
The orbits of stars
• Stars travel in the Galaxy under the force of gravity. If we know how 

the mass in the Galaxy is distributed, we can find the gravitational 
force, and from this calculate how the positions and velocities of stars 
will change over time.

• Conversely, we can also use the stellar motions to derive where the 
mass is. This is how we discovered that much of the matter in the 
Galaxy is not visible.

• Since the orbits of stars take them through different regions of the 
Galaxy, their motions at the time we observe them have been affected 
by the gravitational fields through which they travelled earlier. So we 
can use the equations of motion to infer from the observed motions 
how the mass is distributed in parts of the Galaxy that we cannot see 
directly.



• Usually we can consider the stars as point masses, because their
sizes are very small compared to the distances between them. 

• The gravitational potential of a galaxy can be regarded as the sum of 
a smooth component (the average over a region containing many 
stars), and the very deep potential well around each individual star. 

• We will see that the motion of stars within a galaxy is determined 
almost entirely by the smooth part of the force. Two-body 
encounters (leading to energy transfer between individual stars) are 
only important within dense clusters. 



Motion under gravity
• Newton’s law of gravity tells us that a point mass M attracts a second 

mass m separated by distance r causing the velocity v of m, to change 
as d(mv)/dt = -G M m/r3 r

• In a cluster of N stars with masses mα, at positions xα, we derive the 
force acting on star β by adding the contributions from all other stars: 

d(mβ vβ)/dt = - Σα G mα mβ/|xβ – xα|3 (xβ – xα)
– Note that the mass mβ drops out of the equation, so that heavy and light stars 

suffer the same acceleration. 

• This equation can also be written in terms of the gradient of the 
gravitational potential Φ(x):

d(mv)/dt = - m ∇Φ(x), with Φ(x) = - Σα G mα/|x – xα|
where we have chosen an arbitrary integration constant, so that Φ(x)        0 at large radii



• If we think of a continuous mass distribution, the potential at point x
is given by the integral over the density ρ(x’) at all points 

Φ(x) = - G ∫ ρ(x’)/|x - x’| d3x’
where we have essentially replaced the discrete summation by an integral over a 

volume, and the masses by ρ(x) d3x

• This equation allows one to derive the potential if the density is 
known. But it is also possible to determine the density from the
potential. The relation is given by Poisson’s equation:

∇2Φ(x) = 4πG ρ(x) 
Note that not all forms of Φ(x) give a physically meaningful density, since this 

should satisfy that ρ(x) > 0 everywhere (mass is always positive). 

– Note as well the similarity to the eq. that relates the potential associated to the 
electric field (∇Φ = - E) and the charge distribution ρe: ∇2Φ = - 4πκ ρe, where κ
is Coulomb’s constant. Here ρe may be positive or negative, reflecting that the 
electric force can be repulsive or attractive.



Spherical systems: Newton’s theorems
• Theorem 1: A body that is inside a spherical shell of matter 

experiences no net gravitational force from that shell.

Theorem 2: The gravitational force on a body that lies outside a closed 
spherical shell of matter is the same as it would be if all the shells’ 
mass was concentrated in a point at its centre.

δm1 = ρ r1
2 dr1 dΩ1 and     δm2 = ρ r2

2 dr2 dΩ2

But   dr1 = dr2 = dr and    dΩ1 = dΩ2 = dΩ.
Then δ m1/r1

2 = δ m2/r2
2.

A particle located at r experiences a force 
F = f1 + f2 where
f1 = - G δ m1/r1

2 ε1 and f2 = -G δ m2/r2
2 ε2

Since ε1 = -ε2, thus F = -G(δ m1/r1
2 - δ m2/r2

2) = 0



• The second theorem implies that within any spherical object with
density ρ(r) the gravitational force a particle feels at a radius R is only 
due to the mass inside that radius. 

• Thus, if a star moves on a circular orbit, its acceleration is given by 
vc

2/r = GM(<r)/r2

• For a point mass, the circular velocity vc
2 = GM/r, and so   vc ∝ r-1/2

• Note that since M generally increases with radius (or is at least 
constant), the above equation implies that for a spherical galaxy, the 
circular velocity never falls off more rapidly than the Kepler case r-1/2. 



Conserved quantities
• Energy:

– If the mass distribution is static (the galaxy is not collapsing or colliding), the 
potential at a given position will be time independent (since the potential and the 
mass distribution are directly related, for example, through Poisson’s equation).

– This implies that the energy of a star moving in such a galaxy will be conserved: 
E = ½ m v2 + m Φ(x)

• Angular momentum:

– The angular momentum of a star located at position x in a galaxy, and moving 
with velocity v is L = m x × v. The torque on the star τ = dL/dt = m x × F

– For a spherical galaxy, the force is purely radial, and thus τ = 0: the total angular 
momentum is conserved.

– In an axisymmetric galaxy, the only component that is conserved is Lz (or Jφ). 



How important are collisions in 
gravitational systems?

• Given enough time, molecules of air or dust particles in a room will 
spread themselves out evenly, reaching an equilibrium state. This 
happens through collisions, where they exchange energy and 
momentum. The forces between molecules are small unless they are
very close to each other, and so typically molecules will be subject to 
violent and short-lived accelerations, in between long periods when 
they move at nearly constant speeds. Typically at room temperature, 
each molecule experiences 1011 encounters per second.

• However, the nature of the gravitational force is different: it is long-
range, and close encounters in galaxies are less important. The 
average (smoother) mass distribution will determine the motion of a 
stars. 



• The net gravitational force acting on a star in a galaxy is determined 
by the gross structure of the galaxy, rather than by whether it is 
located close to another star. 

• Consider the following example:

• The force on a star located at the apex of the cone of constant density:
dF1 = G m* dm1/r1

2 = G m* r1
2 ρ dr dΩ /r1

2 = G m* ρ dr dΩ, 

while the force from the more distant shell is
dF2 = Gm* dm2/r2

2 = G m* ρ dr dΩ.

• Thus, if the density of stars is constant throughout the cone, the force 
produced by shells at different distances will be the same (makes 
explicit the long-range nature of gravity).



Strong encounters

• We will now calculate the time between strong encounters: one star 
comes so close another that the collision completely changes its speed 
and direction of motion

• In this case, the change in potential energy should be at least as large 
as the initial kinetic energy: 

Gm2/r > m v2/2, or r < rs = 2 G m/v2

• The distance rs is the strong encounter radius. Near the Sun, stars 
have random speeds v ~ 30 km/s, and for m=0.5 M¯, rs ~ 1 AU 



• As a star like the Sun moves relative to nearby stars with velocity v
for a time t, it will have a strong encounter with any other star within a 
cylinder of radius rs, and volume π rs

2 v t centered on its path.

• If there are n stars per unit volume, a star like the Sun will on average 
have one close encounter in a time tcoll such that n π rs

2 v tcoll = 1

• The characteristic time between collisions is tcoll ~ 1/(nπ rs
2 v), or

tcoll = v3/(4πG2m2n)



• Normalizing to some characteristic values

tcoll ~ 4×1012 yr  (v/10 km/s)3 (m/M¯)-2 (n/1 pc-3)-1

• Since n ~ 0.1 pc-3 near the Sun, tcoll ~ 1015 years, which far exceeds 
the age of the Universe.

• Strong encounters are only important in the dense cores of globular 
clusters.



Distant weak encounters

• In a distant encounter, the force of one star on another is so weak that 
the stars hardly deviate from their original paths after the encounter. 

• We will consider the case of a star moving through a system of N
identical stars of mass m.

• The goal is to obtain an estimate of the difference between the 
velocity of the star after crossing the system, and its velocity if the 
mass had been smoothly distributed throughout the system, rather than 
concentrated into individual stars.



• The change in velocity will depend on b, the mass of the stars and 
their relative velocity. We assume that δv/v << 1, and that the 
perturbing star is stationary (this is known as the impulse 
approximation).

• The pull by m induces a motion δv⊥ perpendicular to the original 
trajectory. The force is F = - GmM/r2 εr, and F⊥ = GmM/r2 cosθ, 
where r2 = x2 + b2 and cosθ = b/r. Replacing, we find that  F⊥ = 
GmM/b2 (1 + (vt/b)2)-3/2

• Since M dv⊥/dt = F⊥, we can compute the change in velocity by 
integrating over time. We find ∆v⊥ = 2 Gm/(bv). 

θ



• Therefore the faster the star M passes by m, the smaller the 
perturbation is.

• Now we compute the cumulative effect of the individual encounters. 

• If the surface density of stars in the system is N/(π R2), where R is 
some characteristic radius, the number of encounters dne with impact 
parameter b, a star suffers when crossing the system is 
dne = N/(π R2) 2 π b db = 2 N/R2 b db.

• Each of these encounters will produce a change in δv⊥, but because 
the perturbations are randomly oriented, the mean vector change is 
null <δ v⊥> = 0.



• But there will be a change in modulus, 
δv⊥2= (2 Gm/bv)2 2 N/R2 b db

• We can integrate this equation, to obtain ∆v⊥2 = 8 N (Gm/vR)2 ln Λ, 
where Λ = bmax/bmin. 

• If we define the number of weak encounters that a star has to 
experience to change its velocity by the same order as its incoming 
velocity by:  nrelax ∆v⊥2  = v2, then nrelax = v4 R2/ (8 G2m2 N lnΛ)

• We can define a timescale        

trelax = nrelax R/v = v3 R3/ (8 G2m2 N lnΛ)



• This is known as the relaxation timescale: it gives an estimate of the 
timescale required for a star to change its velocity by the same order, 
due to weak encounters with a “sea” of stars. 

• We can compare the relaxation timescale to the collision timescale 
derived previously: tcoll = v3/(4πG2m2n). If we use that n ~ N/(π R3), 
then 

trelax = tcoll/(2 ln Λ)

which shows that the relaxation timescale is always shorter than the 
timescale for 2-body encounters.

• Typically ln Λ ~ 20. The exact values of bmin and bmax are not very 
important, because of the logarithmic dependence: Typically bmax will 
be the system size, and bmin = rs, for example for 300 pc < bmax < 30 
kpc, and rs = 1 AU (near the Sun),  ln Λ ~ 18 – 22. 



•For example, for an elliptical galaxy, N ~ 1011 stars, R ~ 10 kpc, and the 
average relative velocity of stars is v ~ 200 km/s, then trelax ~ 108 Gyr! 
which is much longer than the age of the Universe. 

•This implies that when calculating the motions of stars like the Sun, we 
can ignore the pulls of the individual stars, and consider them to move in 
the smoothed-out potential of the entire Galaxy.

•For stars in a globular cluster like ω Cen, trelax ~ 0.4 Gyr, so relaxation 
will be important over a Hubble time.    
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