can be used by programs processing the data.

The algorithms can be either explicit or implicit. The present data
structure only knows implicit algorithms. An example is the transformation
fran coordinates in the file ("grid units") to R.A. and Dec. In this case
the algorithm is the instrument used (e.g. "WSRT") and parameters to this

-2 -

algorithm-are the file coordinates together with the contents of a number
of other header elements such as grid spacing.

It may be worthwhile to investigate the possibility of having explicit
algorithms in the header. This probably would only work for relatively
simple formula's. The coordinate transformation example probably would not
be a good candidate for an explicit algorithm, but a transformation from a
file position to a velocity or frequency might. A problem to be solved if
explicit algorithms would be used is the fact that one often also needs
the inverse algorithm. This could be done by specifying both algorithms.

An important requirement is that redundancy should be avoided as much as
possible. In a hierarchical structure this means that information must be
present at the highest possible level. The generality and flexibility
requirements however dictate that exceptions should be possible. This can
be accomplished with a header access procedure which first probes at the
level at which a program asks the information and goes up in the hierarchy
until the information is found or proved to be not present. (This going up
could even extend to the user which then would act as the top-level
header.)

The proposed hierarchical header should in principle allow for subheaders
for each place in the hierarchy. Now the question rises: how many
different kinds of headers are possible for an N-dimensional structure. If
we limit ourselves to headers for O0...N-dimensional ‘"orthogonal"
substructures within the whole structure (pixels, lines, planes, boxes,
etc.), there will be 2**N different kinds of headers. This follows from
the fact that for all possible substructures each of the N dimensions can
be either defined or undefined. Extreme cases are '"pixel" headers (all
dimensions defined) and the top-level header for the whole structure (all
dimensions undefined).

A 3-dimensional "data cube'" would have at most 8 different headers and a
4-dimensional structure 16. Though these numbers are higher than the ones
we are used to, the total amount of space occupied by all headers for a
given. structure is not necessarily large due to the fact that all
information is present at the highest possible level thus avoiding
duplication.

Example:

Consider a Westerbork data cube with 3 dimensions: 1, m, and v.
The 3 dimensions lead to 2%*3=8 different headers. For the
following table we assume that "1" means that a coordinate has a
specific value, while "0" means that a coordinate is undefined.

vml corresponding GIPSY structure dimensionality
000 SET 3
100 map or SUBSET 2
010 1-v map 2
001 m-v map 2
110 row in map 1
101 column in map 1
011 velocity profile 1
111 pixel 0

4.

Data access

Data access in the new structure would be different from access in the old
structure, but it should still be possible to use old methods via special
interface routines. '

The new structure would make it possible to make programs more general.
For instance the contour plot program CPLOT could be changed so that it
could work on any plane in the data cube. By interrogating the header it
could determine whether nice frames could be drawn and how they should be
drawn, or if the data is not accompanied by sufficient information, decide
not to draw a nice frame but only one with grid tick marks. Except for
some special applications, this would make the position-velocity map
generation program LV superfluous. LV would be replaced by a general data
copy and extraction program. The output of the latter program would have
exactly the same logical structure as its input. If the new CPLOT was
called to produce an 1-v plot of this output, it would be given exactly
the same user input as in the case it was used on the original data file.
The only difference the user would notice is the amount of time required
to run the program.

The appearance to the user of the new CPLOT would be somewhat different
fram the old program. Whereas the old program asks the user the SET,SUBSET
to indicate the input, the new program would only ask the SET. Additional
information to be supplied by the user would be the kind of plane to be
plotted (e.g. "L-M" or "M-V"), the coordinate(s) of the plane and the area
within the plane. (Sensible defaults should of course be present.) The
area could be given in a number of different formats, also depending on
the kind of plane to be plotted.

How could the new structure be implemented?

I propose to use two files for each structure: one to contain all pixels
in the N-dimensional structure and one to contain all header items. Header
items will be implemented as records which can be accessed by specifying a
keyword together with a set of coordinates which determine the place in
the hierarchy. A special value for a coordinate can be used to indicate
that this specific coordinate is not relevant. Again using a 3-dimensional
Westerbork "data cube" as an example, a SET header item would be accessed
by a keyword and three coordinate values which all have the value
"irrelevant'. A SUBSET header element would have "irrelevant'" values for
the 1- and m-coordinate and a specific value (SUBSET-number) for the
v-coordinate. For a pixel header element all three coordinates would have
a value.

Because all information in the header will be stored at the right place in
the hierarchy, I-do not expect that we will need a variable record size.
For instance there is no need to have a list of velocities for each SUBSET
in the SET header, but all SUBSET headers could have the information
relevant for that particular subset. If, however, all channel maps would
have the same velocity, or if the velocity of each map. could be expressed
by an algorithm, this would only be stored in the SET header. Note that
exceptions are possible. If an extra map would be added to the SET, which
would not obey the general rule, a keyword item for velocity could be
written in that particular SUBSET header.

If it would be necessary to have a variable record size, I think this can
be implemented at a limited cost. The only things I can think of that
might require this, are user comments and a processing history.

Data access would be performed by a set of routines which are a
generalization of the present READXY/WRITXY pair {3}. These would enable a
program to read/write parts of any shape (0...N-dimensional) from the data
file.

Depending on the possibilities of the operating system under which the new

-4 -

GIPSY will run; there could also be routines which map the data file onto
the program's address space, so that the data can be accessed by the
program as if it was an array in central memory.

6. Basic data access routines

Create (id, ndims, dims, error)
id identification i
ndims number of dimensions i
dims array containing the dimensions i
error error return o]
Exist (id, ndims, dims, error) {logical function}
id identification i
ndims number of dimensions io
dims array receiving the dimensions o
error error return o
Delete (id, error)
id identification i
error error return o
Read-raw (id, pixaddr, npix, data, error)
id identification i
pixaddr address of pixel in file i
npix number of pixels io
data array to receive pixel values o]
error error return o]
Write-raw (id, pixaddr, npix, data, error)
id identification i
pixaddr address of pixel in file i
npix number of pixels io
data array with pixel values i
error error return o
Read (id, lowdim, highdim, npix, data, error)
id identification i
lowdim array with coordinates i
specifying low-address corner
highdim array with coordinates i
specifying high-address corner
npix max. number of pixels to read io
resp. actually read
data array to receive pixel values o
error error return o

Write (id, lowdim, highdim, npix, data, error)

id identification i

lowdim array with coordinates i
specifying low-address corner

highdim array with coordinates i
specifying high-address corner

npix max. number of pixels to write io
resp. actually read

data array with pixel values i

error error return o]

The routines Read and Write can be made more powerful if "lowdim" is
allowed to have a higher value than "highdim'. This would introduce the
possibility to "mirror" the data. Another improvement could be obtained by
allowing the caller to specify the order in which the coordinates are
applied. This would give the possiblity of transposing the data.

Because the ocoordinate arguments are specified in terms of file
coordinates, there should be utilities which construct coordinate
arguments from physically meaningful parameters.

7. Basic header access routines

Read header item (id, keyword, ndims, dims, data, error)

id identification

keyword name of header item

ndims number of coordinates specified

dims array with coordinates
specifying level for this item.
The first element contains the
highest level coordinate.
If element =-1, this coordinate
is irrelevant.
If ndims < number of dimensions
in file the remaining coordinates
are assumed to be -1.

data header item contents (CHARACTER) o

error error return o

| il el el

If this routine cannot find the requested item at the specified level,
it will search at higher nodes in the hierarchy until it finds the
item there or until it knows the item does not exist.

Write header item (id, keyword, ndims, dims, data, error)

id identification

keyword name of header item

ndims number of coordinates specified

dims array with coordinates
specifying level for this item.
The first element contains the
highest level coordinate.
If element =-1, this coordinate
is irrelevant.
If ndims < number of dimensions
in file the remaining coordinates
are assumed to be -1.

data header item contents (CHARACTER) i

error error return e}

T S

-6 -

Delete header item (id, keyword, ndims, dims, error)

id identification i
keyword name of header item i
ndims number of coordinates specified i
dims array with coordinates i
specifying level for this item.
The first element contains the
highest level coordinate.
If element =-1, this coordinate
is irrelevant.
If ndims < number of dimensions
in file the remaining coordinates
are assumed to be -1.
error error return o

Read raw header record (id, irec, keyword, ndims, dims, data, error)

id identification i
irec header record number i
keyword name of header item found o
ndims size of dims io
dims array to obtain coordinates o

The first element receives the
highest level coordinate.

data header record contents (CHAR.) o)
error error return o
Note: '"Write raw header record' is potentially dangerous for the

integrity of the header structure and for this reason I think it should
not be made generally available.

Higher level header access routines

On top of the basic routines a layer of higher level header access
routines can be built. The following 1list 1is what I think is worth
consideration.

- A routine to combine header access with user input. This involves the
design of a structured prompt (USRINP keyword) to reflect both the
header keyword and the ocoordinate information. There should be the
possiblity to choose whether or not to store the user input in the
header.

- Routines for different types of header information: integers, reals,
etc. These routines should also apply algorithms which are present in
the header or referred to by the header.

- A routine that copies headers from an existing file to a new file. It
should be possible to copy selectively in a flexible way.

This 1list should and will be extended, but it should not become too long,

because header access required by application programs will be done

through these routines, not through the basic routines.

Implementation of the data file

The implementation of the data file would be quite simple. It probably
would only consist of a big array on disk filled with pixel values.

10.

11.

Implementation of -the-header file

Though header access will be infrequent relative to access of pixel data,
it is important that the implementation is sufficiently efficient. Storing
header data in an unstructured fashion in a file and retrieving header
records by means of a linear search certainly would not be adequate.

The method I propose is a hash technique. (A description of hash
techniques can be found in {4}.)

First all coordinate information in the header access call is packed in a
32-bit integer in such a way that all components can be retrieved later.
Except when the number of dimensions is large, the maximum total space
available for pixel storage would be about 4 Giga-pixels, which I think is
quite acceptable. The advantage of this packing is that only a fixed space
in the record, independent of the number of dimensions, need be reserved
for coordinate information.

Now this 32-bit number together with the name of the header item is
"hashed" to obtain the address of an entry in a table. Every entry in this
table points to a linked list of header records. Provided that the table
is 1large enough -in the order of the total number of header records to be
stored- the linked lists are short. In practice this means that any record
can be retrieved in a very small number of disk accesses (on the average
less than 2). This number is independent of the total amount of records
stored, but only depends on the ratio (number of records)/(table size).
The table need not be present in memory but also can reside on disk.
Because the address in the table is known in advance, no search in the
file is necessary and the record number in the file containing the
required -table entry is immediately known. The result of this is that a
disk-based hash table adds exactly one extra disk access in the header
access procedure. If the header file is mapped onto memory, header access
probably would even be more efficient.

A disadvantage of this approach is that header items on a specific level
of the hierarchy are not grouped together but may be scattered through the
file. Header records are stored in the order in which they are written for
the first time. If all header items on a specific level are required, the
only way to obtain them is reading all records in the header file.

If this is not acceptable, a combination of a B-tree organisation for
coordinate information and hashing for the keywords (still combined with
coordinates) might be a solution. A different solution might be
maintaining two hash tables and inserting the records in two separate
linked lists.

Other data structures for GIPSY

This document in principle only has the image data structure as its
subject ("image" in a broad sense, encampassing all O...N-dimensional
structures). I believe, however, that the just described approach has
enough promises that it can be used for non-image data. As a next step, we
should investigate the possibility of having one integrated format
throughout GIPSY for astronomical data. Except for images, this format
should at least allow for the kind of data which now often is stored in
tables.

12.

{1}

{2}
{3}
{4}

Concluding remarks

To make the new data structure a success, there is more to be done than
just making a good structure. Perhaps more important is that programs make
a good use of the structure. To do so, - programs should not make
assumptions about the nature of the data but use the header to obtain the
facts. Strange enough this will lead to the removal of astronomy from many
programs but having done so these programs will be better tools for doing
astronomy.

References:

STER program documentation.
(unpublished, available in library of Kapteyn Laboratory)

GIPSY documents MAPFILE.DC3 and HEADERS.DCZ.
GIPSY document READXY.DC2.

D.E. Knuth: .
"The Art of Computer Programming', Vol. 3, Chapter 6.4, pp. 506-549.

