
Once we know the surface brightness profile of a galaxy, we can 
integrate it from 0 to ∞ to the total integrated apparent magnitude
of a galaxy in a given band:

(                           for a circular galaxy)

In practice the surface brightness profiles do not extend to infinity, 
and hence the magnitudes have to be measured up to some fixed 
radius. The magnitude is measured up to a fixed isophotal radius, 
which represents always the same physical radius of a galaxy, 
since the surface brightness is independent of the distance. The 
radius most often used in R25 which corresponds to 
I(R25) = 25 mag/arcsec2

Integrated absolute magnitudes:



Surface brightness profiles of disk galaxies appear more 
complicated since they contain more than one component (central 
bulge, disk, bar, spiral arms, rings…), but also because disk 
galaxies contain large amounts of dust, and hence they are not 
transparent: Besides the contribution from stars, their appearance 
will depend on the distribution of gas and dust, and from the angle 
from which we observe them.

Photometry of disk galaxies

When the galaxy is edge-on, 
light has to to pass through 
longer columns of the galaxy’s 
interstellar material. 



The elliptical galaxies contain little or no gas and dust (there is no 
stellar formation going one). This means that the intrinsic 
absorption in this type of galaxies is not important.

In disk galaxies, however, there are large amounts of gas and dust, 
and that would eventually affect the apparent magnitudes of this
type of galaxies, depending on the angle from which the galaxy is 
viewed:

Edge on                                      Face on

Self-absorption in the galaxy



Photometry of disk galaxies
The light coming from the near 
side of the bulge (along the 
major axis) is absorbed by the 
dust in the disk, becoming 
redder than that on the far side 
(on the disk major axis).  



Photometry of disk galaxies

Dust preferentially scatters blue light. Thus, since light from the 
near side is more scattered than that on the far side, the near side 
would appear bluer. 

Thus scattering and absorption have competing effects. Which 
dominates depends on the inclination of the galaxy: 
•at small inclinations (nearly face on) absorption dominates, the near side 
appears dimmer and redder.
•At intermediate inclinations, scattering dominates.
•At very large inclinations, the near side is very heavily obscured. 

NOTE: The inclination is measured by the tilt of the disk with respect to
the plane of the sky



Shapes of disk galaxies:
The following figures show the distribution of apparent axis ratio of a 
sample of ~5000 S0 galaxies (left) and ~13000 spiral galaxies (right)

In S0 galaxies the distribution of q rises and has a sharp peak at q ~0.7, 
whereas the distribution of spirals rises fast, but remains more or less 
constant above q ~ 0.3.



Shapes of disk galaxies: Spirals
Assuming that spiral galaxies are axisymmetric oblate bodies, using the 
eqs. derived before:

it is apparent that a distribution of β that peaks at some value β0 << 1 
will produce an apparent distribution of q that is more or less 
independent of q for q >> β0 . (e.g. assume N(β) = δ(β − β0)).

This provides quantitative support to the subjective impression that 
spiral galaxies are intrinsically quite thin.



Shapes of disk galaxies: S0
Similarly, the sharp rise in the distribution of q for S0 galaxies 
implies that the true axis ratios has to be more or less uniformly 
distributed from q ~ 0.25 to q ~ 0.85. 



To a good approximation, at large distances from the center, the
surface brightness profile of disk galaxies appear as straight lines 
in a log-log plot (log intensity vs. log radius). This implies that the 
profiles there decay exponentially. In many cases there are 
deviations from this behavior, which are often attributed to the
presence of other components in the disk (e.g., bars and rings).

The following Figure shows the surface brightness profile of the
two spirals NGC 2841 and NGC 3898.

Photometry of disk galaxies

The dotted line shows the exponential fits 
to the disk; the dashed curve is an R −1/4

profile fitted to the central bulge of these 
galaxies. The full curve is the sum of both 
components.



Studies of edge-on galaxies also allow us to derive the light profile
perpendicular to the plane of the disk (z-direction). Commonly used

Photometry of disk galaxies

Both descriptions are common, and it is not clear whether one should 
be preferred over the other (There are no clear theoretical arguments 
that favour either of the two).

Just like in the Milky Way, a second exponential component can 
sometimes be fitted to the observed light distribution of edge-on 
galaxies. This would be the equivalent of our thick disk. But it is much 
more difficult to establish the reality of thick disks, because of 
inclination effects, a very flattened stellar halo, etc, which would 
mimic a thick disk.
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Hence, the total profile can be written as a combination of an R −1/4

(the bulge) and and exponential (the disk) profile. 

Photometry of disk galaxies

The relative contribution of the bulge to the total luminosity is 
known as the bulge fraction:
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This is often related to the disk-to-bulge
ratio: D/B = (B/T)-1 – 1 

The figure on the left shows that B/T (or
γ = B/D) correlates Hubble type.



Correlations between parameters

Bulges of Sb and earlier types follow a similar relation as E galaxies. 
The disks also show that physically larger systems have lower central
surface brightness.
It has been suggested that the central surface brightnesses cluster around 
I ~ 21.7µB, (Freeman’s law) but this is at least partly due to selection 
effects. It is easier to measure large and bright galaxies; but there are 
large numbers of disk galaxies of very low surface brightness (LSBs).



Cool gas in the disk
Since the gas in the disk is moving, the line emission of the 21 cm HI  
will be Doppler shifted according to its radial velocity. 
Since the HI is optically thin, the 21 cm line suffers little absorption, and 
so the mass of gas is simply proportional to the intensity of its emission.

The HI gas is often spread out more uniformly than the stars (peak is
only a few times larger than average, in comparison to the 10,000 
contrast in stellar disks). It can also be more extended.

The ratio M(HI)/LB is often used as an indicator of how gas rich a system 
is: for S0/Sa this quantity ranges between 0.05 – 0.1 Msun/Lbsun. For 
Sc/Sd it is about ten times larger.



Gas motions and the masses of disk galaxies

In the case of the Milky Way, we saw that the stars and gas account only
for a fraction of its mass (and we introduced the concept of dark-matter).
The same is true for most spiral galaxies, as we shall show now.

The acceleration of a particle moving on a circular orbit is related to 
the gravitational potential Φ(R,z) acting on it: 
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The quantity V(R) is then the circular velocity (like we defined for the
Milky Way), and by measuring it we obtain an estimate of how the
gravitational potential (and hence the mass) varies as function of distance 
from the centre of the galaxy. 
V(R) is often referred to as the rotation curve. 



Rotation curves
Just like in our Galaxy, the dominant motion in a disk galaxy is rotation,
HI gas random motions are typically of the order of 10 km/s or smaller. 
This implies that we may assume that the gas clouds follow nearly 
circular orbits with velocity V(R). 

The question now is how to derive V(R) from the observed radial 
velocity toward or away from us.  

Viewed edge-on, the radial velocity
measured Vr(R,i=90) is
Vr(R,i=90) = Vsys+ V(R) cosφ

Vsys is the systemic velocity of the
Galaxy wrt the observer.



Rotation curves

When the galaxy is tilted an angle i to face on, we have to project the 
circular velocity V(R) one additional time. Then the radial velocity
measured Vr(R,i) for all inclinations is

Vr(R,i) = Vsys+ V(R) cosφ sin i



Rotation curves
Contours of constant Vr connect points with the same value of V(R) cosφ
forming a diagram like that shown below. 

•In the central regions, the contours run parallel to the minor axis (note 
that this is the minor axis, because this corresponds to φ=90). 
•Further out, (I.e. larger values of φ), they run radially away from the 
centre.
•Note that the shape of the contours, and in particular, how closely located
they are, tells us about how rapidly the V(R) is changing with R.



Dark matter in disk galaxies
We can compute the rotation curve of a galaxy that would be expected if
all the mass in the galaxy would be accounted for by that in the disk and
in the bulge. To calculate the mass, or the gravitational potential, we 
assume that all the light is given by the observed brightness distribution 
of stars (preferably in the R-band to be sensitive to older stellar 
populations which trace mass better) and of gas. To transform light into 
mass (or gravitational potential), we also need to assume a M/L.

We then add the contribution of the 
bulge and disk:
V2(R) = V2

disk(R) + V2
bulge(R)

since the potentials (or the forces) can 
be added linearly.



Dark matter in disk galaxies
The previous plot shows that it is necessary to add a third component to
the galaxy, a “dark halo”. Note that this component is more extended
and often appears to be dominant at large radii.

The dark halo generally accounts for a large fraction of the total mass of
a galaxy; in the example it is ~75%. 

In Sa/Sb galaxies, the proportion of dark-matter needed to explain the 
rotation curves is ~ 50%, while in Sd and later, this increases to 90%.  

Note that the rotation curve as measured by HI kinematics, can only 
probe regions of the galaxy where there is an HI disk. Thus the mass
derived from rotation curves, is necessarily a lower limit. It is likely that
a fair fraction of the dark matter is located at larger radii. To measure its
gravitational influence requires tracers that probe those regions, such
as satellite galaxies, binary pairs, etc.



Scaling relations: Tully-Fisher
When studying the distance ladder, we discussed a relation between
the luminosity of spiral galaxies and their peak circular velocity:
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This relation implies that more luminous galaxies rotate faster. Let us try
to understand how such a relation arises.

From the equation for the circular velocity, we can write 
and L = 2πI(0)R2

d. 
Combining the two, and assuming that M/L and I(0) are constant,
then  
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To analyse the spiral structure one can study an image from which the 
azimuthally smooth component has been subtracted. An example is 
shown for M51 (left panel in the B band, right panel in the I-band)

Spiral structure

These images show that (i) spiral structure is present in both bands, 
but it has larger amplitude in the B band; (ii) spiral structure is smoother 
in the I than in the B band



Spiral structure and patterns
Often, the shapes of spiral galaxies are approximately invariant under
a rotation around their centres. A galaxy that looks identical after a 
rotation of an angle 2π/m is said to have an m-fold symmetry.

A galaxy with an m-fold symmetry usually has m-spiral arms.
Most spirals have 2 arms, hence they have a twofold symmetry (if
their image is rotated by an angle π, the image remains unchanged).

Spiral arms can be classified 
according to their orientation 
with respect to the direction 
of rotation of the galaxy:
•trailing: outer tip points opposite 
to the direction of rotation
•leading: arm tip points in the 
direction of rotation



The winding problem and the nature of spiral arms
Spiral structure is a complex phenomenon, and is probably the result of
several mechanisms. 

Let us study what happens to a “stripe” of material located in a
differentially rotating disk, as shown in the figure.

The initial equation of the stripe is φ = φ0. 

Since the disk rotates with an angular 
speed Ω(R), the equation of the stripe 
at a later time t is
φ(R,t) = φ0 + Ω(R) t
This shows that the stripe distorts 
into a spiral pattern, because the 
angular speed is a function of R.



The winding problem
The pitch angle i of the arm is the angle between the tangent to the arm
and the circle R = constant. Thus 
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Therefore the pitching angle becomes smaller with time. For example,
for the Milky Way,  we can approximate near the Sun, Ω=V/R, and if
we take V = constant = 220 km/s, then 
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After 1 Gyr, the spiral should be much tighter than actually observed. 

Any initial spiral pattern would suffer a similar winding up; this would 
require that the spiral arm pattern be constantly renewed.


