
Photometry of disk galaxies
The surface brightness profiles of disk galaxies are complex: 
•they contain more than one component (central bulge, disk, bar, spiral 
arms, rings…), 
•disk galaxies contain large amounts of dust, and hence they are not 
transparent.

Besides the contribution from stars, their appearance will depend on the 
distribution of gas and dust, and from the angle from which we observe 
them.

When the galaxy is edge-on, 
light has to pass through longer 
columns of the galaxy’s 
interstellar material. 



The elliptical galaxies contain little or no gas and dust (there is no 
ongoing star formation). This means that the intrinsic absorption in this 
type of galaxies is not important.

In disk galaxies, however, there are large amounts of gas and dust. These 
affect their surface brightness (flux per sq.arcsec), depending on the 
angle from which the galaxy is viewed:

Self-absorption in the galaxy
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Photometry of disk galaxies
The light coming from the near 
side of the bulge (along the 
major axis) is absorbed by the 
dust in the disk, becoming 
redder than that on the far side 
(on the disk major axis).  



Photometry of disk galaxies
On the other hand, dust preferentially scatters blue light. Thus, since 
light from the near side is more scattered than that on the far side, the 
near side would appear bluer. 
Scattering is not isotropic; it is produced by dust grains that are not round. They are more efficient in 
scattering light through small angles (forward scattering).

Thus scattering and absorption have competing effects. Which dominates 
depends on the inclination of the galaxy: 

•at small inclinations (nearly face on) absorption dominates, the near side 
appears dimmer and redder.
•At intermediate inclinations, (forward) scattering dominates.
•At very large inclinations, the near side is very heavily obscured. 

NOTE: The inclination is measured by the tilt of the disk with respect to the plane of the sky (edge-on: 90 
deg; face-on: 0 deg)



Shapes of disk galaxies
The following figures show the distribution of apparent axis ratio of a 
sample of ~5000 S0 galaxies (left) and ~13000 spiral galaxies (right)

In S0 galaxies the distribution of q rises and has a sharp peak at q ~0.7, 
whereas the distribution of spirals rises fast, but remains more or less 
constant above q ~ 0.3.



Shapes of disk galaxies: spirals
We may assume that spiral galaxies are axisymmetric oblate bodies. We 
can then use the equation derived in the lecture on elliptical galaxies:

where β is the true axis ratio, and q the observed ellipticity. 

Note that a distribution of β that peaks at some value β0 << 1 will 
produce an apparent distribution of q that is approximately independent 
of q for q >> β0 . (e.g. assume N(β) = δ(β − β0)).

Such a distribution would then explain the previous figures.

This provides quantitative support to the subjective impression that 
spiral galaxies are intrinsically quite thin.



Shapes of disk galaxies: S0
In contrast, the sharp rise in the distribution of q for S0 galaxies implies 
that the true axis ratios have to be more or less uniformly distributed 
from q ~ 0.25 to q ~ 0.85. 

This is probably related to the fact that S0s have prominent bulges, in 
which case the axis ratio will be close to unity independently of 
inclination.



Photometry of disk galaxies
•To a good approximation, at large distances from the center, the surface brightness 
profile of disk galaxies are straight lines in a log-log plot (log intensity vs. log radius). 

•This implies that the profiles there decay exponentially. 

•In many cases there are deviations from this behavior, which are often attributed to the 
presence of other components in the disk (e.g., bars and rings).

•The following Figure shows the surface brightness profile of the two spirals NGC 2841 
and NGC 3898.

The dotted line shows the exponential fits to the 
disk; the dashed curve is an R −1/4 profile fitted to 
the central bulge of these galaxies. The full curve 
is the sum of both components.



Photometry of disk galaxies
Studies of edge-on galaxies also allow us to derive the light profile perpendicular to 
the plane of the disk (z-direction). Commonly used profiles are:
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Both descriptions are often used, and it is not clear whether one should be preferred 
over the other (There are no clear theoretical arguments that favour either of the two).

Just like in the Milky Way, a second exponential component can sometimes be fitted 
to the observed light distribution of edge-on galaxies. This would be the equivalent of 
our thick disk. But it is much more difficult to establish the reality of thick disks, 
because of inclination effects, a very flattened stellar halo, etc, which would mimic a 
thick disk.



In the general case, the total surface brightness profile can be expressed as a 
combination of an R −1/4 (the bulge) and an exponential (the disk) profile. 

The relative contribution of the bulge to the total luminosity is known 
as the bulge fraction:
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This ratio is computed from the total luminosity of the
bulge (for a de Vaucouleurs) and the disk (for an 
exponential in R).

This is often related to the disk-to-bulge
ratio: D/B = (B/T)-1 – 1 

The figure on the left shows that B/T (or
γ = B/D) correlates Hubble type.



Correlations between parameters

•Bulges of Sb and earlier type disks follow a similar relation between central surface 
brightness and effective radius as E galaxies. 
•Bulges of later types (Sc…) tend to lie systematically lower.

•The disks also show that physically larger systems have lower central surface 
brightness. 

•It has been suggested that the central surface brightnesses cluster around I ~ 21.7µB, 
(Freeman’s law) but this is at least partly due to selection effects. It is easier to measure 
large and bright galaxies; but there are large numbers of disk galaxies of very low 
surface brightness (LSBs).



The properties of bulges
Bulges are some of the densest stellar systems. They can be flattened, ellipsoidal or 
bar-like. The surface brightness of a bulge is often approximated by the Sersic law: 

I(R) = I(0) exp{-(R/R0)1/n}

Recall that n=1 corresponds to an exponential decline, whereas n=4 is the de 
Vaucouleurs law.

About half of all disk galaxies contain a central bar-like structure. The long to short 
axis ratio can be as large as 5:1.

When viewed edge-on, the presence of a bar 
can be noticed from the boxy shape of the 
light distribution. In some cases the isophotes
are squashed, and the bulge/bar has a 
peanut-like shape.



Colour and metallicity of disk galaxies
Let us consider the case of M31:

• Interior to 6 kpc, the bulge dominates the light 
profile; the colours are similar to an E galaxy.

•Slightly further out, young stars begin to 
contribute substantially to the surface 
brightness, and colour of the  galaxy. 



For other disk galaxies, there is no conclusive answer with respect to the 
presence or absence of colour-gradients (they are very hard to measure).

There are competing reasons for colour-gradients:

•the degree of internal extinction by dust
•the mean ages of stars
•metallicity gradients 

All of these effects could produce colour-gradients, as well as destroy 
these.



Cool gas in the disk
•Since the gas in the disk is moving, the emission of the HI 21 cm line  
will be Doppler shifted according to its radial velocity. 

•The HI is optically thin (the 21 cm line suffers little absorption). This 
means that the mass of gas is simply proportional to the intensity of its 
emission.

•The HI gas is often spread out more uniformly than the stars (peak is 
only a few times larger than average, in comparison to the 10,000 
contrast in stellar disks). It can also be more extended.

•The ratio M(HI)/LB is often used as an indicator of how gas rich a 
system is: for S0/Sa this quantity ranges between 0.05 – 0.1 Msun/LB,sun. 
For Sc/Sd it is about ten times larger.



Gas motions and the masses of disk galaxies
In the case of the Milky Way, we saw that the stars and gas account only
for a fraction of its mass (and we introduced the concept of dark-matter).

The same is true for most spiral galaxies.

The acceleration of a particle moving on a circular orbit is related to 
the gravitational potential Φ(R,z) acting on it: 
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•The quantity V(R) is the circular velocity (defined as in the Milky Way) 
•Measurements of V(R) give an estimate of how the gravitational 
potential (and hence mass) varies as function of distance from the centre. 
•V(R) is often referred to as the rotation curve. 



Rotation curves
Just like in our Galaxy, the dominant motion in a disk galaxy is rotation,
HI gas random motions are typically of the order of 10 km/s or smaller. 
This implies that we may assume that the gas clouds follow nearly 
circular orbits with velocity V(R). 

The question now is how to derive V(R) from the observed radial 
velocity toward or away from us.  

Viewed edge-on, the radial velocity
measured Vr(R,i=90) is

Vr(R,i=90) = Vsys + V(R) cosφ

Vsys is the systemic velocity of the
Galaxy wrt the observer.



When the galaxy is tilted an angle i, we have to project the circular 
velocity V(R) one additional time. Then the measured radial velocity 
Vr(R,i) is

Vr(R,i) = Vsys + V(R) cosφ sin i



Spider diagrams
Contours of constant Vr connect points with the same value of V(R) cosφ
forming a spider diagram like that shown here. 

•In the central regions, the contours run 
parallel to the minor axis. 

•Further out, (i.e. larger values of φ), they run 
radially away from the centre.

•The directions where the radial velocity 
deviates most from the systemic velocity of 
the galaxy, define the kinematic major axis 
(i.e φ=0,180 deg)

•Note that the shape of the contours, and in 
particular, how closely packed they are, tells 
us about how rapidly the V(R) is changing 
with R.



This is the rotation curve for the 
previous galaxy. 

It is shown as function of radius R 
along the (photometric) major axis.

This axis is generally (but not always) 
coincident with the kinematic major axis.

We can compare this rotation curve to that provided by the luminous 
mass in the galaxy (its disk and bulge). 

To calculate the predicted circular velocity (i.e. the mass or the 
gravitational potential), we use the observed surface brightness 
distribution of gas and of stars (preferably in the R-band to be sensitive 
to older stellar populations which trace mass better). 



Fitting rotation curves
Because V(R) depends on mass (and not on luminosity or brightness), we
need to transform surface brightness into surface density: we also 
need to assume a M/L (mass-to-light ratio).

Typically, one uses values of M/L
found in the Solar neighbourhood.
M/L ~ 1-3 (M/L)¯.

We then add the contribution of the 
bulge and disk:

V2(R) = V2
disk(R) + V2

bulge(R)

since the potentials (or the forces) 
can be added linearly.



Dark matter in disk galaxies
The previous plot shows that it is necessary to add a third component to
the galaxy, a “dark halo”.

This component is more extended and often dominates at large radii.

The dark halo generally accounts for a large fraction of the total mass of
a galaxy; in the example it is ~75%. In Sa/Sb galaxies, the proportion of 
dark-matter needed to explain the rotation curves is ~ 50%, while in Sd
and later, this increases to 90%.  

Note that the rotation curve as measured by HI kinematics, can only 
probe regions of the galaxy where there is an HI disk. Thus the mass
derived from rotation curves, is necessarily a lower limit. It is likely that
a fair fraction of the dark matter is located at larger radii. To measure its
gravitational influence requires tracers that probe those regions, such
as satellite galaxies, binary pairs, planetary nebulae etc.



Uncertainties and degeneracies. I
Given a certain rotation curve, more than one functional form for the 
distribution of dark matter can be consistent with the data (see below).

Some examples are:

•isothermal profile: ρ(r) = ρ0 (r0/r)2

•Navarro, Frenk & White profile: ρ(r) = ρ0 rs
3/ [r ( r + rs)2]

This profile fits the density distribution found 
in cosmological simulations of  the 
formation of dark halos. 

•power-law: ρ(r) = ρ0 (r0/r)α

•In the first two cases, the total mass is infinite 
(diverges with radius linearly or in the log).



Uncertainties and degeneracies. II
Generally, the M/L used is the one that gives the 
maximum amplitude to disk contribution (and still 
consistent with observations) to the given rotation 
curve. This is known as the maximum disk.

But is not the only option…
The values of the model parameters of the dark halo 
can be changed to have a minimum disk (left), or no 
disk at all (right)



Scaling relations: Tully-Fisher
When studying the distance ladder, we discussed a relation between
the luminosity of spiral galaxies and their peak circular velocity:
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This relation implies that more luminous galaxies rotate faster. Let us try
to understand how such a relation arises.

From the equation for the circular velocity, we can write 
and L = 2πI(0)R2

d. 
Combining the two, and assuming that M/L and I(0) are constant,
then  
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Spiral structure
To analyse the spiral structure one can study an image from which the 
azimuthally smooth component has been subtracted. An example is 
shown for M51 (left panel in the B band, right panel in the I-band)

These images show that 
(i) spiral structure is present in both bands, but it has larger amplitude in the B band; 
(ii) spiral structure is smoother in I than in the B band



Spiral structure and patterns
Often, the shapes of spiral galaxies are approximately invariant under
a rotation around their centres. A galaxy that looks identical after a 
rotation of an angle 2π/m is said to have an m-fold symmetry.

A galaxy with an m-fold symmetry usually has m-spiral arms. Most spirals have 2 arms, 
hence they have a twofold symmetry (if their image is rotated by an angle π, the image 
remains unchanged).

Spiral arms can be classified 
according to their orientation 
with respect to the direction 
of rotation of the galaxy:

•trailing: outer tip points opposite 
to the direction of rotation
•leading: arm tip points in the 
direction of rotation



The nature of spiral arms
Spiral structure is a complex phenomenon, and is probably the result of
several mechanisms. 

Let us study what happens to a “stripe” of material located in a
differentially rotating disk, as shown in the figure.

The initial equation of the stripe is φ = φ0. 

Since the disk rotates with an angular 
speed Ω(R), the equation of the stripe 
at a later time t is

φ(R,t) = φ0 + Ω(R) t

This shows that the stripe distorts into a 
spiral pattern, because the angular speed is a function of R.



The winding problem
The pitch angle i of the arm is the angle between the tangent to the arm
and the circle R = constant. Thus 
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Therefore the pitch angle becomes smaller with time. For example, for 
the Milky Way,  we can approximate near the Sun, Ω=V/R, and if
we take V = constant = 220 km/s, then 
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After 1 Gyr, the spiral should be much tighter than actually observed. 

Any initial spiral pattern would suffer a similar winding up; this would 
require that the spiral arm pattern be constantly renewed.



In the case of gas rich galaxies, with flocculent spiral arms, it is possible 
that the spiral arms are simply being recreated every few orbital periods.
The idea is that the gas collapses to form stars, it is stretched by the differential rotation of the 
disk and it forms a spiral arm. After a while the gas will be used, all hot stars died and the region 
blends back into the disk. If the pace of star formation can be self-regulated (the gas is not 
completely exhausted, supernovae explosions compress the ISM and trigger new star formation 
in a different place), this could work. 

A spiral pattern can last longer if the stars are not on circular orbits, but 
can be arranged in a "kinematic spiral".

We saw that the motions of stars in a disk can be described as an oscillation with an 
epicyclic frequency around a guiding centre that moves on a circular orbit. The star's 
location varies as R = Rg + X0 cos(κ t + Ψ)

If we place the stars with their guiding centres spread around a circle of radius Rg, and 
set Ψ = 2 φg(0), they will lie on an oval, with the long axis pointing to φ=0.

At a later time t, the guiding centres move according to φg(t) = φg(0)+Ω t



The stars advance on their epicycles and are located at  R = Rg + x, where 
x = X0 cos(κ t + 2(φg(t) - Ω t )) = X0 cos((κ - 2Ω) t + 2φg(t)) 

The long axis of the oval now points in the direction where 
(κ - 2Ω) t + 2φg = 0  or φg = (-κ/2 + Ω) t = Ωp t

We have defined the pattern speed Ωp so that the pattern made up by stars with guiding 
centre Rg will return to its original state after a time 2π/Ωp.

Note, however, that it still takes individual stars 2π/Ω to complete their orbits around 
the centre of the galaxy (but this period is shorter than that of the pattern).

A two-armed spiral arm can be made of 
nested ovals of stars with different 
guiding centres Rg. 

Since Ωp also depends on radius, this 
pattern will also suffer from the winding 
problem, but it will do so more slowly by 
a factor Ωp/Ω (0.3 for a galaxy with a flat 
rotation curve).   



One possible solution to the winding problem is probably to consider that 
spiral arms are density waves.

The premise is that the mutual gravitational attraction of stars and gas 
clouds at different radii can offset the tendency of the kinematic spiral to 
wind up, and will cause a pattern to grow which rotates rigidly with a 
single pattern speed.

To some extent, the stars located in the disk will respond to a wave that 
propagates through the disk with a certain speed, and a spiral arm will be 
sustained if the stars move to reinforce the pattern. 

Stars have characteristic frequencies of motion, and this can resonate or not with the 
pattern speed of the wave. If it does, then the spiral arm will be maintained, if it does 
not, it will be damped.  
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