The motions of stars In the Galaxy

The stars in the Galaxy define various components, that do not only differ in their
spatial distribution but also in their kinematics.

The dominant motion of stars (and gas) in the Galactic disk is rotation (around the
centre of the Galaxy), and these motions occur on nearly circular orbits.

The stars in the thick disk, rotate more slowly than those in the thin disk. Their
random motions are slightly larger.

The stars in the halo, however, do not rotate in an orderly fashion, their random
motions are large, and their orbits are rather elongated.

Questions we will address today: How do we know this? How can we determine
the rotational speed of the nearby disk? How can we best describe the motions of

the stars in the different components?



Stellar kinematics and reference frames

The fundamental Galactic reference frame: is the most important from the point of
view of galactic dynamics. It is centered on the galaxy’s centre of mass.

The velocity of a star in this reference frame is often given in cylindrical coordinates
(I1,0,2) (or (Vg, V,, V,)) where

oI 1: is along the radial direction (in the Galactic
plane), and positive outwards (1=180, b=0)

A
*®: Is In the tangential direction (in the Galactic z
plane), positive in the direction of galactic
rotation (1=90, b=0)
Z: is perpendicular to the galactic plane, and = —

positive northwards



The local standard of rest

*\We define a reference system on the Galactic plane that is moving on a circular orbit
around the Galactic centre, as a local standard of rest.

*““The” local standard of rest is the reference system located at the solar
neighbourhood which moves on a circular orbit.

The SN is a sphere of negligible size centered on the Sun, containing an adequate sample of stars. For example,
for disk stars: radius 50-100 pc (1% of the disk size); for stellar halo stars ~ 1 kpc radius (1% of the halo extent).

oIt makes sense and it is possible to define such a coordinate system, because a star
moving on a circular orbit in the Galactic plane will continue to do so because

othe Galaxy is axisymmetric, ® = ®(R,z)
ssymmetric with respect to the Galactic plane, ® = ®(R,z°™)
«in steady state (i.e. it is not evolving in time).

At each point on the Galactic plane, the force that a star feels while moving in the
Galactic disk is exclusively radial: F(R,z) = - VO(R,2)

F=-00/0R,_,&r-0D/0Z,_,¢,=-0D/0R (R) e
which implies that the anqular momentum is conserved (t = r x F = 0).



Galactic rotation

We have introduced the concept of a reference system that moves on a circular
orbit in the Galactic disk (the "standard of rest™), because stars in the Galactic
disk move on nearly circular orbits.

Their motion can be essentially decomposed into a mean rotation around the
centre of the Galaxy plus some random motion around this mean trajectory.

There are essentially two ways in which a disk can rotate:

« all stars move with the same angular velocity (rigid body rotation)

 the angular velocity depends on radius: stars closer to the centre complete their orbits
In less time that those farther out. This is known as differential rotation.

Galaxies show differential rotation.



Circular motions and the differential
rotation of the disk

« Let us consider the motion of a nearby star located in the Galactic disk moving on a
perfectly circular orbit. The velocity of this star with respect to the Galactic centre is
V =Q x R, while the velocity of the LSRisV, = Q_ x R,

* The line of sight velocity of this star with respect to the LSR is
V= (V-V,).(R-R)|R-R
which we may express in terms of the angular velocity Q at R and that at R,
V= (QxR-Q,xR).(R-R)|R-R,|
Using the vector identitiesa . (axb)=0anda.(bxc)=Db.(cxa), then

Vies = (Q ) Qo) : (Ro X R)/lR - Rol



Note that LSR/Sun

Q- Q= - (Q-Q) k=-d/dR | (R-R,)k / R - Ro| =d
and R,xR=-R R sina k

=-k R,|IR -R,|sin]| Gal Cen Star
(after using the law of sines) R

Therefore the line of sight velocity is
Vs = dQ/ dR |RO (R-R,) R,sinl
If we approximate (R-R,) ~-d cos |,

here we have used that R?=R 2+ d*-2dR,cos | ~R,22-2d R, cos I, and
RZ_RZOZ(R_RO) (R+ Ro)~(R_Ro)2 Ro’

then v, = - dQ/ dR |RO R, dsin | cos |,
or

Viis=Adsin2] where A=-05*RdQ/dR |
0

or, in terms of the velocity of a

circular orbit V.= QR A=05%* (VC/R - ch/dR) |R0




We may proceed in analogous way to describe the proper motion with respect to the
LSR of a nearby star moving on a circular velocity. In that case one finds that

u= B+ Acos?2|

where

B=-(Q+05*RdQ/dR) [ =-0.5*(VJ/R +dV/dR) |g_

A and B are the Oort constants:

*A measures the shear in the disk, or the deviation from rigid body rotation because it
depends on d€2/dR (Note that for the rigid body case Q2 = const. and A = 0).

*B measures the vorticity: the tendency of stars to circulate about a given point
Jan Oort discovered that the motion of stars near the Sun varied with longitude, as

described above, and he correctly interpreted as this being due to the differential
rotation of the Galactic disk.



Variation of the line of sight and tangential velocities as function of Galactic
longitude for stars moving on circular orbits in the Galactic plane




Results

» From observations of the radial velocities and proper motions of nearby stars, it is
therefore possible to measure the values of the Oort constants. The most recent

determinations give:
A=14x1km/skpct B=-12%1km/skpc

» This implies that it is possible to derive for the Solar neighbourhood the circular
velocity and its variation as a function of radius:

Vc = Ro (A_ B)
dV /AR | r, = - (A + B)

Using the numerical values quoted above, one finds
V.(R,) =218 (R./8 kpc) km/s

Therefore, this method only allows us to derive the value of the circular velocity at the solar
neighbourhood if the distance to the Galactic centre is known (and has been derived in some

other way)



Knowledge of the circular velocity and its variation as a function of distance from
the Galactic centre is extremely important.

Recall that for an object orbiting around a point mass (e.g. Earth — Sun system), the
acceleration on a circular orbit is

VAr=G Mz, or M=rV2G
which implies that if the circular velocity V, of the object (Earth) is known, as well

as Its distance to the point mass (1 AU), it is possible to derive the mass M (of the
Sun).

We will see later in the course, that for a spatially extended spherical system, a
similar equation holds, where M is replaced by the mass within the radius r, M =
M(<r) of the circular orbit.

For a flattened system, a similar relation holds.

This implies that it is possible, in principle, to derive how much mass there is inside
the orbit of the Sun (or more precisely, the LSR orbit), as well as how this mass is
distributed M = M(r) by mapping how V, varies with radius.



The solar motion

The stars in the disk do not actually move on perfectly circular orbits, and this is
also the case for the Sun.

This implies that the Sun will move with respect to the local standard of rest (LSR).
This motion is known as the “Solar motion”.

Since the LSR is an “idealized/fiducial’” reference frame (there are no stars that
exactly follow the motion of the LSR), it is not possible to measure this Solar
motion "directly" (i.e. by comparing to what the LSR is doing). In practice, the
solar motion is defined with respect to the mean velocity of spectroscopically similar
stars (e.g. gK, dM, etc).

Essentially, we are defining the LSR to have the mean motion of stars (of similar
spectral type) in the SN.

To derive the solar motion we may use radial velocities or proper motions



The solar motion from radial velocities

Let V be the velocity of a star in the LSR frame, and v, the
velocity of the Sun in the same frame.

Then <V >=3} V. =0, where the sum is over stars of the same
spectral type. This holds by definition of the reference system.

Let us now compute the line of sight velocity of star i:
Vi 5= (Vi = Vgun) - Xifl Xil = Vi Xil| Xi| = Vg COS W,

If we average over all N stars,
<vlos> = 1/N {3 vi'os}= 1IN { > V,. X/| Xi| =V, > COS y;}

If we select stars located in the same direction and distance then
Xi/| Xi| = X, and cos y; = cos y. Thus

<ylos> = -y, COoS Wy

sun

The line of sight velocity is largest for y = 180 (receding) and
smallest for v = 0 (approaching). The direction of v,
known as the apex of the solar motion, while the opposﬂe
direction is the antapex.

Sun



The solar motion from proper motions

We may express the proper motion vector as a cross product:
B = 1/d; > {(Vi— Vgun) X Xif] X[} X xif[

sun

Let us now average over all stars to determine the solar motion:
<p >=1/N[ > Ud; * {(V;= vgun) X Xil| Xil} X X/ ;] ]

We again select stars located in the same direction and distance then
Xi/| xi| = X, and using that A x (B x C) = (A.C) B-(A.B) C

<p>=1/d {Vsun " Vgup COS Y x/| x|}

Thus the mean proper motion vanishes in the direction of the apex
and of the antapex, and is largest for v = 90, 270.

This is true for stars lying in the same direction, even if they are located at X
different distances. However, to estimate the magnitude of the solar motion

one needs to have the distance information to the individual stars. 9/




The solar motion: results

In the LSR reference frame, we define
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V,, correlates with the random velocities
of stars in the SN.

The fit to this relation (in the limit

of zero velocity dispersion) gives the

actual solar motion I S
V,,, =5.2+0.6 km/s O g e ——
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S2: measure of random vel

The tendency of the mean rotational velocity of a stellar population to lag behind the
LSR is known as asymmetric drift. This phenomenon is reflected in the increase in
random motions of the population with the mean rotational velocity.

The Sun is moving towards the Galactic centre, upwards (away from the
plane) and faster than if it was moving on a perfectly circular orbit



Random velocities of stars

Stars in the Galactic disk have two types of motions:

« “ordered” on nearly circular orbits (around the Gal.
Centre, described by the LSR rotation)

* “random” motions, which are best described by the
velocity dispersion

oy = <(Vy - <V >)>1,
where <v,> is the mean velocity in the k-direction
(k=x,y,2).

All dispersions increase with color up to (B-V)~0.6

Main sequence stars bluer than (B-V) ~ 0.6 are younger than 10 Gyr,
while the red stars are predominantly old.

The increase of o with (B-V) points at a physical mechanism
that operates progressively in time. The orbits of stars
suffer from perturbations, due to the graininess of the
potential of the Galaxy, e.g. like produced by molecular
clouds.
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Vertex deviation

In addition to velocity dispersions, one may also
compute cross-products: <v, (v, — <Vv,>)>, ...

Gal.C.

All products which involve v, are consistent with zero
within the uncertainties, while this is not the case, for the
cross products involving the x,y velocity components.

We define a new coordinate system such that
V=V, cosa-(V,-<V,>)sina
V,=V,sina + (V, - <V, >) cos a. v —Vx
The angle o is known as the vertex deviation.

The fact that the cross products are non-zero, i.e. that o IS non-zero, shows that the
(X,y,z) coordinates are not the optimal to describe the distribution of velocities of stars
In the SN.

The new system of coordinates is referred to as the principal axes coordinate system.
The reason for this becomes clear in the next sheet



Schwarzschild distribution

In a classical gas, the velocities of particles can be described by a Maxwell-Boltzmann
distribution.

Schwarzschild pointed out that a similar distribution function could be used to describe
the velocities of stars in the SN.

The probability that the velocity of a star lies in
d3v = dv, dv, dv, (where dv, = dv,) is expressed as:

f(v) dev = d®v /[(2 1)¥2 6, &, o] exp{-SV:Z/(2 5.2)}

Thus, f(v) is constant on ellipsoids in velocity space

Note that this is slightly different from the distribution function used to describe the motions of
particles in a gas:

f(v) = 1/(2n 6212 exp(-v2/262)
because in this case, it is the speed of the particles (v = |v|) what is important, and there is no
distinction between the different directions of motion.
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Velocities are with respect to the LSR that is defined by equations (10.11). [From
kindly supplied by H. Jahreiss]

*The velocity distribution of stars in the U and W directions is rather close to Gaussian.

*The distribution in the V-direction is skewed towards negative velocities.



This can be understood as follows:

«Stars with V < 0 km/s are located at smaller radii:
since V is the rotational velocity with respect to the LSR, a
negative V implies that the star is moving with a smaller
tangential velocity than the LSR. Consider a star on an
elliptical orbit that oscillates inside the solar circle, that is
between R, and R,. At the pericenter R,, its velocity is purely
tangential and is larger than the circular velocity at that point
(it needs to reach larger radii): ®(R,) > ®C(R1)' At the
apocenter R, its velocity Is again purely tangential, but now
it has to be smaller than the circular velocity ®.(R,) (since

it reaches a smaller radius): O(R, = R,..,) < O.(R,)

Note that the smaller V, the further inside R, its pericenter is located.

* The density of stars increases exponentially towards the center: there are more stars with
V < 0 than with positive V

* The velocity dispersion also increases exponentially towards the center: the probability
that a star from R < R, visits the SN is larger than for a star with R > Ro



so|- B2

Star streams

e The distribution of stars in
velocity space Is not smooth.

« UvsV,VvsW plots show (
substructures or moving groups :

A moving group Is a set of stars
moving with similar velocities.
They are also known as streams

«Streams can often be associated to open clusters or associations, in which case there is
also spatial structure. In this case, these are groups of stars that formed together.
*Moving groups also can have dynamical origin (like due perturbations by spiral arms)



The thick disk

e The thick disk was discovered through star counts, but do its stars
have different kinematics than the thin disk stars?

* The velocity dispersions are larger (they have to be if the stars are to
reach higher distances above the Galactic plane)

« The rotational velocity of thick disk stars is lower: in the SN typically
® ~ 160 km/s



Kinematics of halo stars

» The velocity distribution of halo stars ~ «of-. "~ " " -
that pass through the SN isclose to = zoo b _ 5. o iei™ ™ =
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*The shape of the velocity ellipsoid (aligned with the radial direction)
shows that halo stars are preferentially moving on very eccentric orbits
(rather than circular)

*Halo stars can be easily identified in proper motion surveys, because
they have quite distinct orbits from the rest of the stars in the disk. Their
spatial velocities relative to the Sun are very large, and so are their
proper motions.

*The large values of the velocities of these halo stars show that they
travel quite far into the halo of our Galaxy.
They can be used to estimate the escape ﬂ
velocity (and hence the mass of the *
Milky Way).

=




Kinematics of the bulge

* The bulge is not the extension of the stellar halo towards the
center of the Galaxy:

— Besides having a different spatial distribution, its stars have
different metallicities (closer to those of the disk)

— The Kinematics are different: bulge stars rotate with a mean
velocity of ~ 100 km/s

— Their velocity dispersions are slightly smaller than those of the
stellar halo



Surveys of disk, thick disk, stellar halo and
bulge: what criteria?

« We want to define sets of criteria which would enable us to
preferentially select stars from a given Galactic component

 Criteria can be based on: spatial distribution (location of fields, etc),

color selection (blue, red stars?), kinematics (radial velocities, proper
motions), metallicities (high, low, etc)

* Need to be aware that no criterion is perfect and that there will always
be some contamination from other Galactic components. Try to keep
this to a minimum, and find ways of identifying them.



Gas In the Galaxy. The rotation curve

We have seen that the line-of-sight velocities of nearby disk stars moving on

perfectly circular orbits is
Vi =R, (Q2-Q)sinl=R,sinl (VIR-V,/R,)

Note that if the MW rotated like a rigid body, the angular speed would be constant, and the

line of sight velocity would always be zero.

Typically, the angular speed drops with radius

— recall for example, in the Kepler problem, V = (GM/R)¥2, so that V/R « R-372,

a0 < 1 < LlEB0O
This implies that Vies < 0
0<1<90 and R<R, (e.g. nearby) : V|, >0
— 0<1<90 and R > R, (external to the solar circle): V,, <0
- 90<1 <180 (R>R,always):V,,<0

1 = 90
Vloes < 0

Vlog = 0

Ro

R < Ro

— 180<1 <270 (R>R,always): V,,>0
— 270<1 <360 and R<R,. V|, <0,

— 270<1 <360 andR>R,,: V|, >0

Vlog = 0

180 < 1 < 270

Jun

Vlos < 0

Vlos = 0

270 <= 1 < 360

R = Ro




This very characteristic pattern of radial velocities can be observed in
the motion of gas in the disk of our Galaxy.
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Figure 2.18 Inthe plane of the disk, the intensity of 21 cm emission from neutral hydrogen

gas moving toward or away from us with velocity Visgr, measured relative to the local
standard of rest — D. Hartmann, W. Burton.

As expected there Is no gas with positive velocities in the 2nd quadrant or
with negative velocities in the 3rd quadrant



The rotation curve of the Galaxy

A dynamically interesting quantity to measure is the rotation curve of the Galaxy:
how the circular velocity varies as a function of radius in the Milky Way.

In principle, this should be possible using the radial velocities and proper motions of
stars in the disk of our Galaxy (as we already discussed). However, the light of stars
in the disk is strongly absorbed by dust.

We can however, use the HI gas which emits in the radio and is not affected by dust.

The problem in this case is that it is usually impossible to know the distance to the
emitting gas.



Tangent-point method

It can be used to determine the circular velocity of gas in the inner Galaxy (R <R,).
It uses the fact that the angular speed decreases
with radius. In the direction 0 < | <90, the l.o.s.
velocity is greatest at the tangent point T

SUN

Here the line of sight direction is perpendicular
to the vector to the Galactic centre, and hence this
line of sight is parallel to the tangential velocity
at that point, which is just the circular velocity.

For the tangent point T:
R:=R,sinl

and
V= Rysinl (V{/R; -V, /R)=V;-V,sinl

therefore

O.=V;=V,ysinl +V

los et -




The rotation curve of the Galaxy: results

We can thus derive the circular velocity by measuring the largest velocity where
emission from HI is observed for each Ionmtude
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Figure 2.19 Left, Milky Way’s rotation from the tangent point method, taking Vy =
200km s~'; dots show velocities of northern HI gas with / > 270°, while the curve gives
results from southern gas at [ < 90°. The tangent point method fails at R <0.2R, (open
circles) because this gas follows oval orbits in the Galactic bar. Right, rotation speed of
the outer Galaxy, calculated for Vo =200kms™' (filled circles) and for V) =220kms~!
(open circles); crosses show estimated errors — W.B. Burton, M. Honma.

Note that the variation of V(R) is not completely smooth. This is due to the presence of spiral
arms whose gravitational pull on the HI gas can induce velocity changes of the order of 10-20
km/s. Thus if the tangent point is located close to a spiral arm, the velocity measured will differ
from the average speed of a circular orbit at that radius.



The determination of the circular velocity in the outer Galaxy is more difficult (since
the distance to the gas is unknown).

It is possible to use distances to cepheids, young stellar associations (obtained from
spectroscopic or photometric parallax methods, etc.), and measure their radial
velocity from the emission lines of cold or hot gas around these stars.

Such distances are sufficiently accurate to show without doubt that the rotation
speed V(R) does not decline much in the outer Galaxy, and even that it may be
rising.

As mentioned briefly today, the circular velocity at a given radius V(R) Is related to
the mass interior to that radius M(<R) by
M(<R) =R V?/G

Since V(R) does not decline, this means that the mass of the Milky Way must
Increase almost linearly with radius, even in the outer Galaxy where there are many
fewer stars observed.

This discrepancy between the light and the mass is a common phenomenon in spiral galaxies.
Galaxies presumably contain a large amount of matter that does not emit any light: this is the

infamous dark-matter.



The gas distribution In the Galaxy

It is not possible to derive distances to individual gas clouds.
However, If the rotation curve of the Galaxy is known, we can use the
relation between the V, . and V(R) to derive the distance R.

This is called a kinematic distance. It enables us to derive how the HI
IS distributed in the disk of the Milky Way.

The next plot shows the surface density distribution of HI gas and of
H, (which is derived assuming that CO traces it; the problem is that
H, has no transitions in the radio or sub-millimeter which would make
It directly detectable).
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it depends on what is assumed for V(R). The shaded region shows surface density of
molecular hydrogen, as estimated from the intensity of CO emission— W. Burton, T. Dame.

ealmost all CO seems to lie inside the solar circle
only 20% of all HI in the disk Is inside R,

*CO seems to be concentrated in a ring at ~ 4 kpc from the Galactic centre, and to
have a central hole

*HI spreads out further than the stars in the disk, and also seems to have a central hole.
*The north and southern distributions of HI are not exactly the same.

*Beyond the solar circle, the HI starts to warp towards b > 0 on the side of | = 90, and
It bends southwards near | = 270.
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